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Abstract— In this work we consider online parameter estima-
tion of adaptive cruise control (ACC) equipped vehicles which
may contain time delays (e.g., sensor delays) and lags (e.g.,
actuator lag). We extend a recursive least squares (RLS) method
and apply it to calibrate models with various magnitudes of
delay and lag, and study the performance of the method when
measurement noise is present. We show that RLS can be
applied to exactly recover model parameters given noise-free
measurement data. In addition, the RLS estimator performs
well under typical sensor noises associated with onboard sensors
such as GPS and radars. The method is tested on data from
a 2019 ACC-equipped vehicle, and the results show that the
overall quality of fit via RLS is comparable to a commonly
used batch optimization method (4% and 0.8% mean absolute
error on the space gap and the velocity profiles, respectively).
RLS is shown to run two orders of magnitude faster than the
batch optimization method.

I. INTRODUCTION

As one of the most important driver-assistance features,
adaptive cruise control (ACC) has gained significant research
attention over the past several decades [1]–[4]. Originally de-
veloped to study human driving behaviors [5], car-following
models are now applied to ACC systems as measurement
data from on-board sensors become available (e.g., GPS,
radar, lidar etc.).

This work considers three commonly used models that
describe an ACC dynamical system. The simplest of these is
the constant-time headway relative velocity (CTH-RV) model
considered in [4], [6]–[8]. The CTH-RV model is an ordinary
differential equation (ODE) that models the second-order
dynamics (acceleration) of the vehicle:

v̇(t) = f(s(t), v(t),∆v(t)), (1)

where f is a linear function with arguments s(t) the space
gap between the ACC vehicle and the vehicle in front,
v(t) the velocity of the ACC vehicle, and ∆v(t) the rel-
ative velocity between the two vehicles, all being time-
varying quantities. Several studies [1], [2], [9], [10] point
out additional practical considerations for modeling ACC
systems, including the presence of systematic delays caused
by sampling of on-board sensors and the actuator lags, for
example. As a result, the second-order linear model described
by the CTH-RV can be extended to include actuator lag via
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third order dynamics [1], [2], [9], as well as sensor delay via
a delay differential equation [4].

It is important to consider the possible time-delays and
lags when calibrating ACC models from noisy measurement
data, because they have a potentially negative impact on
smoothing traffic waves [9], [10]. Correctly identifying the
delays can consequently help to develop anticipatory strate-
gies to compensate the effects on global traffic [10].

Efforts for finding model parameters, given measurement
data (often called an inverse problem [11]), generally are
done using batch optimization techniques. For example,
Kesting and Treiber [12], Punzo et al. [13] and Gunter
et al. [4], [7] formulate the problem as a search for pa-
rameters that minimize error between simulated trajectories
and the measured ones. The task of finding the parameters
of dynamical models can exhibit many challenges, mostly
due to ill-conditioning and non-convexity [14], [15]. The
parameter error convergence is greatly dependent upon the
frequency information contained in the input signal [16],
and the solution to a global minimum sometimes is not
guaranteed. Despite these challenges, only a few studies
have considered the practical parameter identifiability [17],
[18], which determines whether the model parameters can be
uniquely recovered given input and output measurements of
a car-following system. For example, Monteil et al. [19] and
Punzo et al. [20] conduct a sensitivity-based identifiability
analysis before estimating the parameters associated with a
car-following model given the captured driving behaviors.
Our previous work [21] demonstrates that at certain regimes
(equilibrium driving, for instance), the model parameters are
not uniquely identifiable. Another challenge for the inverse
problem is that sensor measurements are sometimes noisy. It
is also important to correctly characterize measurement noise
in the estimation routine [22].

This work considers the practical challenges of parameter
estimation of an ACC driving system. We extend the recur-
sive least squares (RLS) applied in our previous work [21]
to the CTH-RV with delays and lags. We investigate the
accuracy of model calibration under a range of driving
regimes and demonstrate the effect of sensor noise, time
delays and lags on calibrating an ACC system. As a practical
illustration, we also implement this method on the ACC radar
data collected in [21].

The remainder of the work proceeds as follows. Section II
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briefly introduces three commonly used ACC models and
presents the recursive least squares formulation for cali-
brating delay-free CTH-RV. In Section III, we extend the
RLS estimator to account for parameter estimation of the
actuator-lag and the sensor-delay models. In Section IV, we
investigate model recovery using RLS with respect to the
captured driving behaviors and measurement noise levels.
In Section V, we present the results of model parameter
estimation on the CAN bus data of a 2019 ACC equipped
vehicle collected in [21]. The results show that RLS and its
extension to models with lags and delays is able to accurately
recover the parameters of all the ACC models considered in
this work.

II. PRELIMINARIES

A. Model definition

In this work we focus on the constant-time headway
relative velocity model introduced in previous works [4], [7]:

ṡ(t) = ∆v(t)
v̇(t) = f(s(t), v(t),∆v(t))

= k1(s(t)− τhv(t)) + k2(∆v(t)).
(2)

Here the space gap s(t) is the distance between the ACC
vehicle and the vehicle in front, and the dynamic is defined
as the velocity difference between the two vehicles ∆v(t);
the acceleration of the ACC vehicle v̇(t) is a linear function
with respect to s(t)−τhv(t), the difference between s(t) and
the desired space gap τhv(t), parameterized by the desired
constant-time headway that the ACC tries to maintain, τh,
and ∆v(t). k1 and k2 are parameters representing the gains
on both terms.

Model (2) can be extended to the third order (acceleration)
dynamic to account for the actuator lag [1], [2]:

ṡ(t) = ∆v(t)
v̇(t) = a(t)
ȧ(t) = 1

τa
(f(s(t), v(t),∆v(t))− a(t))

(3)

where τa refers to the lag on the actuator.
The introduction of delay term can also be considered

to account for the systematic delay in the sensors [23],
[24]. Therefore, the explicit delay τ is added to modify the
model (2) into:

ṡ(t) = ∆v(t)
v̇(t) = f(s(t− τ), v(t− τ),∆v(t− τ))

(4)

Note that (4) is a second-order delay differential equation
(DDE) as opposed to a third-order ODE considering an
actuator lag in (3). Therefore, the two distinct dynamical
models result in different calibration routines, which we will
address in detail in Section III.

B. Recursive least squares

In our previous work [21], we formulated a recursive least
squares problem to identify the parameters of model (2) in
an online setting. The constant-parameter estimation problem
can be written as solving γ in

Y = Xγ, (5)

where X ∈ Rm×n and Y ∈ Rm are data points organized
such that the linear relationship between X and Y can be
discovered. In a dynamical system such as an ODE, X and
Y are usually tall matrices with time-series data, i.e., m > n.
This results in an over-determined system, and the existence
of a solution to γ is not guaranteed. In this case, we seek an
approximate solution such that the mean squared error ‖Y −
Xγ‖22 is minimized. The general least squares approximation
solution can be written as:

γ̂ = (XTX)−1XTY. (6)

A recursive least squares update of parameter γ̂k in (6) is
implemented such that:

γ̂k = γ̂k−1 +R−1
k Xk(Yk −Xkγ̂k−1)−1, (7)

where Rk =
∑k
i=1XiX

T
i is the cumulative outer product of

Xk. Inversion of Rk at every timestep can be cumbersome
to compute. For implementation, it is recommended to use
the matrix inversion Lemma [17].

Next in Section III, we extend the RLS considered in [21]
to recover the actuator lag model in the form of (3) and the
sensor-delay model such as (4). A complete description and
analysis is provided in [21].

III. RLS APPLICATION ON MODELS WITH DELAYS

Considering the parameters in models (3) and (4) are time-
invariant, and the left-hand-side of the each of the dynamical
models can be expressed as a linear combination of the
parameter set if the time-series data of v, s, ∆v and a are
available. We take the advantage of this fact to formulate
the model parameters estimation problem as a least squares
regression problem.

A. Actuator lag CTH-RV model calibration

First we rewrite the continuous time ODE (3) in discrete-
time using a forward Euler step scheme:

ak+1 = ak +
1

τa
(k1(sk − τhvk) + k2(∆vk)− ak) ∆T,

(8)
where ak, sk, vk and ∆vk are the acceleration of the
following vehicle, the space gap between the follower and
the leader, the velocity of the following vehicle, and the
velocity difference between the two cars, respectively. ∆T is
the timestep size that is used to discretize the ODE (3) and
is typically on the order of 1/10 sec in accordance with the
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sampling rate of some common on-board sensor platforms
including the experiments presented later in this work.

The discrete-time model (8) can be rewritten as:

ak+1 = γ1vk + γ2∆vk + γ3sk + γ4ak, (9)

where γ1 := −k1τhτa
∆T , γ2 := k2

τa
∆T , γ3 := k1

τa
∆T and

γ4 := 1 − 1
τa

∆T . In order to estimate all four parameters,
the acceleration data is required. We now demonstrate that
one can recover γ := [γ1, γ2, γ3, γ4]

T from an experimental
dataset containing (vk,∆vk, sk, ak) for all k ∈ {1, ...,K},
via least-squares. We expand (9) in time by stacking the
uniformly sampled measurements to obtain:

a2
a3
...
aK

 =


v1 ∆v1 s1 a1
v2 ∆v2 s2 a2
...

...
...

...
vK−1 ∆vK−1 sK−1 aK−1



γ1
γ2
γ3
γ4

 , (10)

which is the same form as (5). The vector Y contains the
values of ak from timestep 2 to the length of the data K.
The data matrix X contains measurements of vk, ∆vk, sk
and ak from timestep 1 to K − 1 in a column-wise order.
The recursive implementation follows the same procedure
outlined in (7).

B. Actuator lag CTH-RV model calibration

In the case of sensor delay, fitting a RLS estimator can be
slightly less straightforward. We first rewrite the continuous
time DDE (4) in discrete-time using a forward Euler step
scheme:

vk+1 = vk + k1(sk−l − τhvk−l)∆T + k2(∆vk−l)∆T, (11)

with l being the number of timesteps of delay (l∆T = τ ).
The assumption that the sensor delay τ is a multiple of the
sampling size ∆T greatly simplifies the search space, which
allows the RLS to enumerate on a finite set of possible
delays instead of searching for the entire parameter space
where the delay term might cause non-convexity. For the
DDE model (4), the delay term τ cannot be found directly
along with other parameters via a single run of RLS on (11).
Instead, we decompose the problem into multiple variants of
the least squares problem, each with a fixed l time-steps of
delay. I.e., we solve γ for each possible l within a range
(typically between 0-0.8 sec), and find the l that minimizes
the error on the space gap. The corresponding sensor delay
will be τ = l∆T .

Again, we write the corresponding linear expression
of (11) as:

vk+1 = vk + γ1vk−l + γ2∆vk−l + γ3sk−l, (12)

with the γ’s redefined as γ1 := −k1τh∆T , γ2 := k2∆T and
γ3 := k1∆T . The data is organized in correspondence of

Y = Xγ as:

vl+2 − vl+1

vl+3 − vl+2

...
vk+1 − vk

...
vK − vK−1


=



v1 ∆v1 s1
v2 ∆v2 s2
...

...
...

vk−l ∆vk−l sk−l
...

...
...

vK−1−l ∆vK−1−l sK−1−l


γ1γ2
γ3

 .

(13)
Our previous work [21] has demonstrated that equilibrium

driving condition is theoretically not possible to recover the
model parameters due to the rank deficiency in X . In this
article, we only consider non-equilibrium driving with time-
varying inputs to avoid the potential parameter identifiability
issue mentioned in [21]. Later in Section IV, we explore
the parameter space to understand the sensitivity of model
recovery with respect to the true parameter values.

IV. PARAMETER ESTIMATION ON SYNTHETIC DATA

In this section we create synthetic ACC driving datasets
and demonstrate that the RLS is able to accurately recover
model parameters in the presence of delays and measurement
noise. First we conduct a sensitivity analysis to explore the
parameter space without measurement noise. This is done
to understand experimentally the sensitivity of model cali-
bration accuracy with respect to the true parameter values.
Next, we investigate the effects of measurement noise on
the performance of RLS. For both tests, we use the mean
absolute error (MAE) between the simulated trajectories of
the following vehicle using the estimated parameters and
the true trajectories to measure the performance of RLS on
model recovery.

A. Parameter identification using noise-free measurements

Considering parameter identifiability (whether the model
parameters can be uniquely recovered from the input and
output measurements) requires persistently exciting input
signals [17], [18], we generate noise-free data based on a
predefined, set of model parameters, i.e., the true parameters,
and a known, non-equilibrium velocity profile of the lead
vehicle. The states (velocity of the follower vehicle and the
space gap in between) are updated through the discrete-
time models of (2), (3) or (4). For each of the synthetically
generated profile (true trajectories), a RLS is performed.
This is done to understand at what regimes (parameter sets)
is the accuracy of RLS estimator most sensitive to.

The data of ACC following trajectories are generated
using a comprehensive set of model parameters. Specifically,
we choose 8 equally spaced values of k1 ∈ [0.01, 0.1],
k2 ∈ [0.08, 0.32] and τh ∈ [0.9, 2.3], and 5 equally spaced
lag terms τa ∈ [0.1, 0.5] and delay terms τ ∈ [0.1, 0.5]. The
bounds of all the parameters are reasonable as found in [4].
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Fig. 1: RLS calibration accuracy under a comprehensive set of driving behaviors. The color scale shows the MAE of space
gap between the simulated trajectory using the estimated parameters and the measured one. Each row corresponds to a fixed
τh value and each column corresponds to a fixed delay value τs.

We consider all 8× 8× 8× 5 possible combinations of pa-
rameter values, simulate the corresponding following vehicle
trajectories, and use RLS to recover model parameters.

For all the considered regimes, RLS can exactly recover
parameters of all three ACC models considered in this
work. Figure 1 shows the sensor-delay model calibration
performance (measured by MAE of the space gap) under
the datasets parameterized by different values of k1, k2,
τh and τs. For brevity, here we only show the estimation
results of the DDE model (11), and note that the no-delay
and actuator-lag model can also be exactly recovered with
MAEs on the order of 10−5. Note that, with fixed values of
τh and τs, one can see that low gains k1 and k2 can result
in a slightly larger estimation error; however, the effect on
estimation accuracy is negligible since the errors are on the
order of 10−5m. This sensitivity analysis indicates that for
all the regimes (parameter combinations) considered in this
synthetic experiment, the parameters of all three models can
be correctly identified with the RLS estimator.

B. Estimation under measurement noise
Next, we investigate the accuracy of model parameter

estimation through RLS with the presence of measurement
noise. Synthetic datasets are generated using fixed values
of k1 = 0.08, k2 = 0.12, and τh = 1.5, and the same

velocity profile of the lead vehicle, but with various delays
(8 equally spaced τ or τa ∈ [0.1, 0.8]) and sensor noise
levels. The sensor noise is assumed to be zero-mean Gaussian
with various standard deviations on the position, velocity
and the acceleration measurement of the tested vehicles. For
convenience, we specify 1 unit of noise as equivalent to 0.1m,
0.05m/s and 0.05m/s2 of standard deviation on the range
(space gap or position), range rate (velocity) and acceleration
measurements, respectively. These assumptions are based on
the spec sheet of commonly used radar and GPS systems of
ACC vehicles. As a reference, the GPS units used in [4], [7]
are below 1 unit of sensor noise. In this study we consider
the noise level varies between 1-8 units, which well covers
the range and range rate accuracy of a significant number of
on-board sensor devices.

Figure 2 shows the effect of sensor noise on the accuracy
of calibrating a linear CTH-FL model without delays. It is
observed that the MAE between the simulated trajectories
using the RLS estimated parameters and the measurement
data of both the space gap and the velocity monotonically
increase with respect to the sensor noise level. The growth
rate is slightly larger when the noise level is between 2-6
units.

Next we consider cases where both measurement noises
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Fig. 2: Effect of sensor noise on model calibration error.
1 unit of noise corresponds to standard deviation of 0.1m
and 0.05m/s of white noise on the position and velocity
measurements, respectively.

Fig. 3: Effect of sensor noise and actuator lag on model
calibration error. 1 unit of noise corresponds to standard
deviation of 0.1m, 0.05m/s and 0.05m/s2 of white noise
on the position, velocity and acceleration measurements,
respectively.

and actuator lags exist. We synthetically generate ACC
driving data given the same input signal (the velocity profile
of the leading vehicle), but with various combinations of
noises between 1-8 units and lags or delays between 0.1-0.8
second. The performance of RLS on recovering the actuator
lag model is presented in Figure 3. One can see that the
RLS estimator can exactly recover the model given noise-
free measurement, which is consistent with the findings in
Section IV-A. The estimator is robust when sensor noise is
under 3 units and actuator lag under 0.3 second. When the
noise is above 5 units, the accuracy is no longer sensitive to
the lag contained in the dataset. Overall, the RLS estimator
can well recover an actuator-lag model, with the fitting
error significantly lower than the no-delay model does (70%
reduced MAE in space gap and 60% in velocity).

Lastly, Figure 4 shows the effect of sensor noise and delays
estimating the parameters of a sensor-delay model (11). The
result shows that the RLS is robust under low sensor noise,
but the performance is not consistent with high sensor noise.
However overall, the MAE of space gap and velocity have
approximately the same upper bound as fitting an actuator-
lag model.

From a practical point of view, the presence of sensor noise
can be a trivial concern because it has been shown that both

Fig. 4: Effect of sensor noise and delay on model calibration
error. 1 unit of noise corresponds to standard deviation of
0.1m and 0.05m/s of white noise on the position and velocity
measurements, respectively.

Criteria No delay Actuator lag Sensor delay

Estimated
parameter

values

k1 = 0.0227
k2 = 0.1940
τh = 1.2272

-
-

k1 = 0.0227
k2 = 0.1940
τh = 1.2272
τa = 0.4999

-

k1 = 0.0227
k2 = 0.1940
τh = 1.2272

-
τ = 0.5000

Running time (s) 11.477 17.314 15.209
MAE space gap (m) 2.0233 1.9960 2.0005
MAE velocity (m/s) 0.2384 0.2429 0.2410

MAE acceleration (m/s2) - 0.0784 -

TABLE I: Batch optimization on real ACC driving data.

the GPS and the ACC radar sensors contain measurement
noise below 2 units. Under the RLS estimation routine,
both the GPS and the radar units can provide data with
high enough quality to ensure an accurate estimate of model
parameters.

V. CASE STUDY ON A 2019 ACC EQUIPPED VEHICLE

Now we proceed to test the RLS algorithm on the data
collected from a 2019 ACC equipped vehicle. The experi-
ment setup and data collection follow the same procedure
described in our previous work [21]. Here, we additionally
calibrate an actuator-lag model and a sensor-delay model in
addition to the one without any delay terms using the RLS
framework proposed in Section III.

Criteria No delay Actuator lag Sensor delay

Estimated
parameter

values

k1 = 0.0174
k2 = 0.1641
τh = 1.2286

-
-

k1 = 0.0125
k2 = 0.2108
τh = 1.2193
τa = 2.1362

-

k1 = 0.0171
k2 = 0.1665
τh = 1.2284

-
τ = 0.1

Running time (s) 0.0987 0.0917 0.8424
MAE space gap (m) 2.2451 2.3769 2.1937
MAE velocity (m/s) 0.2610 0.2818 0.2632

MAE acceleration (m/s2) - 0.0625 -

TABLE II: RLS estimation on real ACC driving data.
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The estimation results are presented in Table II. Compared
with a commonly used batch optimization shown in [7]
(Table I), RLS improves the running time more than 100x
with a slight compromise in accuracy (less than 0.3m in
spacing and 0.03m/s in velocity MAE). The sensor-delay
model produces trajectories with the highest fitting accuracy
(2.19 m in space gap and 0.26 m/s in velocity, respectively).
Overall in this case study, all three models are approximately
equivalent from a pure data-fitting perspective.

From this particular case study, we find that RLS can
successfully recover the linear ACC models assuming the
presence of actuator lags or sensor-delays. The captured be-
havior of the tested ACC vehicle is shown to provide enough
information to identify the model parameters. Model calibra-
tion using RLS on different datasets can also be verified. We
provide supplementary ACC driving data collected in pre-
vious studies [3], [4], [7], [21], including 10 different com-
mercially available ACC-equipped vehicles and various input
profiles. Readers are encouraged to download from https:
//acc-dataset.github.io/datasets/, and try the
proposed RLS framework for model calibration.

VI. CONCLUSION

In this work we extend a recursive least squares algorithm
to calibrate ACC models with systematic delays including
sensor delays and actuator lags. We show that RLS is able
to exactly recover model parameters under noise-free setting.
In addition, the RLS estimator is robust to sensor noise of the
level of on-board GPS and radar devices. Finally, the method
is tested on real ACC driving data collected from on-board
radar devices, and the results show that the performance of
an RLS estimator is well-matched to that of a commonly
used batch optimization technique (about 2m MAE in space
gap and 0.24m/s MAE in velocity), with a runtime that is of
approximately two orders of magnitude faster.
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