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Abstract

This article considers the state estimation problem for heterogeneous traffic (a mixed flow composed of

vehicles with distinct driving behaviors). Heterogeneous traffic is characterized by loose lane discipline and

various vehicle sizes. The interactions between vehicle classes display unique features that are distinct from

lane-based homogeneous traffic flows. Modeling and estimation methods for heterogeneous traffic, however,

still remain relatively unexplored. This article adopts a particle-filtering approach to sequentially estimate the

traffic state with a heterogeneous traffic flow model that allows overtaking and creeping behaviors. Numerical

experiments are introduced to evaluate the estimator performance, indicating that the filter can reduce estimation

errors by up to 48% when compared to pure forward simulation of the model.

I. INTRODUCTION

While traffic management applications rely on traffic estimation and control for homogeneous traffic,

a new generation of tools may be needed to facilitate management of increasingly complex heteroge-

neous traffic. This is because the diverse mobility ecosystem may have significantly different operating

rules compared to a passenger-car-only traffic environment. Consequently an open question is how to

accurately model and estimate traffic conditions when the flow is heterogeneous.

The main contribution of this work is to develop a traffic state estimator for heterogeneous traffic

that allows overtaking and creeping between vehicle classes. The traffic state estimator uses a creeping

traffic flow model [1] for the forward prediction step, and a particle filter to track the traffic state.

Numerical experiments demonstrate the potential of the filter to estimate the traffic state when complex

behaviors exist in the flow, and significantly reduce the error compared to pure forward simulations of

an approximate model. While the examples considered here are numerical experiments, it represents a

first step towards traffic state estimation of complex flows.
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The remainder of the work proceeds as follows. Traffic modeling and estimation techniques are

reviewed in Section II; the mathematical preliminaries of the multi-class creeping model and the particle

filter are presented in Section III. Section IV describes the numerical experiments, estimation results,

and the performance evaluation. Finally, the conclusion and potential future works are highlighted in

Section V.

II. RELATED WORK

We first summarize the prior literature related to heterogeneous traffic modeling, and traffic estimation

techniques.

A. Modeling heterogeneous traffic

After the seminal Lighthill-Whitham-Richards (LWR) homogeneous traffic flow model [2], [3], many

model extensions have been introduced for lane-following traffic that considers vehicles with distinct

driving behaviors and vehicle sizes. For example, Wong & Wong [4] distinguished vehicle classes by

assuming a unique velocity function for each class. Chanut & Leclercq [5] considered a two-class flow

where the slow vehicles (such as trucks) behave like a moving bottleneck. In the work by Ngoduy &

Liu [6], each vehicle class is defined by the desired free flow speed, allowing overtaking in free flow

to occur, while in the congested regime, all vehicles travel at the same speed. In the Fastlane model of

van Lint et al. [7] (later extended Schreiter et al. [8]), the traffic dynamics are calculated in terms of

state-dependent passenger-car equivalents (PCE), rather than constant PCE values assumed in earlier

works. Chalons et al. [9] proposed a coupled microscopic-macroscopic model to account for the effect

of large and slow-moving vehicles. These models characterize lane following dynamics when vehicles

with different sizes and driving behaviors are present, and can allow various forms of overtaking to be

captured.

Compared to lane-based traffic, modeling of heterogeneous traffic characterized by loose lane disci-

pline and a wide range of vehicle characteristics is relatively less studied. Benzoni-Gavage & Colombo [10]

introduced the n-populations model by making a connection between the equilibrium speed of each class

and the total occupied space. Nair et al. [11] developed the porous model which allows vehicles to move

through the “pores” defined by the free space between other vehicles in a disordered flow. The porous

model specifies the relationship between density and speed with respect to the distribution of the pore
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space created by larger vehicles. This assumption allows not only overtaking, but also creeping to be

captured. Inspired by these models, the creeping model [1] explicitly defines class-specific velocity

functions and jam densities to capture both overtaking and creeping features. More recently, Gashaw et

al. [12] re-examined the porous model and provided an analytical expression for the space distribution

such that the model is specifically tailored to a mixed flow of cars and powered two-wheelers.

There are many other methods to model heterogeneous traffic such as using multi-class multi-lane

mesoscopic modeling (Costeseque & Duret [13]), and cellular automata modeling (Mallikarjuna &

Rao [14]). Interested readers can refer to the extended reviews in [15]–[18].

B. Traffic state estimation

Model based traffic state estimation and data assimilation approaches are often posed as online filtering

problems. The approaches rely on Bayesian inference to estimate the most likely state by combining

the uncertain model prediction with the noisy measurement data. Szeto & Gazis [19] first proposed the

Kalman filter (KF) and the extended Kalman filter (EKF) for the application on traffic state estimation.

The EKF is an extension of the KF for differentiable nonlinear systems and has been broadly applied to

traffic state estimation [20]–[22]. For non-differentiable models such as the CTM or its extensions, the

unscented Kalman filter (UKF) and the ensemble Kalman filter (EnKF) are also applied [23]–[25]. These

Kalman-based filters, however, are minimal variance estimators which limits their application on traffic

estimation problems that can generate multi-modal error distributions [25], even though error bounds

can be derived [26]. Therefore, a fully Monte Carlo sampling-based filter, the particle filter [27], [28]

is adopted [29]–[32]. Readers can refer to a complete review of traffic estimation techniques and the

coupled flow models [33].

III. PRELIMINARIES

In this section, we briefly review the two-class creeping model and the Bayesian state estimation

framework for the construction of a model based estimator.

A. A two-class creeping model

The two-class creeping model [1] is a system of scalar conservation laws that governs the flow of

each vehicle class:
∂ρj(x, t)

∂t
+
∂ρj(x, t)Vj(r(x, t))

∂x
= 0, j ∈ {1, 2}, (1)
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where ρj(x, t) denotes the density of each vehicle class (indexed by j) at time t and space x. The

velocity function for each class Vj(·) is distinct for each vehicle class and depends on the total density

r =
∑

j ρj . For simplicity, in this work we consider the following velocity functions:

Vj(r) = vm
(

1− r

rmj

)
, j ∈ {1, 2}, (2)

where vm is the speed limit common to all road users. The class specific jam densities rmj ∈ {rm1 , rm2 }

control the total density r at which the individual vehicle classes come to a complete stop. If rm1 6= rm2 ,

then one vehicle class will be able to creep through traffic while the other class is completely stopped.

In the simplified setting considering a linear velocity function, the three parameters completely define

the two class creeping flow.

A discrete approximation of (1) is defined as follows:

ρk+1
i,j = ρki,j +

∆t

∆x

(
F k
i−1/2,j − F k

i+1/2,j

)
, j ∈ {1, 2}, (3)

where ρki,j represents the density of class j in the ith cell at time k. The terms F k
i−1/2,j and F k

i+1/2,j are

the inflow and outflow of class j traffic via the upstream and downstream boundaries of cell i at time

k. Computing the boundary flow F k
i−1/2,j requires solving a Riemann problem between two adjacent

boundary cells, see [1] for a complete description.

B. Bayesian traffic state estimation

The Bayesian approach to traffic state estimation evaluates the posterior distribution of the system

state given a prior state estimate and measurement data. The state of the system xk for model (3) is

defined as:

xk =
[
ρk1,1, . . . , ρ

k
imax,1, ρ

k
1,2, . . . , ρ

k
imax,2

]T
, (4)

where imax is the number of cells in the discretization. The sequential estimation problem based on

the state space model and the measurement model is shown in Figure 1. The discrete-time creeping

model defined in (3) is denoted as f(·) and it propagates the traffic state to the next time step. yk is

the observed state obtained from the measurement equation h(·), which defines the mapping between

the traffic state xk and the measurements yk at time k. The terms wk ∼ N (0, R) and vk ∼ N (0, Q)

denote the unbiased process noise and measurement noise at time k with assumed covariance matrices

R and Q.
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Fig. 1: Sequential state estimation diagram.

The particle filter begins with a collection of L samples (referred to as particles) from the initial

state probability density function p(x0), where x0 is a random variable representing the state vector

at time k = 0. Each realization of the state vector is denoted as x0
l (l = 1, · · · , L). At each time step

k = 1, 2, · · · , kmax, all the particles are propagated to the next time step using the discrete time process

model f(·), then re-weighted based on the likelihood after measurements are obtained. The particle filter

approximates the conditional probability distribution of xk given measurements Y k = [y1,y2, . . . ,yk],

denoted as p(xk|Y k), so that the state xk is recursively updated according to:

p(xk|Y k−1) =

∫
p(xk|xk−1)p(xk−1|Y k−1)dxk−1

p(xk|Y k) =
p(yk|xk)p(xk|Y k−1)

p(yk|Y k−1)
,

(5)

where p(xk|Y k−1) and p(xk|Y k) are the prior and the posterior distribution of the state, respectively. A

complete description of the particle filtering algorithm can be found in standard references such as [34].

IV. NUMERICAL EXPERIMENTS

In this section, we assess the capability of the particle filter to track heterogeneous traffic flows in

complex scenarios when creeping and overtaking occur. We first present two numerical experiments in

which creeping traffic and overtaking traffic are observed, and then present a sensitivity analysis.
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In each experiment, we use the creeping model (3) to evolve the true state (also referred to as the

ground truth), which is to be estimated. Then, we run a forward model simulation with an approximate

model, which also uses a creeping model (3), but with initial conditions, boundary conditions, and

model parameters that differ from what is used in the true state. In the approximate model, these errors

are intentionally introduced to capture the fact that in real deployments on real world experiments, the

models often retain errors in parameter choices and initial and boundary conditions, see [35]. Finally

we use the same approximate model within the particle filtering framework to estimate the state using

noisy measurements of the true state. Because the same approximate model is used in both the forward

simulation and within the particle filter, we can compare the total reduction in error as a result of the

measurement correction step in the particle filter.

To quantify the error, we compute the mean absolute error (MAE) between i) the true state and the

state computed using pure forward simulation of the approximate model; and ii) the true state and the

state estimated using the particle filter. Let ρ̂ki,j denote the simulated or estimated traffic state of vehicle

class j at time k, and let ρki,j denote the true state. The MAE for each vehicle class is computed as:

MAEj =
1

kmax × imax

imax∑
i=1

kmax∑
k=1

| ρki,j − ρ̂ki,j | . (6)

A. Overview of experiments

In the two experiments presented next, we consider a stretch of a roadway discretized into imax = 40

cells and the experiments are run for kmax = 160 time steps. The roadway is shared between two vehicle

classes with the density of small creeping vehicles denoted by class j = 1, and the large vehicles are

denoted by class j = 2.

For particle filtering runs, we consider that noisy density measurements are obtained in an upstream,

intermediate, and downstream cells (indexed by i = 3, 20, and 37), and we fix the number of particles

at L = 1, 500. The process noise and the initial noise are assumed to be Gaussian zero mean and a

standard deviation of 0.1 and 0.06, respectively. A strong spatial correlation is assumed in the covariance.

The measurement noise follows a normal distribution with zero mean and 0.08 standard deviation. The

boundary noises assumed in the estimator are drawn from a Weibull distribution with the scale parameter

set as 0.06 and the shape parameter set as 4. The Weibull distribution is used to prevent negative

density state realizations on the boundary. Source code for the numerical experiments is available at

https://github.com/yanb514/heterogeneous traffic estimation.git.
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parameter value (true model) value (approximate model)

vm 1.8 1.7

rm1 1.5 1.4

rm2 1.0 1.0

TABLE I: Model parameters for experiment 1: creeping traffic.

B. Experiment 1: Creeping traffic

This experiment is designed such that creeping traffic is observed in the true state evolution. The

initial conditions and boundary conditions are set such that the large vehicles begin ahead of the small

creeping vehicles. The downstream boundary condition is sufficiently large to cause the large vehicles

to come to a complete rest, while the smaller vehicles are still able to advance.

The problem setup is as follows. The parameters of the true model, and the approximate model used

for pure forward simulation and for filtering are set according to the values in Table I.

The initial condition for the true model is given as

ρ0i,1 =

0.5 i ∈ [1, 14]

0 otherwise
(7)

ρ0i,2 =

0.7 i ∈ [15, 40]

0 otherwise,
(8)

which places the smaller faster vehicles initially behind the larger slower ones. The true upstream

boundary conditions are assumed to follow a time varying square wave oscillating at low densities:

ρk0,1 = sgn (sin(0.07 k))× 0.06 + 0.06

ρk0,2 = sgn (sin(0.07 k))× 0.07 + 0.07.
(9)

As the traffic evolves and the vehicles approach the end of the domain, the downstream boundary

conditions cause a bottleneck for the large vehicles to be activated. The true downstream conditions

are set as ρkimax+1,1 = 0, and ρkimax+1,2 = 1. This scenario permits the small vehicles to continue to

advance even as the large vehicles begin accumulating upstream of the bottleneck and eventually come

to a complete stop (see Figure 2).
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In the approximate model used for forward simulation and for estimation, and the initial conditions

have errors compared to the true model (in addition to the parameter changes in Table I). The initial

condition in the approximate model is set as:

ρ̂00,1 =

0.6 i ∈ [1, 14]

0 otherwise
(10)

ρ̂00,2 =

0.6 i ∈ [15, 40]

0 otherwise,
(11)

while the boundary condition is assumed to follow:

ρ̂k0,1 = sgn(sin(0.07k))× 0.03 + 0.03

ρ̂k0,2 = sgn(sin(0.07k))× 0.03 + 0.03.
(12)

Finally, in the approximate model we set an empty downstream for the small vehicles ρ̂kimax+1,1 = 0

and congestion for the large vehicles ρ̂kimax+1,2 = 1.

Note that the emphasis of the experiments is to illustrate the potential reduction in error achievable

by running the filter on the (erroneous) approximate model, compared to simply evolving the state

according to the approximate model. In this context, Figure 2 shows the distinction between the true

state and the forward simulation by the approximate model. Without the measurement correction, the

approximate model simply propagates the state forward with the assumed initial conditions and the

model parameters, and further deviates from the true state when the time-varying boundary conditions

take place.

The results of the particle filter are shown in Figure 3 at several snapshots in time. The optimal

estimates (green lines) are the mean value of particle estimates (black dots), and are shown to trace

the true state (black lines) closely throughout the experiment. The large vehicles accumulate at the

downstream boundary around k = 20, and become fully congested at k = 140. The small vehicles

continue to slowly maneuver through the gaps of large vehicles to the front of the queue, both in the

true state and in the estimator.

To quantify the estimation performance, the MAE of the particle filter using the approximate model

is compared to the MAE of the forward simulation of the approximate model. As shown in Table II,

the particle filter provides a significant reduction in MAE compared to a pure forward simulation of the
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Fig. 2: Snapshots of the true state evolution and the forward simulation in experiment 1: creeping traffic.

State Forward sim Filter MAE reduction

variable (MAE) (MAE) (%)

ρki,1 0.093 0.081 12.9

ρki,2 0.159 0.106 33.3

TABLE II: State MAE under forward simulation and with particle filtering in Experiment 1: creeping

traffic.

9



Fig. 3: Snapshots of the true state evolution and the particle filtering estimate in experiment 1: creeping

traffic.

approximate model. The reduction of error on the first vehicle class is a more modest 12.9%, while the

improvement on the second vehicle class, which has higher error overall is more substantial (33.3%).

The experiment overall demonstrates that that the particle filter has the potential to correct for modeling

errors and track both vehicle classes even when creeping occurs.

C. Experiment 2: Overtaking traffic

The second experiment assesses the potential of the particle filter to reduce the errors when overtaking

occurs. The setup for the experiment is as follows. Like the creeping experiment, the small fast vehicles

initially begin behind the larger slower ones, but the downstream boundary conditions are chosen such
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parameter value (true model) value (approximate model)

vm 1.8 1.9

rm1 1.5 1.6

rm2 1.0 1.0

TABLE III: Model parameters for experiment 2: Overtaking traffic.

that both vehicle classes exit the domain as the true state evolves.

In this experiment, the parameters of the true and approximate models are set as defined in Table III.

To achieve overtaking (but not creeping, as both vehicle classes have positive velocities), the true

initial condition is set to be:

ρ0i,1 =

0.5 i ∈ [1, 14]

0 otherwise
(13)

ρ0i,2 =

0.7 i ∈ [15, 28]

0 otherwise,
(14)

and in the approximate model we set:

ρ̂0i,1 =

0.6 i ∈ [1, 14]

0 otherwise
(15)

ρ̂0i,2 =

0.6 i ∈ [15, 28]

0 otherwise.
(16)

The upstream boundary conditions in the true and approximate models are set at low density square

waves defined in (9) and (12). The downstream boundary conditions are set to be freeflowing in both

the true and approximate models so that the vehicles are able to exit the domain.

The results of the overtaking experiment with a pure forward simulation are shown in Figure 4.

The small vehicles start at the back of the large vehicles, but move faster than the larger vehicles.

Eventually the small vehicles overtake the large vehicles as both classes exit the domain. In the absence

of measurements to correct the modeling errors, the forward simulation is not able to accurately track

the state. In contrast, Figure 5 illustrates that the particle filter is able to produce an accurate estimation
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Fig. 4: Snapshots of the true state evolution and the forward simulation in experiment 2: overtaking

traffic.

State Forward sim Filter MAE reduction

variable (MAE) (MAE) (%)

ρki,1 0.075 0.048 35.9

ρki,2 0.098 0.051 48.2

TABLE IV: State MAE under forward simulation and with particle filtering in experiment 2: overtaking

traffic
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Fig. 5: Snapshots of the true state evolution and the particle filtering estimate in experiment 2: overtaking

traffic.

which traces the true state evolution closely. Table IV summarizes the MAE of each vehicle class under

the forward simulation and the particle filter, and indicates that the filter is able to reduce the MAE by

35-48%. This illustrates that the particle filter can be used on heterogeneous traffic in which overtaking

occurs to capture more accurate traffic state estimates compared to pure forward simulation.

D. Sensitivity analysis

Finally, we examine the sensitivity of the estimator to the changes in the model parameters in both

the creeping and overtaking experiments as described in this study. In each experiment, all parameters,

initial conditions, and boundary conditions are fixed as described in the previous subsections except for
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Fig. 6: MAE of small-vehicle (upper) and large-vehicle (lower) estimation with respect to the variation

of model parameters for experiment 1: creeping traffic (left) and experiment 2: overtaking traffic (right).

a single parameter which is perturbed. Multiple runs of the particle filter are conducted to get an average

performance result for each set of model parameters in each test. Each model parameter is perturbed by

−10%,−5%, 5% and 10%, and the total runs of the particle filter is (3 model parameters)×(5 variations

for each model parameter)×(3 particle filter runs per perturbation)×(2 experiments) = 90 runs. As shown

in Figure 6, in the overtaking experiment the estimation performance quantified by the MAE is almost

unaffected by the model parameters within the parameter perturbations tested. On the other hand, the

MAE is observed to be more sensitive to the change of rm1 in the creeping experiment on the lower

end, and rm2 on the higher end.

V. CONCLUSION

This article considers a particle filtering approach to estimate complex traffic in which overtaking or

creeping can occur. Compared to the more common problems of homogeneous flow or heterogeneous

flow with strict lane adherence, in this work the traffic state is governed by a model which does not

require lane discipline. Using two numerical examples, it is demonstrated that the particle filter can

reduce state estimation errors when compared to open loop simulations.

This article is a starting point for further work. For example, this work did not consider an exhaustive

set of experiments under which the performance of the filter could be assessed, which should be
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considered in future work. Moving towards realistic deployment settings, the functional form of the

velocity function and the calibration of the model parameters will also be important questions to consider.

If data from field studies becomes available, it would be interesting to assess the filtering performance

in practice in addition to the numerical experiments considered in this work.
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