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Abstract— This article considers the problem of traffic
modeling via modeling at the microscopic (i.e., vehicle)
scale. It provides a connection between classical ordinary
differential equation based models and data driven arti-
ficial neural network (ANN) based models by showing an
example of a car following model which can be exactly
expressed as an ANN. In a set of numerical experiments,
four ANN models (ranging in structure from a model
that is able to exactly capture a classical car following
model, to a generic neural network model) are proposed
and then trained from data and their resulting accuracy
is assessed. It is shown that by adding structure into the
neural network (i.e., via the architecture and the activation
functions), it is possible to outperform generic ANN models
to emergent phenomena such as stop and go waves.

I. INTRODUCTION

Modelling longitudinal car following behaviors has
been an important area of research in transportation
systems over the last 60+ years [1]–[6]. An accurate car
following model enables realistic microscopic simula-
tion and allows for reliable automotive control. These
models are particularly important today because the
rapid innovation in vehicular autonomy has motivated
interests in training self driving cars in simulations based
on these microscopic car following models [7].

At the same time, the increased sensing capabilities
of vehicles are ushering in a new era of data that may
be used to enhance the fidelity of these microscopic car
following models. Inspired by the recent successes of
deep learning, several works are beginning to investigate
the potential to apply artificial neural networks (ANN)
for car following modelling [8]–[11]. For example, an
important ANN is the multilayer perceptron (MLP),
which is used in [8]–[10].

Recognizing the strong legacy of microscopic car
following theory and its successful applications, and
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at the same time the quickly evolving landscape of
data driven machine learning models [12]–[14], in this
article we explore some connections between the two
approaches. For simplicity, we consider the full velocity
difference model (FVDM) [15] as a prototypical or-
dinary differential equation (ODE) based microscopic
car following model, and on the opposite end of the
spectrum we consider artificial neural networks (ANN)
as an exemplar machine learning based approach.

Using these two models, we illustrate that there exists
an artificial neural network which is mathematically
equivalent to the FVDM. This is achieved by intelli-
gently choosing the so called activation function used
in the ANN, and also by imposing a specific structure
on the ANN that allows the inputs to be combined in
a way that mimics the FVDM. Furthermore, inspired
by the connection, we illustrate that it is possible to
consider other structured ANNs that are able to capture
the general behavior of the FVDM.

With the connection between the data-driven ANN
and the ODE-based FVDM established, we can more
fully explore ANN based predictors. On the opposite
extreme of a carefully constructed ANN outlined above,
we also consider a generic ANN based model, in which
the architecture and the activation function do not exploit
any specific structure or model-specific choices.

Since both the structured ANNs and the generic ANN
are neural networks, they can be directly compared using
the same calibration procedure to assess their modeling
performance. Along these lines, we run a set of numeri-
cal experiments to highlight the performance variability
of the various models. The main message uncovered
from these experiments is the possibility of fine tuning
the ANN to connect with the classical car following
theory offers potential to produce a new structured ANN
models that may outperform pure ODE-based or pure
data driven models.

The remainder of the article is as follows. In Sec-
tion II, we briefly review the full velocity difference
model and provide a brief description of artificial neural
networks. In Section III, we introduce four artificial
neural network models, and show it is possible to design
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ANNs that are inspired by the structure of the full
velocity difference model. Then in Section IV we detail
a set of numerical experiments that compare the different
models and highlight the potential benefits of ANNs that
are structured to consider car-following features. Finally,
Section V provides some potential new directions based
on these preliminary experiments.

II. BACKGROUND

In this section we briefly review the full velocity
difference model and a generic artificial neural network,
the multilayer perceptron.

A. Full velocity difference model

The task of modelling car following behaviors at the
microscopic level (i.e., at the level of individual vehicles)
via ordinary differential equations requires the modeler
to specify an acceleration function a(t) in order to define
the following system:

dx(t)

dt
= v(t),

dv(t)

dt
= a(t),

where x(t) is the vehicle position and v(t) is the vehicle
velocity.

Many important analytic models have been proposed
since 1950s, such as Gipps’ model [4] and the intelligent
driver model (IDM) [6]. One important family of car
following models is the optimal velocity model (OVM),
which was first proposed by Bando et al. [5]. In the
OVM, the acceleration function, denoted aovm, is a
function of the spacing ∆x(t) and the vehicle’s own
velocity v(t):

aovm(∆x(t), v(t)) = k[V (∆x)− v(t)]. (1)

In (1), k is a parameter and V (·) is called the optimal
velocity function that denotes the desired speed of the
vehicle when the spacing is ∆x. It usually takes the
form of

V (∆x(t)) = p1 + p2 tanh(p3∆x(t) + p4), (2)

where p1, p2, p3 and p4 are parameters.
Note that the OVM in (1) does not account for

the effects of the relative velocity ∆v between the
vehicle and its leader. This makes it difficult to explain
the acceleration behaviors of a single vehicle [16].
To address this problem, Jiang et al. [15] proposed
an improved OVM named the full velocity difference
model. It extends OVM by adding another term to the

Fig. 1: A typical MLP with n inputs, two hidden layers
of i and j nodes, and m outputs.

acceleration function that considers the relative velocity
∆v between the vehicles:

afvdm(∆x, v,∆v) = k[V (∆x)− v] + λ∆v, (3)

where λ is a model parameter.

B. Artificial neural networks

Recently, there has been an interest to construct car
following models from ANN models. For example, in
[11], a recurrent neural network (RNN) is used to
describe trajectories in the Next Generation Simulation
(NGSIM) program [17] and is found to be comparable
to the IDM. In this work we consider a generic form
of an ANN, which is the multilayer perceptron. The
MLP is composed of one or more hidden layers, and
each layer is composed of a set of one or more nodes
(activation functions). In each node, inputs to the layer
are transformed into a scalar output from the node.
Considering the outputs from other nodes in the same
layer, the collective outputs are then used as an input to
nodes in the next layer.

A typical MLP is graphically illustrated in Figure 1.
As shown in the figure, the MLP has n inputs and m
outputs; in the two hidden layers of i and j nodes,
every node is fully connected to all other nodes in its
neighboring layers. In general, n, i, j, and m can be
any positive integers, and the model can take arbitrary
number of hidden layers.

Three typical activation functions used in multilayer
perceptrons include the i) linear activation, the ii) sig-
moid activation, and the iii) hyperbolic tangent acti-
vation. The linear activation function, denoted as l,
combines a vector of inputs xin linearly with weights
w and a scalar bias b, producing a scalar output xout as
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follows:

xout = l(xin) = w>xin + b. (4)

The sigmoid activation function, denoted by σ, also
maps the input vector xin to a scalar output xout via
the parameters w and b, via the following equation:

xout = σ(xin) =
1

1 + e−(w>xin+b)
. (5)

Finally, the hyperbolic tangent activation, denoted τ ,
transforms the input vector to a scalar output similarly
to (4), (5), but using the following function:

xout = τ(xin) = tanh(w>xin + b). (6)

III. PROPOSED ANN BASED CAR FOLLOWING
MODELS

In this section, we first show that it is possible to write
the FVDM car following model as a neural network in
such a way that the ANN is mathematically equivalent to
the FVDM. Then we consider 4 ANNs. The first ANN
inspired by the FVDM and is able to reproduce exactly
the FVDM under the correct weights in the activation
functions. The second ANN has the same structure as
the first ANN but the activation functions are changed
so that it cannot exactly reproduce the FVDM. The third
ANN is a generic MLP with only a single wide hidden
layer. The final ANN is a generic MLP with has three
narrow hidden layers. The models are presented in more
detail below.

A. Full velocity difference model as an ANN

First we make the direct connection that it is possible
to view the FVDM acceleration function as an ANN
with a carefully chosen structure and set of activation
functions.

The connection is straightforward. First we rewrite (3)
in the following form:

afvdm(∆x, v,∆v) = kV (∆x)− kv + λ∆v, (7)

which is easy to recognize as a mapping of three inputs,
V (∆x), v,∆v through a linear activation function (4).
Next, we note that the input V (∆x) used in (7) is itself
an output of a scalar input ∆x mapped through a tangent
activation function (6). As a consequence, it is possible
to construct an ANN architecture as shown in Figure 2,
which exactly reproduces the FVDM acceleration func-
tion.

We will use this observation to guide the design of
additional ANNs as delineated in the following section.

Fig. 2: The FVDM acceleration function can be viewed
as an artificial neural network with three network inputs
and a combination of linear and hyperbolic tangent
activation functions.

B. Proposed ANN models for car following

In this section we introduce four ANN models by
choosing a combination of architectures and activation
functions to understand the importance of the structure
of the model on the performance of the ANN. For each
ANN based model, we assume the input space to be
a three dimensional vector composed of the spacing
∆x, the vehicle velocity v, and the relative velocity ∆v
between the vehicle in front and the current vehicle. The
output of each ANN model is the current acceleration
of the vehicle, a. As a result, each ANN should be
viewed as a data driven acceleration model that can be
used to simulate traffic when combined with a standard
numerical ODE solver.

1) ANN Model 1. Branched tanh-linear network:
The main idea of the first model is to propose an
architecture for the ANN in which is more general than
the FVDM but is able to exactly recover the FVDM as
a special case. Precisely, we consider an ANN with an
architecture depicted in Figure 3a.

We briefly comment on the structure of the ANN
architecture shown in Figure 3a. First, note the input
to the ANN is a three dimensional vector of spacing,
velocity, and relative velocity. On the top layer of the
network, the spacing is the only input to a bank of 31
tangent activation functions, each one described by (6).
Similarly, the velocity is the only input into a bank of
31 linear activation functions, and the relative velocity is
the only input into its own bank of 31 linear activation
functions. In the next layer, the output of the bank of 31
tangent activation functions operating on the spacing is
combined via a linear activation function. Similarly, the
outputs of the 31 linear activation functions operating on
the velocity and the 31 linear activation functions oper-
ating on the relative velocity are linearly combined via
separate linear activation functions operating on layer
2. The output of the three linear activation functions
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(a) Architecture of ANN Model 1. Branched tanh-linear net-
work. (b) Architecture of ANN Model 2. Branched sigmoid network.

(c) Architecture of ANN model 3. Flat wide network. (d) Architecture of ANN model 4. Deep stacked network.

Fig. 3: Network architectures of the 4 ANNs. The letters inside the nodes denote the following activation functions: l
is the linear activation; σ is the sigmoid activation; and τ is the hyperbolic tangent activation. As a control measure,
the total number of hidden nodes in the four models is 96.

in layer 2 are combined by another linear activation
function in layer 3 to output a final acceleration value.

The choice of the architecture was inspired by the
FVDM model in the sense that the FVDM architecture
in Figure 2 can be recovered by the network in Figure 3a
by proper choice of the weights in the various activation
functions, and in particular by setting many of the
parameters in the linear activation function to zero.

2) ANN model 2. Branched sigmoid network: In
practice we usually only have a partial understanding
the system, so we propose a second, more generic, ANN
model with an architecture shown in Figure 3b. The
model is the same as Model 1 except that all activation
functions in the first layer are changed to sigmoid
activations. This choice is due to the fact that the use
of sigmoid activation functions are commonly used to
construct MLP models when no additional information
about the activation functions are known.

3) ANN model 3. Flat wide network: For comparison,
we also design two generic MLP models. As seen in [8]–
[11], commonly used MLP models can be classified into
two broad categories: i) a shallow network with a single
wide hidden layer, and ii) a deep network with multiple
narrow hidden layers.

Under the first category, we design an MLP model,

denoted Model 3, with an architecture illustrated in
Figure 3c. The model takes ∆x, v, and ∆v as inputs,
feeds the vector of inputs to every node in the single 96-
node sigmoid activated hidden layer, and finally linearly
combines the outputs of those 96 hidden nodes to
produce the acceleration output a.

4) ANN model 4. Deep stacked network: Finally
under the second category of generic MLP models, we
propose an additional benchmark, denoted Model 4, with
an architecture as shown in Figure 3d. The model takes
∆x, v, and ∆v as inputs, feeds them to every node in
the first 32-node sigmoid activated hidden layer, then
passes the outputs of the first hidden layer through the
second and the third 32-node hidden layers, and finally
linearly combines the outputs in the last hidden layer to
produce an produce the acceleration output a.

5) Motivation for network architectures: The under-
lying motivation for the proposal of the four models
above is to test, given the same 96 hidden nodes and
the same training procedure, which architecture demon-
strates the most predictive power. The number 96 is
chosen to be small enough to allow fast computation,
but large enough to retain the general expressivity of a
neural network model.
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IV. NUMERICAL EXPERIMENTS

In this section, we present a series of numerical
experiments to test the performance of the various ANN
models, and in particular to illustrate the importance
of the overall ANN architecture in the quality of the
models that result. We describe the experiment design,
the training and testing performance of the models, and
discuss the main results.

A. Experiment design

To evaluate the effectiveness of the ANN models, we
train the four ANN models described in Section III-B
with a trajectory dataset obtained assuming the FVDM
as the underlying base model. We note that by using
the FVDM model to synthetically generate the data, we
expect Model 1 to perform the best, precisely because it
is theoretically possible to exactly replicate the FVDM
in the model if the correct parameters are learned from
the data. In contrast, the remaining models are not able
to exactly replicate the FVDM, but as will be shown
in this section, their performance varies significantly
depending on the architecture. In a more realistic real
world setting, this highlights the benefits of integrating
any known structure into the architecture of the ANN to
improve performance of the model.

We briefly describe the loss function used to train
the models. Let the true acceleration function used to
generate the synthetic data be denoted as a∗, and let the
observed trajectory data from the vehicle be denoted as
{x∗(t)|t ∈ [t0, t1]}. Based on Treiber and Kesting’s [18]
local maximum-likelihood calibration method, we set
the training objective to be minimizing the following
mean square loss function:

min
p

L(p) =
1

Nt

t1∑
t=t0

[a∗(t)− â(t|p)]2, (8)

where Nt is the total number of sample points in the
training dataset; for a ODE solver with a constant time
step ∆t, Nt = t1−t0

∆t . The term â(t|p) is the proxy
model with parameters p. In this experiment, we have
a∗ ≡ afvdm and â is the acceleration produced by one
of the four ANN models.

Inspired by [19], [20], we simulate 10 identical 5 m
long vehicles in a single-lane 250-meter-long circular
track using a FVDM to obtain the training data. Specif-
ically, with slight modification from [16], we assume
each vehicle drives according to the following FVDM:

afvdm =3.2431 tanh(0.13∆x− 2.22)

− 0.41v + 0.2∆v + 2.7675.
(9)

Loss Model 1 Model 2 Model 3 Model 4
Train (m/s2) 4.80× 10−3 5.94× 10−3 1.27× 10−2 1.15× 10−2

Test (m/s2) 2.39× 10−2 2.84× 10−1 1.11× 101 5.12× 100

TABLE I: Training and testing loss Models 1 through 4
after 100 epochs.

Under this set of parameters, the FVDM is able to
generate stop and go traffic jams, which is an important
emergent phenomenon which we would ideally like to
recover from the ANN based models. Each vehicle is
initially at zero velocity and approximately uniformly
spaced. Using an explicit Runge-Kutta method [21],
[22], we simulate the system for 500 seconds with a
time step of ∆t = 0.1 second. Taking one measurement
per second per vehicle, we obtain a training dataset
of 50,000 sample points, each containing the velocity,
relative velocity, spacing, and acceleration of a vehicle.

To train the models, we initialize the ANN parameters
p with Xazvier’s method [23] and solve the optimization
problem (8) using the Adam method [24] with a learning
rate of 0.0001 for 100 iterations.

To understand the potential of the ANN models to
generalize well beyond the data contained in the training
dataset, we generate a test dataset by uniformly sampling
2,000 points in the following subdomain of FVDM:

1m ≤∆x ≤ 50m,

0.25m/s ≤v ≤ 20m/s,

−24m/s ≤∆v ≤ 25m/s.

The predicted acceleration from each of the ANNs is
then compared to the acceleration of the FVDM.

B. Training and testing losses

The training errors and the testing errors of the four
models are displayed epoch by epoch in Figure 4. An
epoch is a complete pass through the training dataset.
The final losses of each model in training and testing are
presented in Table I. Across the epochs, we observe that
the four models achieve comparable results in training.
However, Model 1 and Model 2 are significantly better
than Model 3 and Model 4 on the test dataset. After ap-
proximately epoch 25, both of the generic MLP models
(Models 3 and 4) start to overfit, while the structured
ANN models (Models 1 and 2) continue to improve.
Even though Model 2 does not use the same activation
function as the FVDM, the fact that a portion of the first
hidden layer is used to learn the relationship between
each input individually helps it outperform the models
that are more general in their structure.
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(a) Training loss. (b) Testing loss.

Fig. 4: Training and testing errors of Models 1 through
4 over 100 epochs.

C. Checking the emergent properties of the trained ANN
models

Under the same initial condition as was used to
generate the training data, we simulate each of the
trained ANNs and compare the resulting trajectories in
Figure 5. In the plot, we observe the highest performing
model (i.e., the one that captures the stop and go wave
pattern most accuately), is Model 1, which was known
a-priori to be able to reproduce the FVDM based on
its structure and choice of activation functions. More
importantly, the result indicates that Model 2 is also
sufficiently accurate to be able to model the emergence
of stop-and-go waves which are present in trajectories
simulated using the FVDM, while the more generic
Models 3 and 4 are not able to reproduce stop and go
waves.

Finally, the acceleration response of the four models
as well as the ground truth FVDM are shown in Figure 6.
In the plot, the corresponding acceleration a is visualized
for ∆x, v, and ∆v within the sampling range of the
test data. The magnitude of acceleration is represented
in a color space defined in the color bar on the right
with green indicating high acceleration, and red denoting
high deceleration. From the figure, we observe that
acceleration responses of Model 1 and 2 are much closer
to the true acceleration response of FVDM than those
of the generic MLP Models 3 and 4. This also indicates
that the structure of the ANN plays a role in helping
the model generalize beyond the data used to train the
model.

D. Discussion

The main difference between the first two models
and the last two models is that model 3 and 4 are
significantly less generalizable than model 1 and 2.

(a) Ground truth FVDM model

(b) ANN model 1. Branched tanh-linear network.

(c) ANN model 2. Branched sigmoid network.

(d) ANN model 3. Flat wide network.

(e) ANN model 4. Deep stacked network.

Fig. 5: Simulated trajectories of of the FVDM used to
generate training data, and trajectories from the resulting
trained models Model 1 through MOdel 4 using the same
initial conditions. For Models 3 and 4, we choose the
trained models with the lowest testing errors, which are
at epoch 27 for Model 3 and epoch 25 for Model 4.

Without good generalizability, a small error at time t will
tend to lead to larger error at time t+ 1. Over time, the
errors from model 3 and 4 accumulate and become too
significant for the models to recover to the right track, a
phenomenon called distributional drift. On the contrary,
model 1 and 2 have good generalizability, which allows
them to automatically correct small deviations in the
predictions and hence never drift too far from the true
trajectory. Therefore, the results from model 1 and 2 are
more accurate than those from model 3 and 4 in both
microscopic and macroscopic levels.

Last but not least, despite the effectiveness of model 1
and 2, exactly why model 1 and 2 are more generalizable
than model 3 and 4 is still a theoretical challenge. We
consider this question as one of the main research tasks
for future works.

V. CONCLUSION

This article provided preliminary connections between
classical car following models and data driven artificial
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(a) Ground truth model. FVDM afvdm.

(b) ANN model 1. Branched tanh-linear network.

(c) ANN model 2. Branched sigmoid network.

(d) ANN model 3. Flat wide network.

(e) ANN model 4. Deep stacked network.

Fig. 6: Acceleration responses of the FVDM and Models 1 through 4. Note that for Models 3 and 4 we select the
models with the lowest testing errors, which are at epoch 27 for Model 3and epoch 25 for Model 4.

neural networks. Inspired by the fact that it is possible to
rewrite a classical car following model as an equivalent
ANN, it was shown that structured ANNs have the
potential to improve performance when applied to model
car following dynamics. As a first step, the performance
of a few candidate architectures were assessed in nu-
merical experiments in which the underlying dynamics
were known.

In our future work, we are interested in several
extensions. While the numerical experiments conducted
in this article are easier to analyze, a natural extension is
to apply the methods on data collected from real human
drivers where the true driving model is unknown to the
ANN designer. We are also interested in considering a

wider range of architectures for the ANNs, for example
by considering more layers, more structures, and other
neural networks beyond the multilayer perceptron.
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