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ABSTRACT
This article explores the state estimation problem for heterogeneous traffic (a multi-
class flow composed of vehicles with distinct sizes and driving behaviours) using
particle filtering (PF) approaches. We consider three enhanced variations of the
bootstrap PF to improve estimation. The benchmark PF utilises a deterministic
partial differential equation and an additive process noise that is state-independent.
For the enhanced variations we first consider a parameter-adaptive PF that also
allows model parameters to be adjusted. The second variation is a standard PF
with spatially-correlated noise. The last variation combines parameter-adaptive and
the spatially-correlated-noise approaches. We compare the four filters in numerical
experiments that represent complex heterogeneous traffic scenarios, as well as on
real-world heterogeneous traffic data. The results show that the enhanced filters can
achieve up to an 80% and 46% of accuracy improvement as compared to an open
loop simulation without measurement correction, with the synthetic settings and
with real traffic data, respectively. Moreover, the enhanced filters outperform the
standard PF in all the traffic scenarios based on accuracy.

KEYWORDS
Traffic state estimation; Particle filter; Spatially-correlated noise modelling;
Heterogeneous traffic

1. Introduction

Traffic is increasing in complexity around the world due to the diverse transporta-
tion modes and the distinct driving rules associated with each mode. Traffic control
and management strategies depend on good estimation of traffic flow in spatial and
temporal dimensions. While flow model based traffic management strategies are well
developed for lane adhering homogeneous flows (Ferrara, Simona, and Silvia 2018),
the modelling, estimation, and control of heterogeneous traffic is less well developed.
The challenges for developing traffic control and management strategies to account
for increasingly heterogeneous road users are many, and must be addressed to achieve
accurate, safe and effective heterogeneous traffic management. These challenges in-
clude but are not limited to (1) much more complicated vehicular interactions that
are difficult to capture from aggregate count or average speed data from traditional
sensors; (2) lack of high quality heterogeneous traffic trajectory datasets to support
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research in this area. For example, although vehicle trajectory data for homogeneous
traffic (NGSIM 2006; Krajewski et al. 2018) (see also (Li et al. 2020) for a recent
review) are abundant, they do not contain heterogeneous traffic and vehicular inter-
actions with loose lane-discipline; (3) there is no traffic estimation routine readily
available for heterogeneous or loose lane-discipline traffic, due to the increasing non-
linearity of the traffic phenomena and the increased state space such that commonly
used state estimators are prone to failure (Blandin et al. 2012). These limitations
motivate a new generation of modelling and estimation techniques on complex traffic
flows to be developed.

Various macroscopic traffic flow models have been proposed to extend seminal single
class homogeneous models such as the Lighthill-Whitham-Richards (LWR) (Lighthill
and Whitham 1955; Richards 1956) and Aw, Rascle and Zhang (ARZ) (Aw and Rascle
2000; Zhang 2002) models. One set of extensions describe multi-class traffic where ve-
hicle classes follow homogeneous dynamics. Another set of extensions explicitly define
vehicle dynamics which allow for bulk overtaking.

The growing interest for complex traffic has motivated studies on modelling traf-
fic that is highly heterogeneous. These traffic flow models include, for example, the
n-populations model (Benzoni-Gavage and Colombo 2002), which assumes that the
average speed of a vehicle class depends on the mean free space and allows overtaking
between vehicle classes. In a related work, the porous model (Nair, Mahmassani, and
Miller-Hooks 2011) consider the heterogeneous traffic system as porous medium which
allows small and fast vehicles to move through the ‘pores’ defined by the free space
between other vehicles in a disordered flow. Another proposed model could capture
overtaking in the free flow condition (Ngoduy and Liu 2007). The Fastlane model (van
Lint, Hoogendoorn, and Schreuder 2008) introduces dynamic passenger car equivalent
(PCE) parameters that scale according to the traffic state. The model of (Tang et al.
2009) considers the dynamics of traffic mixed with buses and cars. Algorithms are
also developed to solve for multi-class traffic flow models, including (Zhang, Wong,
and Shu 2006; Zhang et al. 2006; Zhang, Wong, and Xu 2008). Inspired by these
works, the creeping model (Fan and Work 2015) explicitly defines class-specific veloc-
ity functions and jam densities to capture both overtaking and creeping features of
heterogeneous traffic flows. More recently, a coupled microscopic-macroscopic model
was proposed (Chalons, Monache, and Goatin 2017) to account for the effect of large
and slow-moving vehicles, while the non-local multi-class traffic flow model (Chiarello
and Goatin 2019) was developed to consider heterogeneous drivers and vehicles char-
acterised by their look-ahead visibility. The porous model (Nair, Mahmassani, and
Miller-Hooks 2011) was re-examined (Gashaw, Goatin, and Härri 2018) with an an-
alytical expression for the pore space distribution such that the model is specifically
tailored to a mixed flow of cars and powered two-wheelers.

The development of these new models are essential to incorporate the increas-
ingly heterogeneous transportation environment present in different parts of the world.
Other traffic modelling methods considering heterogeneous traffic, for example, include
the multi-class model based on three dimensional flow concentration surface (Mohan
and G.Ramadurai 2019), multi-class multi-lane mesoscopic modelling (Costeseque and
Duret 2016), and cellular automata modelling (Mallikarjuna and Rao 2009). More de-
tailed reviews of these and other models can be found in (van Wageningen-Kessels
et al. 2015; Garavello, Han, and Piccoli 2016; Ferrara, Simona, and Silvia 2018).

For traffic control and management, accurate traffic state estimation is an important
task. The problem is typically posed as a model-based estimation problem in which
real-time data streams are used to correct model-based predictions in an online setting.
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Kalman filter (KF) and the extended Kalman filter (EKF) was first proposed for
traffic state estimation (Gazis and Knapp 1971; Szeto and Gazis 1972). The EKF
is an extension of the KF for differentiable nonlinear systems and has since been
broadly applied to traffic state estimation (Wang and Papageorgiou 2005; van Lint,
Hoogendoorn, and Hegyi 2008; Hegyi et al. 2006). For non-differentiable models such
as the cell transmission model (CTM) or its extensions, the unscented Kalman filter
(UKF) and the ensemble Kalman filter (EnKF) are also applied (Hegyi et al. 2006;
Ngoduy and Sumalee 2010; Work et al. 2008; Blandin et al. 2012; Risso et al. 2020).
These Kalman-based filters, however, are minimal variance estimators which limit
their application on traffic estimation problems that can generate multi-modal error
distributions (Blandin et al. 2012), even though error bounds can be derived (Sun and
Work 2017; Vivas et al. 2015; Sun and Work 2018). Therefore, a fully Monte Carlo
sampling-based filter, the particle filter (Doucet and Johansen 2009; Chen 2003) is
adopted (Mihaylova, Boel, and Hegyi 2007; Mihaylova et al. 2012; Wright and Horowitz
2016; Wang, Li, and Work 2017; Polson and Sokolov 2018). Readers can refer to
a complete review on traffic estimation techniques and the associated flow models
in (Seo et al. 2017).

We also notice that complementary approaches on existing filters can improve the
state estimation performance. Demonstrated in (Mihaylova, Boel, and Hegyi 2007), a
realistic Poisson distributed noise modeling is used to describe the empirical distribu-
tion of the field data. In (Boel and Mihaylova 2006), the randomness is introduced on
the sending and receiving functions as well as on the speed adaptation rules to incorpo-
rate the stochasticity of the traffic model. Moreover, joint parameter-state estimation
with a random walk parameter dynamic has shown to improve state estimation (Wang
and Papageorgiou 2005); similar ideas related to dual filtering have also been explored
for simultaneous parameter and state estimation (Hegyi et al. 2006; van Lint, Hoogen-
doorn, and Hegyi 2008).

Unlike the widely studied homogeneous traffic flow estimation problem, only a very
small number of works consider multi-class traffic state estimation, e.g., (van Lint,
Hoogendoorn, and Hegyi 2008; Ngoduy and Sumalee 2010; Ngoduy 2008). This is in
part due to the increased complexity both in terms of the number of state variables
(which increases proportionally with the number of classes), as well as the dynamics
of the state variables (e.g., due to classes behaving distinctly in response to vehicles
ahead). In (van Lint, Hoogendoorn, and Hegyi 2008), a dual EKF approach is con-
sidered to estimate the total density (and also the Fastlane model parameters), from
which the individual class densities are recovered via their respective passenger car
equivalents. In (Ngoduy 2008), an UKF is considered to track multi-class traffic in
which overtaking is permitted in freeflow traffic but not congestion. In (Ngoduy and
Sumalee 2010) an adaptive unscented Kalman filter that allows the model noise co-
variance matrix to be estimated simultaneous with the states is shown to outperform
the standard UKF when applied to freeway traffic composed of cars and trucks.

Building on these works, in this article we consider the problem of traffic state es-
timation when the base traffic flow is heterogeneous and nontrivial interactions such
as overtaking occur between classes. The traffic flow dynamics are described by the
two-class creeping model (Fan and Work 2015), which allows small vehicles (e.g., mo-
torbikes) to overtake larger ones, including when the large vehicles come to a complete
stop. Traffic state estimation is performed using one of several fully nonlinear parti-
cle filtering algorithms. Because heterogeneous traffic may have significantly different
operating rules compared to a homogeneous passenger-car traffic environment, we in-
vestigate the ability of each of the particle filters to reconstruct multi-class traffic in
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both simulated and real settings where overtaking of large vehicles by small vehicles
can occur, particularly in highly congested traffic.

The main contribution of our work is to estimate class-specific heterogeneous traffic
when nontrivial interactions occur. Compared to our preliminary work (Wang and
Work 2019), in this article we propose and analyze three enhanced particle filtering
techniques and consider their performance on complex multi-class traffic. In addition
to the particle filter, we consider a parameter-adaptive filter that allows the model
parameters to be adjusted at each step in parallel with the state estimation. We also
consider a modification that enhances the standard particle filter with spatially corre-
lated noise modelling as opposed to an independent process noise. Finally we combine
the parameter adaptive filter with the spatially correlated process noise. We show that
one can extract additional performance in the estimation using methods that are com-
plementary to the more rigorous noise modeling approaches considered in (Mihaylova,
Boel, and Hegyi 2007). We compare the enhanced filters with the standard bootstrap
particle filter and provide detailed numerical studies on the performance of each of the
four filters. The synthetic experimental results demonstrate that the enhanced filters,
especially with spatially-correlated noise, can achieve up to 80% error reduction com-
pared to a pure model-based forward simulation using the same dynamics assumed
in the estimator. Compared to the standard particle filter, we demonstrate that the
enhanced techniques can lead to performance improvements of up to 60%, depending
on the traffic regime under which the complex traffic is estimated. The proposed en-
hanced filters are also assessed using a heterogeneous traffic data set (Kanagaraj et al.
2015). The results show that the enhanced filters can achieve up to 46% higher traffic
reconstruction accuracy as compared to the forward simulation, which is in agreement
with the synthetic testing scenarios.

The remainder of the article proceeds as follows. We briefly summarise the multi-
class creeping traffic flow model used in the estimator, and the Bayesian state es-
timation framework in Section 2. Section 3 summarises the standard particle filter
and introduces the enhanced methods. In the numerical experiments presented in Sec-
tion 4, we evaluate the performance of the particle filter and its enhanced versions on
four synthetic traffic scenarios. The proposed filters are further evaluated using real
heterogeneous traffic data in Section 5 Finally, the conclusion and potential future
works are highlighted in Section 6.

2. Preliminaries

In this section, we briefly review the two-class creeping model and the Bayesian state
estimation framework for the construction of a model based estimator.

2.1. A two-class creeping model

The two-class creeping model (Fan and Work 2015) is a system of scalar conservation
laws that governs the flow of each vehicle class:

∂ρj(x, t)

∂t
+
∂ρj(x, t)Vj(r(x, t))

∂x
= 0, j ∈ {1, 2}, (1)

where ρj(x, t) denotes the density of each vehicle class (indexed by j) at time t and
space x. The velocity function for each class Vj(·) is distinct for each vehicle class and
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depends on the total density r =
∑

j ρj . For simplicity, in this work we consider the
following velocity functions:

Vj(r) = max

(
vm

(
1− r

rmj

)
, 0

)
, j ∈ {1, 2} (2)

where vm is the speed limit applied to all road users. The class specific jam densities
rmj ∈ {rm1 , rm2 } control the total density r at which the individual vehicle classes come
to a complete stop. If rm1 6= rm2 , then one vehicle class will be able to creep through
traffic while the other class is completely stopped. In the simplified setting considering
a piecewise linear velocity function, the three parameters, vm, rm1 and rm2 , completely
define the two class creeping flow. Note that the creeping model is well posed (Fan and
Work 2015), which is, in general, difficult to establish for many macroscopic models
in which overtaking occurs.

Note that the model is able to capture a variety of traffic regimes such as overtaking
(i.e., faster vehicles overtaking slower ones) and creeping (small vehicles overtaking
large vehicles that have come to a complete stop). In multi-class traffic, the traffic
regimes can be further complicated, for example, when one class is congested but the
other class remains in free flow. Consequently, estimation on selected combinations of
traffic regimes are tested in Section 4.

A numerical scheme is used to approximate the solution to the PDE (1) based on
the Godunov scheme (Godunov 1959), which requires solving a Riemann problem at
every interface between each pair of consecutive and discretised road segments at each
time step. On scalar models, the approach leads to the well known cell transmission
model (CTM) (Daganzo 1994, 1995). The discretised creeping model reads as follows:

ρk+1
i,j = ρki,j +

∆t

∆x

(
F ki− 1

2
,j − F

k
i+ 1

2
,j

)
, j ∈ {1, 2}, (3)

where ρki,j represents the density of class j in the ith cell at time k. The terms F ki−1/2,j

and F ki+1/2,j are the numerical fluxes of class j via the upstream and downstream

boundaries of cell i at time k.
For simplicity of the notation, we use subscripts on variables, e.g., ρ−,j and ρ+,j ,

to represent upstream and downstream densities respectively of class j. The flux for
vehicle class j over a cell boundary is thus defined as:

Fj(ρ−,1, ρ−,2, ρ+,1, ρ+,2)

= min{Sj(ρ−,1, ρ−,2), Rj(ρ+,1, ρ+,2)}, j ∈ {1, 2},
(4)

where Sj(·, ·) and Rj(·, ·) are the sending and receiving functions for vehicle class j
defined as:

Sj(ρ−,1, ρ−,2) =

{
Qj(ρ−,1, ρ−,2) if ρ−,j ≤ ρcj(ρ−,ĵ)
Qmax
j (ρ−,ĵ) if ρ−,j > ρcj(ρ−,ĵ)

(5)

Rj(ρ+,1, ρ+,2) =

{
Qmax
j (ρ+,ĵ) if ρ+,j > ρcj(ρ+,ĵ)

Qj(ρ+,1, ρ+,2) if ρ+,j ≤ ρcj(ρ+,ĵ),
(6)

where ρĵ denotes the density of the other vehicle class. In addition, Qj(ρ1, ρ2) =
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max{ρjVj(ρ1 + ρ2), 0}, Qmax
1 (ρ2) = maxρ1Q1(ρ1, ρ2) and ρc1(ρ) = rm1 −ρ2

2 is the critical
density of ρ1 such that Qmax

1 is obtained. Similarly, Qmax
2 (ρ1) = maxρ2Q2(ρ1, ρ2) and

ρc2(ρ) = rm2 −ρ1
2 is the critical density of ρ2 such that Qmax

2 is obtained.
For a complete description and analysis of the model, the reader is referred to (Fan

and Work 2015).

2.2. Bayesian traffic state estimation

The Bayesian approach to traffic state estimation evaluates the posterior distribution
of the system state given a prior state estimate and measurement data. The state of
the system xk for model (3) at time k is defined as:

xk =
[
ρk1,1, . . . , ρ

k
imax,1

, ρk1,2, . . . , ρ
k
imax,2

]T
, (7)

where imax is the number of cells in the discretisation.
The state propagation equation is:

xk = f(xk−1,θ) +wk, (8)

where f(·, ·) is the discrete-time creeping model defined in (3), and it propagates the
traffic state to the next time step, with the input parameter vector θ = [vm, rm1 , r

m
2 ]T .

The measurement equation is:

yk = h(xk) + vk, (9)

where yk is the sensor data obtained at time k and relates to the system state through
the measurement equation h(·). In the case when (a subset of) the system state is
directly measured, the observation equation is linear. The terms wk ∼ N (0, Q) and
vk ∼ N (0, R) denote the additive unbiased process noise and measurement noise at
time k with assumed covariance matrices Q and R.

The state estimation problem can be viewed as sequentially evaluating the prior
state distribution p(xk|Y k−1) and the posterior state distribution p(xk|Y k) given
measurements Y k = [y1,y2, . . . ,yk], according to:

p(xk|Y k−1) =

∫
p(xk|xk−1)p(xk−1|Y k−1)dxk−1

p(xk|Y k) =
p(yk|xk)p(xk|Y k−1)

p(yk|Y k−1)
.

(10)

In the particle filter described next in Section 3, the probability distributions (10) are
evaluated based on sequential Monte Carlo sampling.

3. Particle filter

In this section, we summarise the standard bootstrap particle filter (PF) and discuss
the weight degeneracy as measured by the effective particle size. Then we propose two
enhancement methods, namely parameter-adaptive filtering and spatially-correlated
process noise modelling, to improve the PF estimation.
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Due to the nonlinearity and non-differentiability of the process model (1), discon-
tinuities in the traffic state can occur, which can generate a multi-modal state distri-
bution and limit the performance of minimal variance estimators such as EKF and
UKF. The challenge motivates the use of PF, with the idea of propagating and updat-
ing Monte Carlo samples sequentially to represent the full state distribution without
restrictive assumptions on the system dynamics and the noise distribution.

The particle filter starts with a collection of Np samples (referred to as particles)
from the initial state probability density function p(x0), where x0 is a random variable
representing the state vector at time k = 0. Each realisation of the state vector is
denoted as x0

l , l = 1, · · · , Np. At each time instant, the particles are propagated to
the next time step using the discrete time process model f(x,θ), i.e., the traffic flow
model (3), to approximate the prior state distribution xk|k−1 at time k.

The state distribution is updated after measurements are obtained. Specifically, a
weight (ql) is assigned to each particle based on the conditional relative likelihood
evaluated from the likelihood function p(yk|xk). The posterior state distribution xk|k

is approximated by resampling the particles according to the new weight distribution.
This step ensures that the heavier-weighted particles are more likely to be drawn from
the probability density function while the total number of particles is preserved.

The number of samples influences the PF performance due to the well-known sample
degeneracy problem on high-dimensional systems (Martino, Elvira, and Louzada 2017;
Surace, Kutschireiter, and Pfister 2019). In the section 4.2.4, we explore the effect of
the number of samples on effective sample size and estimation accuracy. A standard PF
algorithm used in this work is summarised in Algorithm 1. For a complete description
of the algorithm, readers can find standard references such as (Doucet and Johansen
2009) and (Simon 2006).

Algorithm 1 PF algorithm

Initialise: Draw x
0|0
l from N (µ0, Q0) for l = 1 : Np

for k = 1:T do
State propagation:

x
k|k−1
l = f(x

k−1|k−1
l ,θ) +wk

l for all l
State update:

Assign weight: ql := p[(yk = yk∗)|(xk = x
k|k−1
l )]

Normalise weight: ql := ql∑Np
l=1 ql

Resample:

Draw x
k|k
l with probability ql

end

µ0: mean of the initial state distribution
Q0: initial state covariance matrix

x
k|k−1
l : sample l from prior state distribution at time k

x
k|k
l : sample l from posterior state distribution at time k

wk
l : a realisation of the process noise wk ∼ N (0, Q), where Q is the covariance matrix

of wk

yk∗: a measurement at time k
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3.1. Effective particle size

An important measure of the validity of the filter is the effective particle size, which
is not frequently discussed in the traffic estimation literature despite its diagnostic
importance. As explained in (Surace, Kutschireiter, and Pfister 2019), the particle
filter requires a sample size that increases exponentially with respect to the increase
in state space dimension in order to achieve a valid estimation performance. But even
with an extremely large sample size, a ‘curse of dimensionality’ still occurs. The curse
of dimensionality in the PF is due to the degeneracy of importance weights (only a
few samples carry significant weights and all others weights are almost zero) in high
dimensional spaces. A measure of the degree of degeneracy is the effective particle size
(Neff) (Martino, Elvira, and Louzada 2017), defined by:

Neff ≈

 Np∑
l=1

(
ql
)2−1

. (11)

A low Neff is an indicator of sample degeneracy and is to be avoided.
Throughout the numerical experiments presented in Section 4, we use Neff to com-

pare the performance of the filters in addition to the estimation accuracy.

3.2. Filter enhancement

3.2.1. Parameter-adaptive particle filtering (PAPF)

Inspired by the dual filtering approach for simultaneous state and model parameter
estimation (Hegyi et al. 2006; van Lint, Hoogendoorn, and Hegyi 2008; Olivier, Huang,
and Craig 2012), in this filter, we allow the estimated model parameters to be adjusted
at each time step instead of having fixed values, i.e., we model the parameters as time-
invariant (the dynamics do not change over time) with some noise as approached in
the standard dual-filtering problems mentioned above. This gives the estimator extra
flexibility that can potentially produce more accurate state estimates. The goal is not
for online parameter estimation due to the challenge in identifiability analysis of a
nonlinear and non-differentiable model, but simply allowing parameter estimates to
be updated in motion to facilitate state estimation. We name this approach parameter-
adaptive particle filter, or PAPF in the remaining of this article.

The PAPF includes an additional particle filter running in parallel with the state
estimator to adjust the estimated parameters. In the parameter propagation step, the
parameter samples are obtained by performing a random walk from the best estimated

parameter in the previous timestep, θ̂
k−1|k−1

. In the parameter update step, the prior
state distribution (xk|k−1) is approximated by propagating the best state estimate at

the previous timestep (x̂k−1|k−1) through the traffic flow model (3) with the parameter
samples. The remaining parameter update step follows a similar approach described in
Algorithm 1: each parameter sample is re-weighted according to the relative likelihood
function p(yk|xk) after measurements are obtained, and resampled according to the

new weight distribution. The estimator of the posterior parameter distribution, θ̂
k|k

,
proceeds next for the state update. The state estimation exactly follows Algorithm 1
with the exception that the parameter in the state propagation equation is now the

best posterior parameter estimator, θ̂
k|k

, instead of a deterministic parameter θ. The
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detailed PAPF algorithm is summarised in Algorithm 2.

Algorithm 2 PAPF algorithm

Initialise:
Draw x

0|0
l from N (µ0, Q0) for l = 1 : Np

Set x̂0|0 = µ0 and θ̂
0|0

= θ0

for k = 1:T do
Parameter propagation:

θ
k|k−1
m = θ̂

k−1|k−1
+ ηkm for m = 1 : Nm

Parameter update:

x
k|k−1
m = f(x̂k−1|k−1,θ

k|k−1
m ) +wk

m for all m

Assign weight: qm := p[(yk = yk∗)|(xk = x
k|k−1
m )]

Normalise weight: qm := qm∑Nm
l=1 qm

Resample:

Draw θ
k|k
m with probability qm

Update θ̂
k|k

State propagation:

x
k|k−1
l = f(x

k−1|k−1
l , θ̂

k|k
) +wk

l for all l
State update:

Assign weight: ql := p[(yk = yk∗)|(xk = x
k|k−1
l )]

Normalise weight: ql := ql∑Np
l=1 ql

Resample:

Draw x
k|k
l with probability ql

Update x̂k|k

end

µ0: mean of the initial state distribution
Q0: initial state covariance matrix
θ0: initial parameter values
ηkm: a realisation of the parameter noise ηk ∼ N (0, Qθ), where Qθ is the covariance
matrix of ηk

Nm: number of parameter samples at each time step
x̂k|k: a point estimate of the state at time k

θ̂
k|k

: a point estimate of the parameter at time k

3.2.2. Spatially correlated noise modelling (SCNM)

This approach differs from Algorithm 1 in terms of the process noise at time k, wk ∼
N (0, Q). In the PF, we apply the commonly implemented assumption that Q is a
diagonal matrix, indicating that the elements of the state vector xk are uncorrelated.
It is suggested by (Boel and Mihaylova 2006) that if the traffic in one cell is extremely
congested, then the vehicles interact very often with each other, and their location
and speed will be highly correlated. Motivated by this observation, we modify the
covariance matrix of the process noise wk to Q(i, i′) with off-diagonal terms, which
represents the similarity between all possible pairs of cells (indexed by i and i′). We

use a covariance expression Q(i, i′) = exp
(
− |i−i

′|
d

)
× σ2

wk , where σwk is the standard
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deviation of noise wk. The characteristic length-scale d is a measure of how far away
two cells (i, i′) need to be for the cell values to be uncorrelated. The correlation between
two cells is assumed to depend solely on the relative distance of the pair instead of
the absolute location of the cells.

In practice, the traffic state can be highly correlated in space, i.e., cells in freeflow
traffic are likely to occur next to each other, and similarly with the congested flow. We
encode this heuristic via correlation in the process noise to account for a similar traffic
pattern in neighbouring cells, and decrease the correlation with respect to the relative
distance as one would expect. The introduction of a spatially correlated process noise
increases the correlation on the prior state distribution, and is shown in Section 4 to
improve the effective particle size.

4. Numerical experiments

In this section, we assess the capability of the standard PF and the enhanced PFs to
track heterogeneous traffic flows in complex scenarios when interactions between two
vehicle classes occur. The following four PFs are to be tested:

(1) A standard PF with spatially uncorrelated noise and deterministic parameters
(denoted as PF in the remaining of the article)

(2) Parameter-adaptive particle filter with uncorrelated noise (PAPF)
(3) PF with spatially-correlated noise modelling and fixed parameters (PF+SCNM)
(4) Parameter-adaptive particle filter with spatially-correlated noise

(PAPF+SCNM)

All the experiments are conducted in a controlled environment where the true state
is known. In each experiment, we use the creeping model (3) (true model) to simulate
the ground truth, which is to be estimated. Then, we run a forward model simulation
with an approximate model, which also uses a creeping model (3), but with initial
conditions, boundary conditions, and model parameters that differ from those in the
true model. In the approximate model, these errors are intentionally introduced to
capture the fact that in real deployments on real world experiments, the models often
contain errors in parameter choices and initial and boundary conditions, see (Kaipio
and Somersalo 2006). Finally we use the same approximate model within each PF
variation to estimate the state using noisy measurements of the true state. The per-
formance of each PF is measured by the error reduced from pure forward simulation
using the approximate model. The comparison to the forward simulation allows us to
verify the performance of the filters listed above, beyond purely having a good model
in the estimator.

4.1. Overview: filters and traffic scenarios setup

To assess the performance of each filter, we create numerical experiments that rep-
resent real-world heterogeneous traffic scenarios. We consider a stretch of a roadway
discretised into imax = 40 cells and the experiments are run for kmax = 126 time steps.
The roadway is shared between two vehicle classes with the density of small creeping
vehicles denoted by class j = 1, and the large vehicles are denoted by class j = 2.

All four PFs use the same approximate model. The parameters of the true model
and the approximate model used for pure forward simulation and for filtering are set
according to the values in Table 1. Note that for cases where the parameters are al-
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Table 1. Model parameters for all the experi-

ments. In the case of PAPF, the parameters in the

last column are the initial values in the approximate
model.

Parameter True model Approximate model

vm 1.8 1.9
rm1 1.8 1.7
rm2 1.0 0.9

Figure 1. Fundamental diagrams of true and approximate models. The density and the flow values are

normalised such that the jam density of the large vehicle class in the true model is 1.

lowed to be adjusted (PAPF and PAPF+SCNM), the approximate model parameter
column records the initial values. The choice of true and approximate model parame-
ters results in a slight difference in their corresponding fundamental diagrams, which
can be visualised in Figure 1. In addition, the parameter-updating filter in Algorithm 2
uses a sample size Nm = 1, 500 in parallel with the state update. For all four PFs, we
consider that noisy density measurements for both vehicle classes are obtained in an
upstream, intermediate, and downstream cells indexed by i = 3, 20, and 37, i.e., the
measurement equation h(·) in (9) maps the state xk to a 6× 1 vector yk. The process
noise and the initial noise are assumed to be Gaussian zero mean with a standard
deviation of 0.05 and 0.06, respectively. We use the standard Gaussian white noise in
the PF without any knowledge of the most suitable noise distribution a priori, but
note that a more realistic noise distribution can be inferred from the data to improve
the accuracy of state tracking (Mihaylova, Boel, and Hegyi 2007). The measurement
noise follows a normal distribution with zero mean and 0.07 standard deviation. The
boundary noises assumed in all PFs are bounded to prevent nonphysical (e.g., nega-
tive) density realisations on the boundary.

The four filters are evaluated on four selected characteristic tests which represent
a subset of complex real-world traffic scenarios where interactions between vehicle
classes occur. We consider scenario 1 : overtaking traffic, scenario 2 : congested traffic,
scenario 3 : queue clearance and scenario 4 : creeping traffic. We first compare in detail
of each filter’s performance in the overtaking traffic condition, and then compare the
filters on the rest of the traffic scenarios.

4.2. Detailed comparison of the filters on overtaking traffic

In this section we first briefly explain the initial and boundary conditions for the
experimental setup, and then comment on the performance of the four filters with
respect to the overall accuracy and the effective particle size. The traffic scenario
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considered in this case is when small vehicles (e.g., motorcycles or scooters) overtake
large vehicles (e.g., cars and buses).

4.2.1. Scenario 1: overtaking setup

This set of experiment is designed to evaluate the filter performance when bulk over-
taking occurs. The initial conditions are set such that the small fast vehicles begin
behind the larger slower ones, and the downstream boundary conditions are set as
free-flow so that both vehicle classes can freely exit the domain as the true state
evolves. The upstream boundary conditions are assumed to oscillate at low densities.

The initial condition for the true model is given as:

ρ0
i,1 =

{
0.5 i ∈ [1, 8]

0 otherwise,
ρ0
i,2 =

{
0.6 i ∈ [9, 16]

0 otherwise,
(12)

which places the smaller faster vehicles initially behind the larger slower ones. The
true upstream boundary conditions are assumed to oscillate at low densities:

ρk0,1 = sgn (sin(0.07 k))× 0.04 + 0.1

ρk0,2 = sgn (sin(0.07 k))× 0.04 + 0.1.
(13)

As the traffic evolves, the small vehicles beginning at the back of the queue overtakes
the large vehicles and discharge downstream first. The true downstream conditions are
set as empty, i.e., ρkimax+1,1 = 0, and ρkimax+1,2 = 0.

In the approximate model used for forward simulation and for estimation, the initial
conditions have errors compared to the true model (in addition to the parameter
changes in Table 1). The initial condition in the approximate model is set as:

ρ̂0
0,1 =

{
0.7 i ∈ [1, 8]

0 otherwise
, ρ̂0

0,2 =

{
0.7 i ∈ [9, 16]

0 otherwise,
(14)

while the boundary condition is assumed to follow:

ρ̂k0,1 = sgn(sin(0.07k))× 0.04 + 0.04

ρ̂k0,2 = sgn(sin(0.07k))× 0.04 + 0.04.
(15)

Finally, in the approximate model we set a low-density downstream for both vehicle
classes, i.e., ρ̂kimax+1,1 = 0.1, and ρ̂imax+1,2 = 0.1.

4.2.2. Filter performance: accuracy

We now proceed to show the results of the filters. The mean absolute error (MAE) is
used to quantify the overall error in density compared to the true state:

MAEj =
1

kmax × imax

imax∑
i=1

kmax∑
k=1

| ρki,j − ρ̂ki,j |, (16)
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Table 2. Scenario 1: overtaking traffic. Filter results summary for

Np = 1, 500.

Average improvement (MAE reduce %)

Scenario Class PF PAPF PF+SCNM PAPF+SCNM

1
ρ1 45.6 47.6 49.2 56.6
ρ2 2.89 23.5 44.8 48.8

Figure 2. Scenario 1: overtaking traffic. Snapshots of the true state evolution and the forward simulation.
The grey lines are the true states, and the gold lines are the predicted states by the approximate model.

where ρki,j is the true state and ρ̂ki,j is the filter estimated state of vehicle class j at time
k. We calculate the MAE of the forward simulation using the approximate model, and
see how much MAE is reduced by running each filter.

Table 2 summarises the estimation result of each of the filters. We see that each of
the enhanced PF produces a higher error reduction rate than the standard PF. The
combination of the two enhancement methods, PAPF+SCNM, achieves a significant
estimation accuracy (56.6% and 48.8% MAE reduction) compared to the standard PF
(45.6% and 2.89% MAE reduction). This implies that the enhancement methods can
greatly outperform the standard PF in the overtaking setting of the heterogeneous
traffic.

From the forward simulation (Figure 2), we see that the performance of the filter is
not due entirely to a ‘good’ model. In fact, the open loop simulation using the approx-
imate model (Figure 2) differs and slowly drifts away from the true state evolution.
By comparing to the forward simulation, all of the four filters are able to reduce the
prediction error caused by the erroneous model in the estimator to various extents.

From Figures 3, we observe that the best filter (PAPF+SCNM shown in Fig-
ure 3(d)) tracks the true state evolution almost perfectly. In addition, the overtaking
phenomenon between the two vehicle classes is correctly recovered by all four filters.

4.2.3. The effective particle size on the filter performance

Next we investigate the performance of each of the filters in terms of the effective
particle size. Recall that in Section 3.1 we emphasise that the Neff is an important
measure of estimation validity. To demonstrate quantitatively the effective particle
size obtained from each of the filters, Figure 4 shows the Neff distribution for each of
the filters. We see that the enhanced PFs, in general, are able to achieve a higher Neff

for the same number of total samples (Np = 1, 500) compared to the standard PF.
Note that a higher Neff allows the filter to capture the full state distribution without
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(a) PF

(b) PAPF

(c) PF+SCNM

(d) PAPF+SCNM

Figure 3. Estimation results of scenario 1: overtaking traffic. Snapshots of (a) a standard PF and (b)-(d)
enhanced PF estimates (green) compared to the true state evolution (grey).
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Figure 4. Scenario 1: overtaking traffic. Effective particle size histograms obtained

from PF, PF+SCNM, PAPF and PAPF+SCNM using Np = 1, 500 particles.

Figure 5. Scenario 1: overtaking traffic. Estimation results of 4 variations of PF

with respect to the number of particles Np.
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collapsing. In the case of enhanced PFs (PF+SCNM, PAPF, and PAPF+SCNM), on
average, approximately 400 out of 1500 particles carry the importance weights, whereas
the standard PF only allows a handful of particles to carry the majority of the weight
at some time-steps and thus is not a sufficient description of the state distribution.

4.2.4. The influence of sample size on the filter performance

Finally we conduct a series of experiments using different sample size (Np), and analyze
the total number of particles on the effective sample size, run time and accuracy of
the four filters. Because the filter is stochastic, we conduct Nr = 10 filter runs for each
selected Np value between 500 to 2000. Figure 5 summarises the averaged results from
the 10 runs.

From Figure 5, it is observed that the running time increases approximately lin-
early with respect to the sample size for all the PFs as expected, with the PF and
PF+SCNM being almost equally fast. All the enhanced PFs (PAPF, PF+SCNM and
PAPF+SCNM) achieve a higher Neff compared to the standard PF. In addition, the
enhanced PFs significantly improve the estimation accuracy compared to the stan-
dard PF for all the Np values considered. Specifically, with only Np = 500, both the
PF+SCNM and PAPF+SCNM are able to achieve higher accuracy as that obtained
from the standard PF using Np = 2, 000. In other words, both the PF+SCNM and
PAPF+SCNM are able to achieve more than 100% MAE reduction compared to the
standard PF. PF+SCNM stands out the most amongst all, with the fastest implemen-
tation and highest accuracy. This experiment illustrates the fact that the enhanced
PFs ensure higher effective particle sizes and greatly improve estimation accuracy
compared to the standard PF for all the Np values considered.

All the numerical experiments performed in this work are produced using
MATLAB R© on a MacBook Pro with 2.7 GHz CPU. For each scenario, the running
time per filter run ranges from 21 seconds for PF up to 92 seconds for SCNM+PAPF,
with 1500 particles. We conducted 10 runs for each choice of sample size and each PF
variation on four traffic scenarios. The source code for the numerical experiments is
available at https://github.com/Lab-Work/heterogeneous_traffic_estimation.

4.3. Filter performances in scenarios 2-4

We test the PFs on additional scenarios to see if the results proceed to different traffic
settings. The additional three scenarios follow the same roadway setup, number of
particles, and the same choices of initial, process and measurement noises as the first
scenario, the only differences being the initial and boundary conditions. We explore
various settings of the initial and boundary conditions to capture the essence of the
traffic evolution, such as the formation and dissipation of congestion (caused by e.g.,
change of computational domain and road geometry). Details of the experimental
setup is summarised in Table 3 and 4.

We first describe the three remaining traffic scenarios, and then compare the perfor-
mance of the enhanced PFs with the standard PF. Through numerical experiments,
the enhanced PFs again show similar positive results in recovering heterogeneous traf-
fic patterns under various vehicular interactions.
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Table 3. Initial conditions

Scenario True model Approximate model

2

ρ0i,1 =


0.1 i ∈ [1, 15]

0.55 i ∈ [16, 22]

0.1 otherwise

ρ̂0i,1 =


0.2 i ∈ [1, 15]

0.65 i ∈ [16, 22]

0.2 otherwise

ρ0i,2 = 0.9 ρ̂0i,2 = 0.7

3

ρ0i,1 =

{
1.4 i ∈ [1, 25]

0 otherwise
ρ̂0i,1 =

{
1.2 i ∈ [1, 25]

0 otherwise

ρ0i,2 =

{
0.6 i ∈ [1, 25]

0 otherwise
ρ̂0i,2 =

{
0.4 i ∈ [1, 25]

0 otherwise

4

ρ0i,1 =

{
0.4 i ∈ [1, 14]

0 otherwise
ρ̂0i,1 =

{
0.3 i ∈ [15, 40]

0 otherwise

ρ0i,2 =

{
0.8 i ∈ [15, 40]

0 otherwise
ρ̂0i,2 =

{
0.7 i ∈ [15, 40]

0 otherwise

Table 4. Boundary conditions

Scenario True model Approximate model

2

ρk0,1 = 0 ρ̂k0,1 = 0.1

ρ0i,2 = 0.9. ρ̂0i,2 = 0.7

ρkimax+1,1
= 0.1 ρ̂kimax+1,1

= 0.1

ρkimax+1,2
= 0.9 ρ̂kimax+1,2

= 0.7

3

ρk0,1 = 1.4 ρ̂k0,1 = 1.2

ρk0,2 = 0.6 ρ̂k0,2 = 0.4

ρkimax+1,1
= 0.2 ρ̂kimax+1,1

= 0.1

ρkimax+1,2
= 0.2 ρ̂kimax+1,2

= 0.1

4
ρk0,1 = sgn (sin(0.07 k))× 0.04 + 0.08 ρ̂k0,1 = sgn (sin(0.07 k))× 0.04 + 0.04

ρk0,2 = sgn (sin(0.07 k))× 0.04 + 0.08 ρ̂k0,2 = sgn (sin(0.07 k))× 0.04 + 0.04

4.3.1. Overview of the additional traffic scenarios

(a) Scenario 2: congested traffic. This scenario describes a small portion of two-
wheelers maneuver through the congested traffic. It assumes a highly congested
regime and the two vehicle classes move at different speeds.

(b) Scenario 3: queue clearance. This experiment depicts a scene when traffic light
turns green or a bottleneck is removed. Both vehicle classes start off being con-
gested, and transition to free-flow so that congested traffic is allowed to freely
dissipate downstream without interference.

(c) Scenario 4: creeping traffic. Similar to congested traffic, this experiment is de-
signed to evaluate the filter performance in highly congested regime when the
large and slow vehicles completely stop while the small and fast vehicles keep
moving. The initial conditions are set such that the large vehicles begin ahead of
the small creeping vehicles. The downstream boundary condition is sufficiently
large to cause the large vehicles to come to a complete rest, while the smaller
vehicles are still able to advance.
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Table 5. Scenarios 2-4: filter results summary.

Average improvement (MAE reduction %)

Scenario Class PF PAPF PF+SCNM PAPF+SCNM

2
ρ1 27.9 32.2 54.4 51.4
ρ2 49.0 44.4 84.4 83.8

3
ρ1 -90.3 -72.7 25.8 24.3
ρ2 0.37 19.4 68.7 65.2

4
ρ1 4.23 7.72 26.8 27.7
ρ2 30.4 21.2 39.8 42.5

4.3.2. Discussion on the filter performance

The performance of each of the filters under three additional traffic scenarios is sum-
marised in Table 5. From the results, we see that the enhanced PFs almost always
outperform the PF. Notably in scenario 2, both the PF+SCNM and PAPF+SCNM
reduce the MAE by 50-80% depending on the vehicle class, and accurately recover
the true state. Moreover, the error is approximately half of the error achieved when
running the standard PF. Another observation worth noting is that in Scenario 3:
queue clearance where the traffic evolves from an initial condition that has congestion
upstream and free flowing downstream, a PF with additive Gaussian uncorrelated
noise is insufficient (shown -90% improvement compared to forward simulation with
the approximate model). The positions where the estimates deviate most from the
true states are upstream in the initially congested traffic. A significant improvement is
observed when adding spatially correlated noise in Scenario 3, where the information
captured at the sensor locations is shared in a wider neighbourhood cells due to the
correlation, in line with the observation from (Boel and Mihaylova 2006).

We also observe that in most of the tested cases, PAPF outperforms the PF, but
the improvement is not as pronounced as adding SCNM does, although it is shown
in (Wang and Papageorgiou 2005) that state estimation improves particularly in the
case of real-time changes of the traffic behavior when a ‘random walk’ dynamic is given
to the unknown parameters. This is because the ability of a filter to estimate the pa-
rameters (parameter identifiability) is closely related to the state observability, which
is a challenging issue even in the first-order macroscopic traffic dynamics (Blandin
et al. 2012). Previous work (Sun and Work 2018) suggests that the estimation error
bound in the presence of a shock for a simplified variation of the cell transition model
can be derived, but the same strategies cannot be applied here due to fact that there
is no straightforward way to recast the creeping model as a switched linear system.
In particular, we observe that with parameter-adaptation, the convergence issue can
be exacerbated in all cases. Without error bounds, the numerical experiments provide
practical insight to the performance we can expect in different traffic contexts. An
extensive study on heterogeneous model parameter identifiability might be needed to
address the convergence issue.

From the numerical experiments considered in this work, we conclude that enhance-
ments to the particle filter via spatially correlated noise modelling and parameter
adaptation are promising directions to accurately reconstruct heterogeneous traffic.

5. Evaluation on real heterogeneous traffic data

In this section, we apply the enhanced particle filters on heterogeneous trajectory
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Figure 6. Density evolution of real heterogeneous traffic data. The red rectangles indicate measurement
positions.

data collected in Chennai, India (Kanagaraj et al. 2015). We first briefly describe
the dataset and preparation for the use of our proposed methods. Then, we describe
the experiment setup including the estimated model parameters and particle filter
parameters. Finally, we discuss the results.

5.1. Data description and preparation

In this study, we incorporate the vehicle trajectory data in mixed traffic (Kanagaraj
et al. 2015). The dataset was extracted from the video sequences in an urban mid-
block road section in Chennai, India. Various types of road users were present in the
data, such as passenger vehicles, buses, motorbikes and auto-rickshaws. The data was
prepossessed to include 3,005 vehicle trajectories, and the positions were recorded at a
resolution of 0.5 s for 15 min on a stretch of 245 m, 3-lane city roadway. The total traf-
fic flow observed in the study section is 6,010 vehicles per hour, and the instantaneous
speeds vary from 0 to 15.22 m/s.

For the purpose of this study, we first discretise the densities such that ∆x = 16.3m
(or imax = 15) and ∆t = 1s. We then count the number of occurrences of each vehicle
in each discretised cell at each time step. We separate the counts of motorbikes (as the
smaller, faster class, corresponding to ρ1) and the counts of all other road agents com-
bined (or the larger, slower class corresponding to ρ2), because of motorbikes’ observed
overtaking properties. Lastly, a kernel density estimation (KDE) approach (Bowman
and Azzalini 2000; Hill 1985) with a fixed Gaussian kernel is employed to transform
the initial counts into macroscopic traffic quantities (e.g., density of each vehicle type,
in number of vehicles per cell) across time and space. We use ρki,j to denote the density
of class j at cell i at time step k.

The obtained heterogeneous traffic density data can be visualised in Figure 6. It
also serves as the ‘ground truth’ macroscopic traffic data for the state reconstruction
tasks.

5.2. Experiment setup

Following a similar experiment setup in Section 4, the roadway is discretised into
imax = 15 cells and the experiments are run for kmax = 300 time steps, or 300 seconds.
All four PFs use the same approxiamte model, with the specifications summarised
in Table 7. Again for filters with parameter-adjustment (PAPF and PAPF+SCNM),
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(a) PF (b) PAPF

(c) PF+SCNM (d) PAPF+SCNM

Figure 7. Filter performance: estimated density evolution

the approximate model parameters are the initial parameter estimates, and the noise
on each parameter is assumed to follow a Gaussian zero mean and 0.005 standard
deviation. In addition, both the parameter-update step and the state-update step use
Np = 500 particles, which is empirically shown as suitable for the state dimension.
We assume that the noisy density measurements for both vehicle classes are obtained
in an upstream, an intermediate and a downstream cells indexed by i = 2, 8 and 14,
as indicated by the red rectangles in Figure 6. The initial state noise, the measure-
ment noise and the state prediction noise are all assumed to be Gaussian zero mean,
with standard deviation of 1 vehicle/cell. For filters with spatially correlated noise
(PF+SCNM and PAPF+SCNM), a characteristic length of 15 is used.

Table 6. Initial and boundary conditions

Conditions Approximate model

Initial conditions ρ̂0i,1 =

{
4 i ∈ [1, 8]

1 otherwise

ρ̂0i,2 = 1, ∀i

Boundary conditions

ρ̂k0,1 = sgn (sin(0.4 k))× 8 + 8

ρ̂k0,2 = 1,∀k
ρ̂kimax+1,1

= 2, ∀k
ρ̂kimax+1,1

= 2, ∀k

In addition, we empirically choose the model initial and boundary conditions (Ta-
ble 6) to best represent the observed measurements. The approximate model with the
specified parameters, initial and boundary conditions is shown to yield MAEs of 1.92
and 1.67 vehicles/cell for class ρ1 and ρ2, respectively, in the studied space and time
frame.
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Table 7. Approximate model pa-

rameters

Parameter Approximate model

vm 15.3 m/s
rm1 16 vehicles/cell
rm2 10 vehicles/cell

Table 8. Filter performance summary on real data.

Average improvement (MAE reduction %)

Class PF PAPF PF+SCNM PAPF+SCNM

ρ1 31.9 33.2 46.4 43.9
ρ2 25.8 29.5 46.3 31.5

5.3. Results and discussion

The estimated density evolution from PF, PAPF, PF+SCNM and PAPF+SCNM can
be visualised in Figure 7. A visual inspection indicates that filters with spatial cor-
relation (PF+SCNM and PAPF+SCNM) generally have a more pronounced state
reconstruction performance than PF and PAPF. The flow for both vehicle classes is
‘smoother’ across the space. Practically, spatial correlation in the states help to cor-
rect one part of the states, which carries over to its neighbourhoods. It models the
similarity in densities of cells of close vicinity, which may implicitly capture the flow
dynamics of traffic that PF without SCNM cannot capture.

It can also be observed that PAPF does not provide as significant improvement
in traffic state reconstruction as SCNM does. This could be due to a combination
of the identifiability issue of the creeping model parameters as well as observability
issue of the state, which are not in the scope of this work. Since the recorded traffic
is mostly in free-flow state, the filter performance cannot generalize to a variety of
traffic regimes. When available, heterogeneous traffic data that contains traffic jams
or creeping scenarios should be used to validate our proposed filters for various traffic
state reconstruction.

Nevertheless, with the limited heterogeneous data available, the enhanced filters
show significant improvement than the standard PF, and improve the estimation ac-
curacy up to 46% as compared to using the approximate model alone. The findings
using real heterogeneous data is also in agreement with the results from the numer-
ical experiments: PF with parameter-adaptation and spatially-correlated noises are
promising enhancement for traffic state estimation problems.

6. Conclusion

Considering previous traffic estimation works mainly focus on homogeneous flow with
strict lane adherence, this work tackles estimation problem on heterogeneous traffic
where non-trivial vehicular interactions occur. Due to the filtering challenges caused
by the nonlinear and non-differentiable nature of the traffic flow model, in this article
we propose three methods to enhance the standard particle filter to estimate complex
traffic, both in simulated environments and with real heterogeneous traffic data. The
results show that the enhanced PFs, especially with spatially-correlated noise mod-
elling, can reduce the estimation error up to 80% and 46% from forward simulation
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using the approximate model, using the synthetic data and real data, respectively.
The enhanced PFs significantly and consistently outperform the standard PF in all
scenarios considered.

This article is a starting point for further work in the field of heterogeneous traffic
state estimation. For example, this work demonstrates that enhanced particle filtering
techniques can improve the accuracy of heterogeneous traffic state estimation, and
explored the performance as a function of the traffic regime. A rigorous analysis on
model observability and/or error boundedness (e.g., extensions to (Blandin et al. 2012)
and (Sun and Work 2018) for heterogeneous traffic models) is challenging but could
provide theoretical insights on expected filter performance. Moving towards realistic
deployment settings, the functional form of the velocity function will also be important
questions to consider. Finally, field data that records more complex heterogeneous
traffic scenarios would be insightful to evaluate the performance of the proposed filters
when it becomes available.
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