
1

Online parameter estimation methods for adaptive
cruise control systems

Yanbing Wang1, George Gunter1, Matthew Nice2, Maria Laura Delle Monache3 and Daniel B. Work1

Abstract—Modeling Adaptive Cruise Control (ACC) vehicles
enables the understanding of the impact of these vehicles on
traffic flow. In this work, two online methods are used to provide
real time system identification of ACC enabled vehicles. The
first technique is a recursive least squares (RLS) approach, while
the second method solves a nonlinear joint state and parameter
estimation problem via particle filtering (PF).

We provide a parameter identifiability analysis for both
methods to analytically show that the model parameters are
not identifiable using equilibrium driving. The accuracy and
computational runtime of the online methods are compared to a
commonly used offline simulation-based optimization (i.e., batch
optimization) approach. The methods are tested on synthetic data
as well as on empirical data collected directly from a 2019 model
year ACC vehicle using data from sensors that are part of the
stock ACC system. The online methods are scalable and provide
comparable accuracy to the batch method. RLS runs in real time
and is two orders of magnitude faster than the batch method for
modest sized (e.g., 15 min) datasets. The particle filter also runs
in real-time, and is also suitable in streaming applications in
which the datasets can grow arbitrarily large.

I. INTRODUCTION

A. Motivation and problem statement

The rising penetration rate of Society of Automotive Engi-
neers (SAE) level one and level two automated vehicles on
roadways around the world is creating new traffic flows that
are a combination of human drivers and vehicle automation
systems, yet the behavior of these systems is not well under-
stood. For example, one common feature that is now available
on many vehicles is adaptive cruise control (ACC), which
enables the vehicle (instead of the human driver) to adjust
velocity in response to the vehicle ahead.

The design of string stable ACC systems has been an impor-
tant topic in the vehicle control community for decades [1]–
[5]. Recently, as the vehicle systems have transitioned from
research to practical deployments on commercial vehicles, the
traffic modeling community is now in need of good models
for how these vehicles behave in practice. Surprisingly, all
commercial systems that have been tested [6]–[11] are shown
to be string unstable and with varying performance charac-
teristics. Being able to characterize the behavior of the ACC
system in real time has implications for traffic management,
where an emerging area of research [9], [12]–[15] aims to

1Department of Civil and Environmental Engineering and the Institute for
Software Integrated Systems, Vanderbilt University, Nashville, TN 37240

2Department of Electrical Engineering and Computer Science and the
Institute for Software Integrated Systems, Vanderbilt University, Nashville,
TN 37240

3NeCS team at Univ. Grenoble Alpes, Inria, CNRS, Grenoble INP, GIPSA-
Lab, 38000 Grenoble, France

dampen phantom traffic jams caused by string unstable driving
behavior [16].

These findings highlight the need to accurately model the
implications of deploying ACC vehicles at scale, and motivate
our desire for fast and accurate methods to estimate the pa-
rameters of the ACC vehicles. In our prior works investigating
the string stability of commercial ACC systems [9], [17], ACC
model parameters are estimated through an offline optimiza-
tion procedure to best fit recorded data. While accurate and
computationally efficient for small datasets, online methods
are desirable for real-time applications and for computation
on large (high frequency, long time duration) datasets. With
the proliferation of in-vehicle (e.g., radar, lidar and GPS)
sensing, it is now possible to develop fast and accurate online
estimation routines which can quickly estimate the parameters
of vehicles under adaptive cruise control.

This article considers the problem of estimating the param-
eters of adaptive cruise controlled vehicles using online algo-
rithms that can sequentially estimate the parameters when new
measurements become available. Two online methods are used
based on recursive least squares (RLS) and particle filtering
(PF), and both are shown to provide accurate estimates. As
a proof of demonstration, we also implement the methods on
data collected from a 2019 stock SUV with ACC, using only
data from the vehicle’s existing on-board sensors.

B. Related work

The problem of estimating parameters of automated vehicle
models is closely related to the problem of calibrating models
of human driving. Several works have looked at the car-
following estimation problem for human drivers [18]–[20]
using data from the well-known NGSIM dataset. Kesting and
Treiber [21] proposed a methodology to estimate parameters
for the Intelligent Driver Model by minimizing the error
between simulated driving trajectories and measured ones,
via the use of a genetic search algorithm in order to ac-
count for non-convexity in the search space. Punzo and Si-
monelli [22] estimated optimal parameters for several different
car-following models on a four vehicle platoon equipped with
GPS tracking units, and used a batch optimization method
in which a gradient-based optimization technique was used
starting from several different initial points, again in order to
account for potential non-convexity. This method (along with
ones in [7], [9]–[11], [17]) is in the same family of techniques
used in this article as a benchmark to compare the newly
presented methods. In general it should be noted that many
of these techniques find parameters of non-linear models, and



2

as such need to employ optimization techniques that account
for this difficulty.

In addition to offline batch calibration methods such as [9],
[11], [17], [22], other works consider probabilistic methods
that require only a single pass through recorded data to
identify parameters. Van Hinsberge et al. [23] use Bayesian
analysis to update prior probabilities of the parameters into
posterior probabilities; Hoogendoorn & Hoogendoorn [24] use
a generalized maximum likelihood estimation approach. Other
methods for microscopic model calibration in the presence of
automatic and connected vehicles are summarized in a recent
study by Papamichail et al. [25].

An important but less investigated aspect of model cali-
bration is model parameter identifiability analysis [26], [27],
which characterizes the possibility of accurately recovering
model parameters from experimental data. Among them, prac-
tical identifiability of car-following models is considered [19],
[28]. For example, Punzo et al. [19] use variance-based sensi-
tivity analysis to identify insensitive parameters, which are less
likely to converge to the true values. Monteil & Bouroche [28]
introduce procedures for robust parameter estimation including
global sensitivity analysis, maximum likelihood estimation and
interval estimation. Sensitivity-based identifiability analysis
relies on sampling parameters and calculating the variance
of all simulated trajectories, which limits its scope to offline
calibration.

Online parameter estimation, which has the potential to
achieve scalability and facilitate real-time applications, would
also benefit from model identifiability analysis for rigorous
experimental design. Convergence of car-following model
parameters in estimation is significantly influenced by the sen-
sitivity of the parameters with respect to the driving behavior
captured by the dataset [29]. Specifically for online filtering
methods, proper models of the system and measurement noises
are important to the performance of the method [30].

C. Contributions and outline
The main contribution of this article is the use of online

parameter estimation algorithms to solve the problem of recov-
ering adaptive cruise control parameters, and a corresponding
parameter identifiability analysis of the methods. We use two
online estimation algorithms, RLS and PF, that are fast and
scalable for real time system identification of ACC dynamics.
We provide an analysis of the parameter identifiability of
both methods to understand if and when the estimates can
be theoretically recovered. This analysis is important but
missing for the batch methods previously applied to estimate
parameters of ACC systems. Finally, we provide numerical
and real world examples illustrating the performance of the
methods in controlled numerical simulations, as well as on
a modern ACC vehicle. The real vehicle experiment uses
only the onboard CAN bus data, which provides a novel
experimental approach to understand the behavior of ACC
vehicles.

The remainder of the paper is organized as follows. Sec-
tion II reviews the ACC model and outlines the batch optimiza-
tion method as a benchmark for parameter estimation. Sec-
tion III-A introduces the online RLS and PF based estimators,

and provides an analysis of the estimators at equilibrium driv-
ing conditions. Section IV demonstrates the performance of
the estimation routines on synthetically generated (simulated)
data, in order to assess the performance of the methods under
controlled settings. Section V addresses the practical perfor-
mance of the method using data from a real vehicle platform.
It presents both the experimental protocol for collecting ACC
radar and speed measurements directly from a 2019 vehicle’s
CAN bus, and the results of parameter estimation on that data.
Finally, Section VI explores future research directions.

II. PRELIMINARIES

In this section, we briefly review a common model as-
sumed for ACC vehicle dynamics, and then review a standard
simulation-based optimization method to estimate the model
parameters used in this work as a benchmark.

A. Model description and string stability

With the increasing interest in how vehicles with automated
driving systems [2], [3] will affect traffic flow patterns, several
works have looked at modeling ACC vehicles using car-
following models [9], [11], [17]. A common variation of these
models is the constant time headway relative velocity (CTH-
RV) model:

v̇(t) = f(θ, s(t), v(t),∆v(t)) = α(s(t)− τv(t)) + β(∆v(t)),
(1)

where s, v, and ∆v are the space gap, velocity, and velocity
difference between the ACC vehicle and a leading vehicle. The
vector of model parameters θ = [α, β, τ ]T control the gain
on the constant time headway term and the relative velocity
term respectively, while the parameter τ is the time gap at
equilibrium.

We note that models considering constant time headway
and relative velocity terms are regularly used both to design
string stable adaptive cruise control systems, as well as to
model the behavior of vehicles under ACC control [4], [11],
[31]–[34]. Compared to other modeling choices, it is observed
that CTH-RV model performs about as well in terms of data
fitting real ACC systems compared to more complex nonlinear
models [35]. However, the model is a simplification of the
proprietary control logic and complex vehicle dynamics of
real ACC vehicles, and the quality of fit can drop for some
specialized vehicles (e.g., hybrid vehicles) [9]. To avoid the
need to know the proprietary control logic, we adopt a similar
strategy to what is done for human drivers, namely model
the full system as an ordinary differential equation. For the
remainder of this work, we adopt the CTH-RV as the assumed
model of the ACC equipped vehicle.

Given (1), it is easy to check the string stability [36] of the
ego (i.e., follower) vehicle by evaluating partial derivatives of
the model with respect to s, v, and ∆v. Following the analysis
of [37], if

α2τ2 + 2αβτ − 2α ≥ 0, (2)



3

then the model is said to be L2 strict string stable, which is
consistent with the string stability condition provided in [36].
Moreover, if

(ατ + β)2 − 4α ≥ 0, (3)

then the model is said to be L∞ strict string stable [37]. All
studies that have collected empirical data on commercial ACC
systems have found them to be string unstable [9]–[11], [17]
(in the L2 sense). In Section V, we illustrate that the new
online methods introduced in this work find that a stock 2019
SUV is neither L2 nor L∞ strict string stable.

Note that although string stability manifests along a platoon
of vehicles, it is a property of the individual vehicle car fol-
lowing behavior [36], [37]. Thus identifying the car-following
model parameters of the follower vehicle is sufficient to ana-
lytically prove the string stability of the follower vehicle. The
interpretation of a string stable vehicle is that a homogeneous
platoon consisting of these vehicles will dissipate disturbances
rather than amplify them as the perturbation propagates in
through platoon. Since no priori knowledge of the ACC system
string stability is assumed in the experiments, we do not use
string stability as constraints during parameter estimation.

B. Offline batch optimization

Here a well known batch technique for car-following param-
eter estimation [17], [22] is reviewed to estimate the param-
eters of the ordinary differential equation (ODE) model (1).
The parameter estimation problem is posed as an optimization
problem in which the ACC model appears as a constraint.
It can be directly solved as a simulation-based optimization
problem using standard descent-based optimization routines.

The parameter values are optimized to minimize the root
mean squared error (RMSE) between simulated space gap
data and recorded space gap data. The RMSE space gap error
is used here because it was found to perform well in previous
works [21], [22]. The general form of optimization problem
is written as:

minimize :
√︂

1
T

∫︁ T

0
(sm(t)− s(t))2dt

subject to: ṡ(t) = u(t)− v(t) = ∆v
v̇(t) = f(θ, s, v,∆v),

(4)

with possible additional constraints on the initial conditions,
and bounds on the parameters. In (4), f(θ, s, v,∆v) corre-
sponds to the car-following model in (1). The term u(t) is
the lead vehicle velocity as a function of time and is assumed
to be available from measured data. Similarly, sm(t) denotes
the measured space gap, which is compared to the space gap
predicted by the model in the objective function. The total
time of the dataset and simulation is T .

It is important to note that the problem is nonlinear in
the decision variables (the state and model parameters), and
depending on the form of the car-following model, it may
also be non-convex. To combat this potential problem the
optimization problem can be solved many times, with each
run starting from randomly selected different initial candidate
parameter values, as in [22].

III. ONLINE PARAMETER ESTIMATION TECHNIQUES

We next introduce two online methods to estimate the
adaptive cruise control model parameters using velocity, space
gap, and relative velocity data.

A. Recursive least-squares formulation

First we derive a RLS estimator. Unlike (4), the least-
squares method proposed here does not require multiple start-
ing points or repeatedly solving an ODE within each opti-
mization run, substantially reducing the runtime. We briefly
derive the least-squares formulation for the ACC car-following
model (1).

First we rewrite the continuous time ODE (1) in discrete-
time using a forward Euler step scheme:

vk+1 = vk + α(sk − τvk)∆T + β(uk − vk)∆T, (5)

where vk, sk and uk denote the velocity of the follower
vehicle, the space gap, and the velocity of the leading vehicle
at timestep k, respectively. The term ∆T is the timestep size,
which is selected to correspond to the frequency at which the
velocity, space gap, and relative velocity data is measured (e.g.,
on the order of 1/10 of a second for some sensor platforms
including the experiments presented later in this work). The
dynamics can be rewritten as:

vk+1 = γ1vk + γ2sk + γ3uk, (6)

with γ1 := (1 − (ατ + β)∆T ), γ2 := (α∆T ) and γ3 :=
(β∆T ). Note that instead of directly estimating the parameters
α, β, τ , we can instead estimate γ1, γ2, γ3. Except in the
degenerate case when γ2 = 0, we can always uniquely
determine the values of α, β, τ given a set of values for
γ1, γ2, γ3.

We now demonstrate that one can recover γ := [γ1, γ2, γ3]
T

from an experimental dataset containing (vk, sk, uk) for all
k ∈ {1, ...,K}, via least-squares. We expand (6) in time by
stacking the uniformly sampled measurements to obtain:⎡⎢⎢⎢⎣

v2
v3
...

vK

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
v1 s1 u1

v2 s2 u2

...
...

...
vK−1 sK−1 uK−1

⎤⎥⎥⎥⎦
⎡⎣γ1γ2
γ3

⎤⎦ , (7)

or
Y = Xγ. (8)

The term Y contains the values of vk from timestep 2 to K.
The term X contains measurements of vk, sk, and uk from
timestep 1 to K − 1 in column-wise order.

Given the data matrices Y and X , γ has a unique solution
if and only if rank(X) = rank([X Y ]) = 3. Note that this
condition is not satisfied at equilibrium, where vi = vj =
uk for all timesteps i, j and k. In other words, using only
data from equilibrium driving, it is not possible to recover the
model parameters. In non-equilibrium driving and when sensor
noise is present, it is easy to generate an over determined
system of equations, motivating the search for least squares
solution to (7).



4

To convert the least squares problem into an online method,
a recursive implementation is desired. The least squares
solution to (7) has an exact recursive implementation by
considering the kth row of measurements {Yk, Xk} one row
at a time. The least squares estimate of the parameter vector
at time k using all data collected from timestep 1 through k,
denoted γ̂k, can be sequentially updated by:

γ̂k = γ̂k−1 + PkXk(Yk − γ̂k−1Xk), (9)

where P−1
k =

∑︁k
i=1 XiX

T
i is the cumulative outer product of

Xk. Solving (9) requires an initial estimate of the parameters
γ0 ∼ N (γ̂0, P0), which are specified in the numerical
experiment in Section IV.

B. Online joint state and parameter estimation formulation

The parameter estimation problem can also be framed as an
online joint parameter and state estimation problem, in which
model and measurement noises are explicitly considered. Such
methods, if fast enough, may also be used for real-time
processing of data in order to estimate the model parameters
during data collection.

1) Problem formulation: To jointly estimate the state and
model parameters, we consider an augmented state formula-
tion in which the model parameters are added to the state
vector. The model of the evolution of the augmented state is
completed by assuming the parameters are constant in time.

We proceed as follows. First, θ = [α, β, τ ]T , is concatenated
to the physical system state xk ∈ R2 = [sk, vk]

T to form an
augmented state xa

k ∈ R5. This is written as:

xa
k =

[︃
x
θ

]︃
k

=
[︁
s v α β τ

]︁T
k
. (10)

The discrete time dynamics of the augmented system using
the same discretization approach as (5) can be written as:

xa
k = Fd(x

a
k−1, uk−1), (11)

where Fd refers the system dynamics in the augmented state.
The nonlinearities in the dynamics appear due to the product
of augmented state variables representing the ACC model
parameters and the physical states.

The augmented state dynamics (11) are written as:

Fd(x
a
k−1, uk−1) =⎡⎢⎢⎢⎢⎣

sk−1 +∆T (uk−1 − vk−1)
vk−1 +∆T [αk−1(sk−1 − τk−1vk−1) + βk−1(uk−1 − vk−1)]

αk−1

βk−1

τk−1

⎤⎥⎥⎥⎥⎦
(12)

Additionally, a measurement equation is written to reflect the
condition that the physical states (sk, vk) may be directly
measured, but we do not measure the parameters (αk, βk, τk):

yk = Cxa
k =

[︃
1 0 0 0 0
0 1 0 0 0

]︃
xa
k. (13)

In (13), yk ∈ R2 are the measurements, and C is the
measurement matrix.

2) Particle filter: Because the augmented state (of the
nonlinear augmented system) is to be estimated, a nonlinear
estimator must be considered. Here, we outline an approach
to estimate the augmented state using a PF.

The filter takes in the discrete-time system that considers
model and measurement noises. The state-space form is writ-
ten as:

xa
k = Fd(x

a
k−1, uk−1) +wk

yk = Cxa
k + νk,

(14)

where wk ∼ (0, Q) ∈ R5 and νk ∼ (0, R) ∈ R2 are
independent white noise processes for the model and the
measurement equations, respectively, at time k. Q ∈ R5×5

and R ∈ R2×2 are the known process and measurement error
covariance matrices.

Recall that the Bayesian state estimation method sequen-
tially approximates the posterior probability density function
(PDF) of the augmented state at step k given past observations,
i.e., p(xa|y1:k). The Bayesian state estimation method can be
summarized into two parts:

1) State propagation: obtain the prior distribution at k:

p(xa
k|y1:k−1) =

∫︂
p(xa

k|xa
1:k−1)p(x

a
k−1|y1:k−1)dx

a
k−1

(15)
2) State update: obtain the posterior distribution at k:

p(xa
k|y1:k) =

p(yk|xa
k)p(x

a
k|y1:k−1)

p(yk|y1:k−1)
. (16)

The particle filter [38], [39], among other filtering tech-
niques, is deployed to approximate the prior and the posterior
distributions from equations (15) and (16) because of its flexi-
bility in noise distribution and its relaxed assumption about the
linearity of the (augmented) dynamics of the system. PF uses
weighted particles (samples) to approximate the conditional
state distribution given all measurements up to the current
timestep using a sequential estimation approach. Therefore,
the output is a probability distribution for each parameter at
each time step.

Algorithm 1 Particle filter
Initialize (k = 0)
Draw i particles {xa,(i)

0 }i=1:Np from an initial distribution
p(xa

0). Assign equal weights ω
(i)
0 = 1/Np, where i =

1, . . . , Np, and Np is the number of particles.
for k = 1 . . . T do

State propagation:
x
a,(i)
k = Fd(x

a,(i)
k−1 , uk−1) +w

(i)
k for all i.

State update:
Assign weight: ω(i)

k := ω
(i)
k−1p(yk|(x

a,(i)
k ) for all i.

Normalize weight: ω(i)
k := ω

(i)
k /

∑︁Np

i=1 ω
(i)
k for all i.

Resample:
Draw x

a,(i)
k with probability ω

(i)
k for all i.

end

A summary of the PF is written in Algorithm 1. During
implementation, it is important to monitor the effective particle
size [40] to ensure a valid estimation result. For more details
on the PF implementation, readers are referred to standard
references such as [41].



5

C. Observability analysis

In this section we provide insights on the ability to estimate
the ACC model parameters via an observability analysis. An
observable system indicates theoretically that its initial state
can be inferred from observing the outputs. For parameter esti-
mation in the joint state-parameter form, recovering the initial
state indicates identifying the non-changing parameters. In this
work we consider a special case of parameter observability
if the parameters are considered as constant state variables.
This assumption allows us to equate the notion of observable
augmented state to uniquely identifiable parameters given
measurements. Given that the augmented state dynamics (14)
are nonlinear, observability must be assessed on a linearized
version of the model. This can only be done at fixed values
of the augmented state, and is explained as below.

First we write the linearized state-space model of the
nonlinear discrete-time system (11):

xa
k = Ak−1x

a
k−1 +Bk−1uk−1

yk = Cxa
k,

(17)

where Ak is the Jacobian of Fd defined in (11) with respect
to the augmented state variables at time k, Bk is the Jacobian
with respect to the control inputs at time k, and C is the
time-invariant measurement matrix as defined above in (13).
Further, Ak can be written as

Ak =
∂Fd

∂xa

⃓⃓⃓⃓
xa∗

k ,u∗
k

=

⎡⎢⎢⎢⎢⎣
1 −∆T 0

α∆T 1− ατ∆T − β∆T (s− τv)∆T
0 0 1
0 0 0
0 0 0

0 0
(u− v)∆T −αv∆T

0 0
1 0
0 1

⎤⎥⎥⎥⎥⎦
xa∗

k ,u∗
k

,

(18)

where xa∗
k , u∗

k are the state and input points about which the
system is linearized and Bk is defined similarly.

We choose to analyze the system observability by comput-
ing the above partial derivatives evaluated at an equilibrium
point. The condition for equilibrium reduces to zero accelera-
tion and space gap change, i.e.:

uk − vk = 0

sk − τkvk = 0 .
(19)

In addition, the system (11) reduces to a linear time invariant
system, and Ak from (18) at equilibrium simplifies to:

A =

⎡⎢⎢⎢⎢⎣
1 −∆T 0 0 0

α∆T 1− ατ∆T − β∆T 0 0 −αv∆T
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

⎤⎥⎥⎥⎥⎦ .

From here the observability matrix can be calculated using A
and C as follows:

O =
[︁
C, CA, CA2, CA3, CA4

]︁T
,

where O is the observability matrix, the rank of which is used
to assess observability.

When analyzed at any equilibrium point, the resulting
observability matrix has rank(O) = 3 ̸= 5, corresponding to
a non-observable system. The corresponding null space of the
observability matrix is:

null(O) =

[︃
0 0 0 1 0
0 0 1 0 0

]︃T
, (20)

indicating two unidentifiable parameters, α and β at the equi-
librium points. This analysis shows that for the augmented-
state estimation problem there is no guarantee for exact
recovery of α and β at equilibrium when using filtering
techniques. The observability matrix derivation in this section
is based on the linearized system around an equilibrium point.
Therefore, it does not provide insight on parameter estimation
for non-equilibrium trajectories, which we will instead explore
numerically in the computational experiments in Section IV
using the PF described next.

IV. ESTIMATION ON SYNTHETIC DATA

In this section, each parameter estimation routine described
above is run on synthetically generated data. This is done to
understand the potential to recover the true model parameters
under controlled settings. We show that all methods produce
good estimates under non-equilibrium driving but have limited
ability to recover true parameters under equilibrium driving
conditions, consistent with the discussion from Section III.

A. Setup of synthetic experiments

The general setup is as follows. First, synthetic data is
created by selecting a set of model parameters and a predefined
lead driver velocity profile. A time-series of velocity and space
gap data is then created via a forward simulation of (5) under
the selected parameters and input signal. The simulated data is
then fed into each estimation method, with each returning a set
of estimated parameter values. The accuracy of the recovered
parameters and the resulting state error of the system trajectory
under the recovered parameters is then compared. The run-
time for each method is also reported.

1) Equilibrium driving: In order to create a set of synthetic
measurement data for driving under equilibrium, we begin
by setting the true parameters as: θtrue = [0.08, 0.12, 1.5]T .
These values are representative of parameter values that have
been reported for commercial ACC systems [9]. Additionally,
in order to generate a synthetic dataset, the velocity profile of
a lead vehicle is needed, along with an initial space gap, and
the initial velocity of the following vehicle.

We generate equilibrium data by setting the velocity of
the lead vehicle at a constant uk = vlead = 24 m/s while
the initial space gap and the initial velocity of the follower
satisfy s0 = τtruev0. A total of 900 seconds of velocity and
space gap data is generated at a measurement frequency of 10



6

Fig. 1: Synthetic space gap and following vehicle data, gen-
erated from an empirical lead vehicle profile.

Hz. Because the data is generated such that the equilibrium
condition (19) is satisfied, the true parameters α and β do not
influence the space gap or velocity of the follower vehicle.

2) Non-equilibrium driving: We also consider a non-
equilibrium driving scenario where the lead vehicle velocity
(the system input) is empirically generated from a human
driven vehicle in real highway driving. Using the empirical
input, the ACC velocity and space gap data are still generated
via forward simulation of the ACC model under the known
true parameters. About 900 seconds of lead vehicle data is
collected in which the driver of the vehicle follows the traffic
rules but has variations in speed due interactions with other
vehicles on the roadway. The simulation is initialized at a
follower velocity and space gap of 32.5 m/s and 37.8 m, and
the data is again generated at 10 Hz. Figure 1 displays the
lead and follower velocity profiles, and the space gap data.

The true parameters used to generate the synthetic dataset
are again θtrue = [0.08, 0.12, 1.5]T , which is neither L2 (2)
nor L∞ (3) strict string stable. This means the ACC may
amplify lead vehicle disturbances. As can be seen in the
simulation data (Figure 1), in several occasions the follower
vehicle slows down more than the leader.

B. Parameter estimation results on synthetic data

Using the synthetic data created above, we now turn to the
results of each parameter estimation routine that attempt to
recover the true parameters using only the measurement data.
We use the mean absolute error (MAE) in space gap and
velocity to compare the accuracy of each estimation method.
Both RLS and the PF require several algorithm parameters to
be set, which are summarized in Table I. For the batch method,
we sample 100 starting points for the parameters from uniform
distributions described in Table I. For RLS, we set the initial
coefficient vector γ0 and its corresponding covariance matrix
P0. For the PF, we set the number of particles used in the
estimator Np, the initial distribution of the augmented state
vector (assumed to follow a normal distribution with mean

Method Parameters Values

Batch θ0 [U(0, 1) U(0, 1) U(1, 3)]T
optimization # initial points 100

Least γ0 [0.976, 0.01, 0.01]T

squares P0 0.1I‡
3

Particle Np 500 particles
filter µxa

0
[37.8 32.5 0.1 0.1 1.4]T

Q0 diag[0.5 0.5 0.2 0.2 0.3]2

Q diag[0.2 0.1 0.01 0.01 0.01]2

R diag[0.2 0.1]2

TABLE I: Parameters and initialization for all estimation
routines. ‡I3 is the identity matrix with size 3× 3.

Fig. 2: Posterior parameter PDFs for equilibrium driving
dataset from PF estimates. The plot shows that parameter α
and β are not identified correctly, i.e., the distributions drift
away from the true values (black vertical lines) over time.
Only the distribution of τ converges to the true value.

µxa
0

and covariance Q0), and the model and measurement
covariance matrices Q and R.

1) Equilibrium driving results: The performance of both
online parameter estimators and the batch estimator are sum-
marized in Table II. The summary includes the estimated pa-
rameters, the corresponding MAE for space gap and velocity,
and the run time.

Compared to the true parameters θtrue = [0.08 0.12 1.5]T ,
all methods estimate the true τ accurately, but have larger
errors on α and β. In the least squares method, this is due to
the fact that the matrix X from (7) has rank 1 (i.e., the columns
in X (8) are linearly dependent, since vi = vj = ui = uj for
i, j ∈ {1, ...,K} at equilibrium), and consequently γ does not
have a unique solution. In the PF, the lack of observability
of the system (17) leads to the the non-convergence of the
PDFs in the PF (see Figure 2). Only τ converges to the true
value, while the distributions of α and β drift away from the
true values over time. Unlike the RLS estimator and the PF,
the batch method does not benefit from additional information
about the true parameters via the prior given at time 0. As a
consequence, the errors on α and β are largest for the batch
method.

The experiments illustrate that for all methods, the param-
eters are not identified at equilibrium. This is consistent with
the lack of persistent excitation in the input signal [42].

Even though the true α and β are not recovered correctly, all
methods produce models that have negligible MAE for speed
and space gap. This is again due to the fact that α and β do
not influence the trajectory of the ACC vehicle at equilibrium.

Finally, we compare the runtime of each method. The



7

Criteria Batch optimization RLS PF

Estimated
parameter

values

α = 8.34
β = 7.30
τ = 1.50

α = 0.0965
β = 0.0976
τ = 1.50

α = 0.065
β = 0.604
τ = 1.50

Algorithm Offline Online Online

Running time (s) 12.44 0.06 8.45
MAE space gap (m) 0.00 0.00 0.14
MAE velocity (m/s) 0.00 0.00 0.00

TABLE II: Performance on synthetic equilibrium data. True
parameters are: αtrue = 0.08, βtrue = 0.12, τtrue = 1.5.

recursive least-squares approach recovers the parameters in
0.06 seconds, which is the fastest runtime of the three methods
by more than 2 orders of magnitude. The PF runs in 8 seconds,
which is a factor of 100 faster than real time (recall the dataset
is 900 seconds long). Although the total time to execute the
batch method on a 900-second data is only 12 seconds, this
is an offline method and cannot be run until all the data
has been collected. This is in contrast to the online methods,
which produce new estimates every time a new measurement
is available. All the experiments are performed on the same
MacBook Pro with 2.7 GHz CPU, such that the running time
is comparable.

2) Non-equilibrium driving results: We now turn to the
performance of the methods on the synthetic dataset generated
from the ACC model when fed empirically collected non-
equilibrium lead vehicle driving data. The results of each
method are summarized in Table III.

Both the batch method and the RLS estimator recover the
true model parameters used to generate the data. The PF
performs worse but the estimates improve over time (Figure 3).
When simulating with the mean values of the PF parameter
estimates, the calibrated model has an MAE of 0.32 m/s
in velocity and 2.54 m in the space gap. Given that the
PF assumes both a model and measurement noise, it is not
surprising that it does not perfectly recover the true parameters
(since the model and measurement in fact have zero error
in this synthetic example). We note the runtime for the two
online methods again outperforms the batch method, and are
significantly faster than real time.

Table III also shows the string stability estimate based on the
recovered parameters using each method. Because the value
of the parameters are used to determine the model string
stability, it is important to know if errors in the estimates
are large enough to change the string stability estimate. In
this experiment, we find that all models under the estimated
parameters are string unstable, as is the case with the true
model parameters.

Additional numerical experiments can be found in [43],
which explores the RLS performance in the presence of mea-
surement noise, looking both at the real noise expected from
the stock sensors as well as the sensitivity of the estimator to
a range of noises. We find that the method can tolerate the
noise levels present on the commercial vehicle platforms.

Fig. 3: Posterior parameter PDFs for non-equilibrium driving
dataset from PF estimates.

Criteria Batch optimization RLS PF

Estimated
parameter

values

α = 0.08
β = 0.12
τ = 1.5

α = 0.08
β = 0.12
τ = 1.5

α = 0.04
β = 0.21
τ = 1.41

Algorithm Offline Online Online

Running time (s) 11.27 0.06 8.43
MAE space gap (m) 0.00 0.00 2.54
MAE velocity (m/s) 0.00 0.00 0.32

L2 strict string stable No No No
L∞ strict string stable No No No

TABLE III: Performance on synthetic nonequilibrium data:
True parameters are: αtrue = 0.08, βtrue = 0.12, τtrue = 1.5.
The reported parameter values are the maximum a posteriori
(MAP) estimates of the last timestep (at 900 s), which can be
slightly different from the estimates of the earlier timesteps.

V. CASE STUDY ON A 2019 ACC EQUIPPED VEHICLE

We now present a case study in which all methods are used
to estimate the model parameters using data collected from a
2019 ACC equipped vehicle.

A. Experimental details

We first describe the velocity and space gap data collection
using measurements from the stock radar system of an ACC-
equipped vehicle. We compare the measurements collected
from the ACC vehicle CAN bus to measurements collected
using those from the GPS devices mounted on the ACC vehicle
and its leader during the experimental data collection.

Fig. 4: Left: The 2019 ACC equipped stock SUV used in the
experiment. Right: relative position data collected from the
CAN bus of the vehicle within a duration of 15 min drive. Each
point corresponds to the latitudinal and longitudinal distance
to an object detected by the stock radar sensor and reported
on the CAN bus. Colors correspond to distinct objects.



8

Fig. 5: CAN bus measurement of an ACC-enabled vehicle
following a human-driven vehicle.

To set up the experiment, we create a two-vehicle system
in which an ACC-equipped vehicle follows an instrumented
lead vehicle driven by a human in real freeway driving condi-
tions. The vehicle used in this experiment is a commercially
available 2019 SUV with a full velocity range adaptive cruise
control system (Fig. 4, left). A total of 15 minutes (900
seconds) of data are recorded at 10 Hz in which the ACC
vehicle follows the lead vehicle through traffic on a freeway
in Nashville, TN.

The driver of the lead vehicle is instructed to drive as
they would normally in traffic, while the ACC equipped
vehicle follows with ACC engaged. The entire experiment is
conducted without any ACC de-activations or overrides, and
no cars cut in between the leader and the ACC follower.

Velocity, lead vehicle velocity, and space gap data is col-
lected by recording measurements from the CAN bus on the
vehicle. The radar unit reports the latitudinal and longitudinal
distance to objects in front of the vehicle (Figure 4, right),
from which the space gap between the two vehicles can be
computed. It also reports the relative velocity of objects in the
field of view of the sensor. Since the ACC vehicle velocity
is also published to the CAN bus, the lead vehicle velocity
can be determined from the radar data. With straightforward
processing of the radar data, it is possible to convert into
velocity data of the leader and follower, and space gap, as
shown in Figure 5.

B. CAN bus velocity and space gap data validation

In order to assess the accuracy of the stock vehicle radar
unit, both vehicles are additionally equipped with sub-meter
accurate GPS units which track global position and velocity.
The devices are the same units used for primary data collection
in our previous work [9], [17], [44]. The time-series of space
gap and velocity are recorded from both GPS devices and the
radar unit on the ACC vehicle and compared.

A histogram of the differences between the two measure-
ment techniques is displayed in Figure 6. The distribution of

Fig. 6: Histogram of the difference between GPS measure-
ments and CAN bus measurements for space gap and relative
velocity measurements.

differences between radar space gap measurements and GPS
space gap measurements is approximately zero-centered, as are
the relative velocity differences. The sensors do not appear to
be biased. The standard deviations of the differences between
the measurement devices is 0.72 m and 0.20 m/s for the space
gap and relative velocity respectively, suggesting the sensor
noises are also low.

As a further check, we briefly note that all estimation
methods described next were run on data collected from the
GPS devices as well as on the data from the radar unit as
logged on the CAN bus. In all cases the estimated parameters
are similar across the two sensor platforms. We conclude that
the on-board radar measurements reported on the CAN bus
are comparable to the GPS devices.

The fact that the space gap, velocity, and relative velocity
data can be collected directly from the CAN bus signifi-
cantly simplifies experimental data collection. Compared to
our earlier work that required instrumenting two vehicles, the
approach here can be applied using only a single vehicle (the
ACC equipped vehicle). Eventually this may allow improved
data collection from ACC vehicles in increasingly realistic
settings, such as under cut-ins and lane changing.

C. Parameter estimation results on a 2019 ACC vehicle

With the CAN bus data validated, we now turn to the
parameter estimation problem applied to the vehicle. The
data contains non-equilibrium driving data, which is used to
estimate the parameters using each method. We follow the
same setup as the synthetic data experiments, with the notable
exception that the true parameters of the ACC vehicle are
unknown. The MAE between the measured space gap and
the space gap under the estimated parameters is reported.
Similarly, the MAE of the velocity is used to assess the
quality of the estimated parameters. The string stability of
the calibrated model under the parameters estimated by each
method is also determined.



9

Criteria Batch optimization RLS PF

Estimated
parameter

values

α = 0.0227
β = 0.194
τ = 1.227

α = 0.0174
β = 0.164
τ = 1.127

α = 0.0431
β = 0.164
τ = 1.221

Algorithm Offline Online Online

Running time (s) 11.98 0.06 8.70
MAE space gap (m) 2.02 2.24 2.60
MAE velocity (m/s) 0.24 0.26 0.35

L2 strict string stable No No No
L∞ strict string stable No No No

TABLE IV: Performance summary of all estimation methods
on ACC data.

Fig. 7: Comparison between recorded vehicle velocity and
space gap vs simulated for each model found.

These results are summarized in Table IV. All methods
produce parameters that fit the data well, with some differ-
ences in the actual parameter values. A simulation using the
estimated parameters from each method is shown in Figure 7.
All methods have nearly identical velocity profiles, with slight
differences in the space gap profiles. The batch optimization
achieves both the lowest MAE velocity and space gap errors
at 0.24 m/s and 2.02 m. This represents errors of 0.8% in
velocity and 5.0% in space gap. The least-squares method has
a comparable performance, with MAE values of 0.26 m/s and
2.24 m (0.87% in velocity and 5.6% in space gap). Finally,
the PF estimated parameters produce slightly higher MAEs of
0.35 m/s and 2.60 m, which correspond to percent errors of
1.2% in velocity and 6.5% in space gap. Overall, the MAEs
are comparable and low both in absolute values and in percent.
Moreover, the models are similar in scale to those found in
other works [9], [11].

We explore the errors in more detail. The largest error
between the measured data and the ACC model run with
estimated parameters occurs between roughly 325 seconds and
and 375 seconds, in which the real ACC vehicle engages in
an acceleration that is not captured by any of the calibrated
models. This underscores that while each calibrated model
produces a good overall reconstruction of the ACC vehicle,

Fig. 8: velocity error distribution for each calibrated model.

Fig. 9: space gap error distribution for each calibrated model.

none are able to perfectly describe the complex nonlinear
vehicle dynamics controlled by a proprietary ACC system.

The histograms of the errors are shown in Figure 8 and
9. The average velocity and space gap error of both online
methods is relatively similar to that of the batch method. All
three methods return a model that has an average velocity
error of within 0.01 m/s and similar standard deviations. Both
the online methods produce the average space gap errors that
are slightly more biased than the batch method, and standard
deviations within 4 m. These MAE values are of the same
order as is reported in other works [9], [11], [17]. Given
that both the online methods have similar average velocity
and space gap errors compared to the batch methods and
the estimated models fit the recorded data relatively well,
this suggests that both the RLS and the PF are viable online
methods for learning ACC model parameters.

With the estimated parameters from each of the methods,
we check the string stability of the vehicle under ACC
control. Like all previous studies considering commercial ACC
systems [9]–[11], [17], we find that the calibrated model of



10

the vehicle tested in this work is neither L2 or L∞ strict
string stable. The results are consistent across the different
calibration methods, as summarized in Table IV.

With respect to the runtime, the recursive least-squares
method is again the fastest, with a total computation time
of 0.06 seconds to process the 15 minute dataset. The PF
executes in 8.7 seconds, while the batch optimization method
runs in 11.98 seconds. The runtime of the batch method is
sensitive to the initial guess and the number of parameters to
be estimated. The online methods have a distinct advantage
in real-time applications, since they produce new estimates of
the parameters as new data becomes incrementally available,
and they can scale to arbitrarily long datasets.

VI. CONCLUSION

This work uses two online methods to estimate parameters
of vehicles under control of a stock ACC system, and provides
a corresponding parameter identifiability analysis for the esti-
mators. The online methods used here are scalable and suitable
for real time implementations, and produce comparable results
to an offline batch optimization method. All methods are tested
on a 2019 vehicle with ACC using sensor data from the stock
vehicle platform as reported on the CAN bus. All methods
indicate the vehicle ACC system is string unstable, adding to
the findings of eight other ACC systems as reported in [9],
[17]. We further intend to exploit the experimental platform
used in this work, which allows critical velocity and space gap
data to be recorded directly from the CAN bus of the vehicle.
Such data could be valuable for a variety of experimental
settings in which humans and automation systems interact
in mixed traffic. We envision in our own work to generalize
the application of the online system identification methods to
study human driving behavior, using vehicles equipped with
stock sensors similar to the ACC vehicle used in this work. As
humans or automated vehicles may change driving behaviors
depending on traffic conditions or environmental factors, it is
important to apply online system identification algorithms to
capture such behavioral changes characterized by the model
parameters.

VII. ACKNOWLEDGEMENTS

This material is based upon work supported by the National
Science Foundation under Grant Nos. CMMI-1853913 (Wang)
and CNS-1837652 (Gunter). This research was supported by
the Inria associated team “ModEling autonoMous vEhicles iN
Traffic flOw” (MEMENTO).

REFERENCES

[1] R. Rajamani, Vehicle dynamics and control. Springer Science &
Business Media, 2011.

[2] P. Ioannou, Z. Xu, S. Eckert, D. Clemons, and T. Sieja, “Intelligent
cruise control: theory and experiment,” in Proceedings of 32nd IEEE
Conference on Decision and Control, Dec 1993, pp. 1885–1890 vol.2.

[3] B. Besselink and K. H. Johansson, “String stability and a delay-based
spacing policy for vehicle platoons subject to disturbances,” IEEE
Transactions on Automatic Control, vol. 62, no. 9, pp. 4376–4391, Sep.
2017.

[4] C.-Y. Liang and H. Peng, “Optimal adaptive cruise control with guar-
anteed string stability,” Vehicle System Dynamics, vol. 32, no. 4-5, pp.
313–330, 1999.

[5] D. Swaroop and J. Hedrick, “String stability of interconnected systems,”
IEEE Transactions on Automatic Control, vol. 41, no. 3, pp. 349–357,
1996.

[6] M. Makridis, K. Mattas, B. Ciuffo, F. Re, A. Kriston, F. Minarini, and
G. Rognelund, “Empirical study on the properties of adaptive cruise
control systems and their impact on traffic flow and string stability,”
Transportation Research Record, vol. 2674, no. 4, pp. 471–484, 2020.

[7] M. Makridis, K. Mattas, A. Anesiadou, and B. Ciuffo, “openacc. an
open database of car-following experiments to study the properties of
commercial acc systems,” 2020.

[8] R. E. Stern, S. Cui, M. L. D. Monache, R. Bhadani, M. Bunting,
M. Churchill, N. Hamilton, R. Haulcy, H. Pohlmann, F. Wu, B. Piccoli,
B. Seibold, J. Sprinkle, and D. B. Work, “Dissipation of stop-and-
go waves via control of autonomous vehicles: Field experiments,”
Transportation Research Part C: Emerging Technologies, vol. 89, pp.
205 – 221, 2018.

[9] G. Gunter, D. Gloudemans, R. E. Stern, S. McQuade, R. Bhadani,
M. Bunting, M. L. Delle Monache, R. Lysecky, B. Seibold, J. Sprinkle,
B. Piccoli, and D. B. Work, “Are commercially implemented adaptive
cruise control systems string stable?” arXiv:1905.02108, 2019.

[10] V. L. Knoop, M. Wang, I. Wilmink, D. M. Hoedemaeker, M. Maaskant,
and E.-J. Van der Meer, “Platoon of SAE level-2 automated vehicles on
public roads: Setup, traffic interactions, and stability,” Transportation
Research Record, p. 0361198119845885, 2019.

[11] V. Milanés and S. E. Shladover, “Modeling cooperative and autonomous
adaptive cruise control dynamic responses using experimental data,”
Transportation Research Part C: Emerging Technologies, vol. 48, pp.
285–300, 2014.

[12] C. Wu, A. M. Bayen, and A. Mehta, “Stabilizing traffic with autonomous
vehicles,” in 2018 IEEE International Conference on Robotics and
Automation (ICRA), 2018, pp. 6012–6018.

[13] M. Čičić and K. H. Johansson, “Stop-and-go wave dissipation using ac-
cumulated controlled moving bottlenecks in multi-class ctm framework,”
in 2019 IEEE 58th Conference on Decision and Control (CDC), 2019,
pp. 3146–3151.

[14] J. Wang, Y. Zheng, Q. Xu, J. Wang, and K. Li, “Controllability analysis
and optimal controller synthesis of mixed traffic systems,” in 2019 IEEE
Intelligent Vehicles Symposium (IV), 2019, pp. 1041–1047.

[15] M. L. Delle Monache, T. Liard, A. Rat, R. Stern, R. Bhadani, B. Seibold,
J. Sprinkle, D. B. Work, and B. Piccoli, Feedback Control Algorithms
for the Dissipation of Traffic Waves with Autonomous Vehicles. Cham:
Springer International Publishing, 2019, pp. 275–299.

[16] Y. Sugiyama, M. Fukui, M. Kikuchi, K. Hasebe, A. Nakayama,
K. Nishinari, S. ichi Tadaki, and S. Yukawa, “Traffic jams without
bottlenecks—experimental evidence for the physical mechanism of the
formation of a jam,” New Journal of Physics, vol. 10, no. 3, p. 033001,
mar 2008.

[17] G. Gunter, C. Janssen, W. Barbour, R. Stern, and D. Work, “Model based
string stability of adaptive cruise control systems using field data,” IEEE
Transactions on Intelligent Vehicles, pp. 1–1, 2019.

[18] A. Duret, C. Buisson, and N. Chiabaut, “Estimating individual speed-
spacing relationship and assessing ability of Newell’s car-following
model to reproduce trajectories,” Transportation Research Record, vol.
2088, no. 1, pp. 188–197, 2008.

[19] V. Punzo, M. Montanino, and B. Ciuffo, “Do we really need to cali-
brate all the parameters? variance-based sensitivity analysis to simplify
microscopic traffic flow models,” IEEE Transactions on Intelligent
Transportation Systems, vol. 16, no. 1, pp. 184–193, Feb 2015.

[20] J. Monteil, R. Billot, J. Sau, C. Buisson, and N.-E. El Faouzi, “Cal-
ibration, estimation and sampling issues of car following model,” in
Proceedings of the 92nd annual meeting of the Transportation Research
Board, 2014.

[21] A. Kesting and M. Treiber, “Calibrating car-following models by using
trajectory data: Methodological study,” Transportation Research Record,
vol. 2088, no. 1, pp. 148–156, 2008.

[22] V. Punzo and F. Simonelli, “Analysis and comparison of microscopic
traffic flow models with real traffic microscopic data,” Transportation
Research Record, vol. 1934, no. 1, pp. 53–63, 2005.

[23] C. P. van Hinsbergen, H. W. van Lint, S. P. Hoogendoorn, and H. J. van
Zuylen, “Bayesian calibration of car-following models,” IFAC Proceed-
ings Volumes, vol. 42, no. 15, pp. 91 – 97, 2009, 12th IFAC Symposium
on Control in Transportation Systems.

[24] S. Hoogendoorn and R. Hoogendoorn, “Calibration of microscopic
traffic-flow models using multiple data sources,” Philosophical transac-
tions. Series A, Mathematical, physical, and engineering sciences, vol.
368, pp. 4497–517, 10 2010.



11

[25] I. Papamichail, N. Bekiaris-Liberis, A. I. Delis, D. Manolis, K.-S.
Mountakis, I. K. Nikolos, C. Roncoli, and M. Papageorgiou, “Motorway
traffic flow modelling, estimation and control with vehicle automation
and communication systems,” Annual Reviews in Control, vol. 48, pp.
325 – 346, 2019.

[26] L. Ljung, System Identification: Theory for the User, ser. Prentice Hall
information and system sciences series. Prentice Hall PTR, 1999.

[27] H. Miao, X. Xia, A. S. Perelson, and H. Wu, “On identifiability of
nonlinear ode models and applications in viral dynamics,” SIAM Review,
vol. 53, no. 1, pp. 3–39, 2011.

[28] J. Monteil and M. Bouroche, “Robust parameter estimation of car-
following models considering practical non-identifiability,” in 2016 IEEE
19th International Conference on Intelligent Transportation Systems
(ITSC), Nov 2016, pp. 581–588.

[29] J. Monteil, N. O’Hara, V. Cahill, and M. Bouroche, “Real-time estima-
tion of drivers’ behaviour,” 2015 IEEE 18th International Conference
on Intelligent Transportation Systems, pp. 2046–2052, 2015.

[30] D. Beckmann, M. H. Riva, M. Dagen, and T. Ortmaier, “Comparison
of online-parameter estimation methods applied to a linear belt drive
system,” in 2016 European Control Conference (ECC), June 2016, pp.
364–369.

[31] V. Milanés, S. E. Shladover, J. Spring, C. Nowakowski, H. Kawazoe,
and M. Nakamura, “Cooperative adaptive cruise control in real traffic
situations,” IEEE Transactions on Intelligent Transportation Systems,
vol. 15, no. 1, pp. 296–305, 2014.

[32] L. Xiao and F. Gao, “Practical string stability of platoon of adaptive
cruise control vehicles,” IEEE Transactions on Intelligent Transportation
Systems, vol. 12, no. 4, pp. 1184–1194, 2011.

[33] L. Xiao, S. Darbha, and F. Gao, “Stability of string of adaptive
cruise control vehicles with parasitic delays and lags,” in 2008 11th
International IEEE Conference on Intelligent Transportation Systems,
2008, pp. 1101–1106.

[34] Z. Bareket, P. S. Fancher, Huei Peng, Kangwon Lee, and C. A. Assaf,
“Methodology for assessing adaptive cruise control behavior,” IEEE
Transactions on Intelligent Transportation Systems, vol. 4, no. 3, pp.
123–131, 2003.

[35] G. Gunter, R. Stern, and D. B. Work, “Modeling adaptive cruise control
vehicles from experimental data: model comparison,” in 2019 IEEE
Intelligent Transportation Systems Conference (ITSC), 2019, pp. 3049–
3054.

[36] R. Wilson and J. Ward, “Car-following models: fifty years of linear
stability analysis – a mathematical perspective,” Transportation Planning
and Technology, vol. 34, no. 1, pp. 3–18, 2011.

[37] J. Monteil, M. Bouroche, and D. J. Leith, “L2 and L∞ stability analysis
of heterogeneous traffic with application to parameter optimization
for the control of automated vehicles,” IEEE Transactions on Control
Systems Technology, vol. 27, no. 3, pp. 934–949, 2018.

[38] A. Doucet and A. Johansen, “A tutorial on particle filtering and smooth-
ing: Fifteen years later,” Handbook of Nonlinear Filtering, vol. 12, Jan
2009.

[39] Z. Chen, “Bayesian filtering: From kalman filters to particle filters, and
beyond,” Statistics, vol. 182, Jan 2003.

[40] S. C. Surace, A. Kutschireiter, and J.-P. Pfister, “How to avoid the
curse of dimensionality: Scalability of particle filters with and without
importance weights,” SIAM Review, vol. 61, no. 1, pp. 79–91, 2019.

[41] D. Simon, Optimal State Estimation. John Wiley & Sons, Inc., 2006.
[42] S. Boyd and S. Sastry, “Necessary and sufficient conditions for parame-

ter convergence in adaptive control,” Automatica, vol. 22, no. 6, pp. 629
– 639, 1986.

[43] Y. Wang, G. Gunter, and D. B. Work, “Online parameter estimation
of adaptive cruise control models with delays and lags,” in 2020 23rd
International Conference on Intelligent Transportation Systems (ITSC).
IEEE, 2020, to appear.

[44] R. Stern, G. Gunter, and D. B. Work, “Modeling and assessing adaptive
cruise control stability: experimental insights,” in 2019 6th International
Conference on Models and Technologies for Intelligent Transportation
Systems (MT-ITS), 2019, pp. 1–8.

Yanbing Wang is a Ph.D. student in Civil and Envi-
ronmental Engineering and the Institute for Software
Integrated Systems at Vanderbilt University. She
earned her B.S. degree (2018) from the University
of Illinois at Urbana-Champaign. Yanbing is an
recipient of the Eisenhower Graduate Fellowship
(2018 and 2019). Her research interests include
traffic estimation and smart cities.

George Gunter is a Ph.D. student in Civil and En-
vironmental Engineering and the Institute for Soft-
ware Integrated Systems at Vanderbilt University. He
earned his B.S. degree (2019) from the University of
Illinois at Urbana-Champaign. His research interests
include transportation cyber-physical systems and
autonomous vehicles.

Matthew Nice is a M.Eng. student in Cyber Physical
Systems and the Institute for Software Integrated
Systems at Vanderbilt University. He earned his
B.S.E. degree (2018) from Tulane University. His re-
search interests include transportation cyber-physical
systems and safety-critical systems.

Maria Laura Delle Monache is a research scien-
tist in the Networked Controlled Systems team at
Inria and in GIPSA-Lab (Department of Control) in
Grenoble. Her research interest is mainly related to
the mathematical and engineering aspects of traffic
flow. In particular, she is interested in mathematical
modeling, analysis, numerical approximation and
control of traffic flow applications. Prior to Inria, she
was a Postdoctoral researcher at Rutgers University
Camden.

Daniel B. Work is an associate professor in Civil
and Environmental Engineering and Institute for
Software Integrated Systems at Vanderbilt Univer-
sity. Prof. Work earned his B.S. degree (2006) from
the Ohio State University, and an M.S. (2007) and
Ph.D. (2010) from the University of California,
Berkeley, each in civil engineering. His research
interests include transportation cyber physical sys-
tems. He is a recipient of the CAREER award
from the National Science Foundation (2014) the
Gilbreth Lectureship from the National Academy of

Engineering (2018).


	Introduction
	Motivation and problem statement
	Related work
	Contributions and outline

	Preliminaries
	Model description and string stability
	Offline batch optimization

	Online parameter estimation techniques
	Recursive least-squares formulation
	Online joint state and parameter estimation formulation
	Problem formulation
	Particle filter

	Observability analysis

	Estimation On Synthetic Data
	Setup of synthetic experiments
	Equilibrium driving
	Non-equilibrium driving

	Parameter estimation results on synthetic data
	Equilibrium driving results
	Non-equilibrium driving results


	Case study on a 2019 ACC equipped vehicle
	Experimental details
	CAN bus velocity and space gap data validation
	Parameter estimation results on a 2019 ACC vehicle

	Conclusion
	Acknowledgements
	References
	Biographies
	Yanbing Wang
	George Gunter
	Matthew Nice
	Maria Laura Delle Monache
	Daniel B. Work


