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Multiple Model Particle Filter for Traffic
Estimation and Incident Detection

Ren Wang, Member, IEEE, Daniel B. Work, Member, IEEE, and Richard Sowers

Abstract—This paper poses the joint traffic state estimation and
incident detection problem as a hybrid state estimation problem,
in which a continuous variable denotes the traffic state and a
discrete model variable identifies the location and severity of
an incident. A multiple model particle smoother is proposed to
solve the hybrid estimation problem, in which the multiple model
particle filter is used to accommodate the nonlinearity and switch-
ing dynamics of the traffic incident model, and the smoothing
algorithm is applied to improve the accuracy of the estimate when
data are limited. The proposed algorithms are evaluated through
numerical experiments using CORSIM as the true model. The
proposed algorithm is also compared with a standard macroscopic
traffic estimator via particle filtering and the California incident
detection algorithm. The results show that jointly estimating the
state and incidents in one algorithm is better than two dedicated
algorithms working independently.

Index Terms—Particle filtering, traffic estimation, traffic inci-
dent detection.

I. INTRODUCTION

A. A Hybrid State Estimation Problem

THE objective of traffic estimation is to monitor the traffic
state. The traffic state (e.g., traffic density along the road-

way) can be estimated with a traffic model and a nonlinear filter,
where the traffic model is used to predict the traffic state given
the initial and boundary conditions, and the nonlinear filter is
used to improve the prediction by incorporating information
from sensor measurements.

Most existing traffic estimation algorithms assume time-
invariant parameters in the traffic model and do not account
for changes in the dynamics on the highway caused by traffic
incidents. While a calibrated traffic model can perform well

Manuscript received December 13, 2014; revised December 22, 2015;
accepted April 4, 2016. Date of publication June 6, 2016; date of current
version November 23, 2016. This work was supported in part by the NEX-
TRANS University Transportation Center under Grant DTRT12-G-UTC05 and
in part by the Initiative for Mathematical Sciences and Engineering, University
of Illinois at Urbana-Champaign. The Associate Editor for this paper was
Y. Wang.

R. Wang is with the Department of Civil and Environmental Engineer-
ing, University of Illinois at Urbana-Champaign, Champaign, IL 61801 USA
(e-mail: renwang2@illinois.edu).

D. B. Work is with the Department of Civil and Environmental Engineering
and the Coordinated Science Laboratory, University of Illinois at Urbana-
Champaign, Champaign, IL 61801 USA (e-mail: dbwork@illinois.edu).

R. Sowers is with the Department of Mathematics and the Department
of Industrial and Enterprise Engineering, University of Illinois at Urbana-
Champaign, Champaign, IL 61801 USA (e-mail: r-sowers@illinois.edu).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TITS.2016.2560769

under normal traffic operating conditions, it will provide poor
traffic state estimates when a traffic incident occurs.

This article is motivated by the fact that jointly estimating
the traffic state and incidents can improve both traffic state
estimates and incident detection capabilities. Clearly, knowl-
edge of an incident can improve post-incident traffic state
estimates. On the other hand, knowledge of the traffic state
can be used to improve detection of incidents, by observing
when the predicted traffic state differs significantly from the
observed measurements. In this article, the joint traffic state
estimation and incident detection problem is posed as a hybrid
state estimation problem. The system evolution and observation
equations of the hybrid system are given by:

xn = f(xn−1, γn) + ωn−1

zn = hn(xn, γn) + νn (1)

where the continuous variable x denotes the traffic state (e.g., a
vector of densities along the roadway), and the discrete variable
γ is known as the model variable, which is a time varying
vector and denotes the integer number of lanes open along the
freeway during the time period (tn−1, tn]. The traffic evolution
equations are constructed from a scalar macroscopic traffic flow
model denoted by f , which evolves the traffic state xn−1 at
discrete time n− 1 to time n. The term zn is a vector of
density and speed measurements, hn is a nonlinear observation
operator that relates the system state with the measurements,
ωn is the noise associated with the traffic model, and νn is the
measurement noise. We use an additive noise model for both
the evolution and observation equations.

Given the evolution observation system (1), the joint traffic
state estimation and incident detection problem can be posed as
the problem of estimating the traffic state variable xn and the
model variable γn given measurements {z1, . . . , zn}. If γn can
be uniquely determined, the location, severity, and duration of a
traffic incident are known. Here, the severity of a traffic incident
is specified by the number of blocked lanes.

One of the central difficulties for solving the joint traffic
state estimation and incident detection problem is that γn may
not have a unique solution. Thus, we formulate the problem
in a Bayesian setting [1], where the solution of the problem
is the posterior probability distribution of system state xn

and model variable γn. Because of the nonlinearity and switch-
ing dynamics of the traffic model, we propose a multiple
model particle filter to solve the sequential estimation problem.
A multiple model particle smoothing algorithm is proposed to
improve the accuracy of the estimate when data is sparse.
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B. Related Work

The main challenge of traffic state estimation is the integra-
tion of various types of sensor data such as flow, occupancy, or
speed into a nonlinear traffic model. The existence of nonlinear-
ities have led to the application of sophisticated nonlinear data
fusion techniques such as the ensemble Kalman filter (EnKF)
[2], [3], unscented Kalman filter [4], mixture Kalman filter [5],
and particle filter (PF) [6]–[8] for traffic monitoring in the
transportation literature. However, these algorithms do not ac-
count for changes in the dynamics on the highway caused by
traffic incidents, which may result in poor traffic state estimates
when an incident occurs.

A variety of approaches have been developed for traffic inci-
dent detection [9], such as the California algorithms (CA) [10],
[11], probe-based methods [12], [13], the artificial intelligence
based method [14], the neural network approach [15], and the
wavelet-based method [16]. Among these approaches, the most
well known ones are variants of the California algorithm [10],
[11]. These techniques exploit the idea that an incident will
cause a significant increase in the occupancy recorded by an
upstream sensor, and a decrease in the occupancy recorded by
a downstream sensor. Then, a decision tree structure is used
to determine the existence of an incident by comparing the
difference and relative difference between the upstream and
downstream occupancies. While the above incident detection
algorithms have been shown to have good performance in terms
of incident detection, a limitation is that they are not able to
estimate the traffic state.

Macroscopic traffic flow model based incident detection
methods have also been developed. The work [17] detects traffic
incident by identifying when the measurements obtained from
the field significantly deviates from the prediction by the traffic
flow model. However, the incident does not change any proper-
ties on the macroscopic model, and the traffic estimates under
an incident suffers as a result. The dynamic model approach
[18] deploys a macroscopic traffic model and generates multi-
ple models by instantiating a new equilibrium fundamental di-
agram for each incident severity. Then, a multiple model (MM)
extended Kalman filter is used to select the most likely model
(similarly incident severity) and to produce filtered traffic
states. One drawback of the MM approach is that the model se-
lection at the current time step is independent from the selected
model at the previous time step. Given the fact that a traffic inci-
dent is a rare event and once it occurs, it will persist, the current
selected system model should influence the transitional prob-
abilities for the models at the next time step. Our preliminary
work [19] has shown how an interactive multiple model (IMM)
approach can help to improve the estimation accuracy by incor-
porating this feature in the evolution of the model variable.

Other works that are closely related to this article are the bi-
parameter approach [20] and the extended Kalman filter (EKF)
approach [21], [22], where the traffic state estimation and inci-
dent detection problem is posed as a joint state and parameter
estimation problem. In [20], two continuous parameters are em-
bedded in to a traffic flow model to denote the possible capacity
drop and speed drop caused by incidents, and a moving horizon
parameter estimation scheme is used to estimate the traffic
state and the two incident related parameters. In [21], [22], an

extended Kalman filter is deployed to jointly estimate the traffic
state and key model parameters (i.e., free flow speed, critical
density, and capacity). Then, the estimated key parameters can
be used to infer traffic incidents [22]. Different from [20]–[22],
this article uses a discrete model variable to denote incidents,
and the estimate of the discrete model variable indicates exactly
the location and the severity (i.e., number of lanes blocked) of
an traffic incident. Compared to the extended Kalman filter, no
linearization is needed in this proposed estimation framework
since the particle filter is capable of handling non-linear models.

C. Contributions and Outline

The contributions of this article are summarized as follows:

• A multiple model particle filter is proposed to handle the
nonlinearity and switching dynamics of the traffic model
with incidents, and to solve the joint traffic estimation and
incident detection problem. The multiple model particle
filter is further extended to a multiple model particle
smoother to improve the estimation accuracy when sen-
sor data is limited. The influence of an incident on the
macroscopic traffic model is enhanced compared to our
preliminary work [19] to include a speed reduction in
addition to a capacity and jam density reduction.

• The proposed algorithms are evaluated through numerical
experiments using a micro simulator to generate inci-
dents and the true traffic state, as opposed to a perturbed
macroscopic model as in [18] and [19]. The results show
that the proposed algorithms are able to detect traffic
incidents with good accuracy when the remaining lane(s)
cannot accommodate all the traffic (e.g., when congestion
is created).

• The proposed algorithms are compared with both a par-
ticle filter and the California algorithm. The results show
that jointly estimating the traffic state and incidents per-
forms better than performing each task independently.

The remainder of this article is organized as follows. In
Section II, the traffic flow model with incidents is introduced. In
Section III, the hybrid state estimation problem is presented and
the multiple model particle filter and smoother are described.
In Section IV, the proposed method is tested with synthetic
traffic incident data simulated by CORSIM, and conclusions are
presented in Section V.

II. DESCRIPTION OF TRAFFIC STATE AND

INCIDENT EVOLUTION EQUATIONS

In this section, the traffic evolution equation used for the
hybrid state estimation is described. The scalar traffic model is
parameterized with a model variable that identifies the location
and severity of incidents. An evolution equation for the model
variable is also provided.

A. Traffic Evolution Equation

The Lighthill–Whitham–Richards Partial Differential Equa-
tion (LWR PDE) [23], [24] is used to describe the evolution of
the density ρ(x, t) ∈ [0, γ(x, t)ρmax] at location x and at time t
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on a roadway. The LWR PDE is chosen since it is a commonly
used macroscopic traffic flow model in the transportation com-
munity. The model variable γ(x, t) denotes the number of lanes
open at location x and time t. This model expresses the conser-
vation of vehicles on the roadway of length L, and is given by:

∂ρ(x, t)

∂t
+

∂ (ρ(x, t)v (ρ(x, t), γ(x, t)))

∂x
= 0,

(x, t) ∈ (0, L)× (0, T ) (2)

with the following initial and boundary conditions:

ρ(x, 0) = ρ0(x), γ(x, 0) = γ0(x)

ρ(0, t) = ρl(t), ρ(L, t) = ρr(t)

γ(0, t) = γl(t), γ(L, t) = γr(t) (3)

and where ρ0, ρl, ρr, γ0, γl, γr are the initial, left, and right
boundary conditions for the traffic state and the model variable.
When the incident is viewed as a local (e.g., the incident
occurs at a point) unilateral constraint on the flux function
q(ρ, γ) = ρ× v(ρ, γ) defined when all lanes are open, the well
posedness of the model can be established [25]. To close the
model, a constitutive relationship between density and velocity,
denoted by v, must be specified. In this work, the following
velocity function is used:

v(ρ, γ) =

{
vmax(γ) if ρ ≤ ρc(γ)

a(γ)ρ+ b(γ) + c(γ)/ρ otherwise
(4)

where vmax and ρc are the maximum speed and critical density
of the road. The parameters a, b, and c determine the shape of
the quadratic function and need to be calibrated from field data.
These parameters are functions of γ because when a traffic
incident occurs, the parameters at the incident location will
change depending on how many lanes are blocked. Practically,
it is hard to calibrate the offline parameters under incident
scenarios for a specific road segment. In this work, we suggest
using values from the literature to determine these parameters.
Of course, if historical incident data is available for the test
site, these parameters should be calibrated from historical
incident data or estimated through online algorithms (e.g., the
estimation method proposed by Wang and Papageorgiou [22]).

In this work, the maximum flow for the incident location
is determined from the Highway Capacity Manual (HCM)
[26], where the maximum flow of the remaining lane is given
based on the number of lanes blocked by an incident and the
total number of lanes available. For example, according to the
HCM, the remaining capacities are separately 0.49 and 0.17
of the original capacity when one and two lanes are blocked
on a three-lane road. Field data collected in [27] indicates the
maximum speed under an incident is 18 mph. Fig. 1 illustrates
the fundamental diagram (density-flow curve) under different
traffic incidents for a three-lane freeway.

For numerical implementation, (2) is discretized using a
Godunov scheme [28], yielding the Cell Transmission Model
(CTM) [29], [30]. Specifically, the time and space domains are
discretized by introducing a discrete time step ΔT , indexed by

Fig. 1. Relationships between traffic density and flow under a traffic incident
on a three-lane road. Note that the critical density for incident scenarios may
increase or decrease (as reported in [21]) depending on the choice of the
maximum speed and the maximum flow.

n ∈ {0, . . . , nmax} and a discrete space step Δx, indexed by
i ∈ {0, . . . , imax}. The discretized system is given by:

ρn+1
i = ρni +

ΔT

Δx
G
(
ρni−1, ρ

n
i , γ

n+1
i−1 , γn+1

i

)
− ΔT

Δx
G
(
ρni , ρ

n
i+1, γ

n+1
i , γn+1

i+1

)
. (5)

In (5), ρni denotes the value of the traffic density at time step
n and in cell i. The numerical flux G(ρni , ρ

n
i+1, γ

n+1
i , γn+1

i+1 ) =

min{S(ρni , γn+1
i ), R(ρni+1, γ

n+1
i+1 )}. The functions S and R

are known as the sending and receiving functions, which are
given by:

S(ρ, γ) =

{
q(ρ, γ) if ρ < ρc(γ)

q (ρc(γ), γ) if ρ ≥ ρc(γ)
(6)

R(ρ, γ) =

{
q (ρc(γ), γ) if ρ < ρc(γ)

q(ρ, γ) if ρ ≥ ρc(γ).
(7)

To ensure numerical stability, the time and space steps are
coupled through the CFL condition [31]: vmax

ΔT
Δx ≤ 1.

B. Incident Evolution Equations

In the problem described by (1), the model variable γ is
used to model incidents through changes in the fundamental
diagram. Specifically, the model variable γ is defined as an
imax + 1 dimensional vector, where the value in each element
denotes the number of lanes open in the corresponding cell. The
model variable is modeled as a u-state first-order Markov chain
[32] with transition probabilities defined by:

πkj = p{γn = j|γn−1 = k}, k, j ∈ U, (8)

where the set U = {1, 2, . . . , u} defines all possible incident
conditions. The transition probability matrix is defined as
Π̄ = [πkj ], which is a u× u matrix satisfying

πkj ≥ 0 and
u∑

j=1

πkj = 1. (9)
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Equation (8) indicates the probability of the transition from
one model to another. We use Π(·) to denote the transition
function of the model variable γ, which returns a new model
variable γ̃ given a model variable γ according to the transition
probability matrix Π̄. In the traffic incident detection problem, it
specifies how many lanes will likely be open at each time step.
The traffic model defined by (5) defines the evolution operator
f in (1), while (8) defines the evolution of the model variable.

C. Observation Equation

In this work, traffic density measurements from inductive
loops and speed measurements from GPS equipped probe vehi-
cles are assumed to be available. The nonlinear operator h in (1)
needs to be defined to link the system state to the measurements.
The system state at time n is defined by the vector xn =
[ρn0 , . . . , ρ

n
imax

]. The observation operator h is given by:

hn(xn, γn) = Hn

[
xn

v(xn, γn)

]
. (10)

The matrix Hn is constructed based on the locations where
the measurements are acquired. Note, however, that the obser-
vation operator hn is in general nonlinear, due to v. It is time
varying because the locations of GPS vehicles are not fixed,
and the number of equipped vehicles may change over time.
The observation noise term in (1),

νn =

[
νndensity

νnspeed

]

is composed of two parts, νdensity and νspeed, to emphasize
that different error models are assumed for density and speed
measurements.

III. HYBRID-STATE ESTIMATION

In this section, a multiple model particle filter is introduced
to solve the estimation problem. The multiple model particle
filter is further extended to a multiple model particle smoother
which can improve the accuracy of the estimate.

A. Bayesian Problem and Particle Filter

To jointly estimate the continuous state xn and the model
variable γn, the augmented system state is defined by vector
yn = [xn, γn]. The estimation problem is formulated using the
Bayesian approach [1]. This approach estimates the posterior
probability density function p(yn|Zn), where yn is the aug-
mented system state and Zn are the measurements from time
step one to time step n, which is defined as Zn = {z1, . . . , zn}.
The system state yn is recursively updated according to:

p(yn|Zn−1) =

∫
p(yn|yn−1, Π̄)p(yn−1|Zn−1)dyn−1

p(yn|Zn) =
p(zn|yn)p(yn|Zn−1)

p(zn|Zn−1)
. (11)

The first equation is the prediction step and it propagates
the posterior distribution of the system state from time step
n− 1 to the prior distribution at n, where p(yn−1|Zn−1) is

the posterior distribution at time n− 1, and p(yn|yn−1, Π̄)
can be determined by the system evolution model f . The
second equation is the measurement processing step. The new
measurements zn are used to calculate the posterior distribution
of the augmented system state y at time n, where p(zn|yn)
is the likelihood function and p(zn|Zn−1) is a normalizing
constant. The likelihood function p(zn|yn) indicates how well
the predicted system state matches the measurements. The
posterior distribution is proportional to

p(yn|Zn) ∝ p(zn|yn)p(yn|Zn−1). (12)

The particle filter provides an approximate solution to this
Bayesian problem by using a sequential Monte Carlo method.
The basic idea behind the particle filter is as follows. First, a
number of particles are generated to represent a sample ap-
proximation of the initial distribution of the system state. Then,
each particle is evolved forward in time according to the system
evolution equation to achieve a prior distribution of the system
state at the next time step. In the context of filtering, the prior
refers to the estimate before measurements are obtained at the
current time step. After measurements of the system state are
obtained, the likelihood of each particle can be computed based
on the assumed noise model of the measurements. The particles
are then weighted based on the likelihood at this time step
and their previous weights. Particles with high weights will
be multiplied and particles with low weight will be suppressed
from the sample. As a result, particles that remain in the sample
match well with the measurements and they will be used as
input to the system evolution model for the next iteration.

B. Multiple Model Particle Filter

In the hybrid state estimation problem, the model involves
both continuous variables (associated with the traffic state), and
discrete variables (associated with the model variable). Thus, a
variant of the particle filter, known as the multiple model parti-
cle filter [32], is used to estimate the traffic state and model vari-
ables. The main difference between the multiple model particle
filter and the standard particle filter is that the multiple model
particle filter allows the system to have several models, and
particles are generated for likely system models. It has a model
transition step that describes the switching dynamics of the sys-
tem model. The idea of the multiple model particle filter is that
if the state xn generated by a model variable γn matches well
with the measurements, then we believe the system is operating
in model γ at time n.

The pseudocode of the multiple model particle filter is sum-
marized in Algorithm 1, and consists of the following steps.

• Initialization: Generate M particles from the initial distri-
bution of y0 and assign each particle an equal weight. The
notation l is used to index the particles. The initial state
y0, which is composed of x0 and γ0, is given by an initial
distribution reflecting our knowledge on the initial state.

• Model transition: Calculate the model variable for all
particles according to the transition matrix (8) and (9).

• Prediction: Calculate the prior distribution of system state
xn according to the traffic model f in (2) and (3).
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• Measurement processing: Calculate the likelihood of each
particle and update the weight of each particle based on
the likelihood and its previous weight. Then, normalize
the weight for all particles. Measurements from inductive
loop detectors and GPS vehicles are assumed to be avail-
able at each time step n.

• Resampling: Resample particles based on their weights.
Resampling is applied to avoid the degeneracy problem
in the particle filter. The systematic resampling algorithm
in [32] is used in this work.

• Output: The solution to this problem is a posterior distri-
bution of the augmented system state yn. If the distri-
bution of model variable γn takes a unique value at all
time steps n, it means the algorithm estimates the precise
location and severity of the traffic incident (or the lack
thereof). If more than one value of γn is returned at time
n, it means that multiple locations and/or severities of in-
cidents are consistent with the observed data.

Algorithm 1 Multiple model particle filter [32]

Initialization (n = 0): generate M samples y0l and assign
equal weights w0

l = 1/M , where l = 1, . . . ,M
for n = 1 to nmax do

Model transition: γn
l = Π(γn−1

l ) for all l
Prediction: xn

l = f(xn−1
l , γn

l ) + ωn−1
l for all l

Measurement processing:
calculate the likelihood: p(zn|ynl ) for all l
update weights: wn

l = wn−1
l p(zn|ynl ) for all l

normalize weights: ŵn
l = wn

l /
∑M

l=1 w
n
l for all l

Resampling: multiply/suppress samples ynl with high/
low importance weights ŵn

l

Output: posterior distribution of xn and γn

Reassign weights: wn
l = 1/M for all l

n = n+ 1
end for

This multiple model particle filter method will work well
when traffic sensors are dense, but the estimation accuracy may
decrease if the number of sensors is limited.

On one hand, when a traffic incident occurs and if there
are no sensors nearby, it will take time the nearest sensor
to detect the congestion. Consequently, the correct incident
model cannot be identified at the time when the traffic incident
occurs, and the particles generated by wrong models will be
assigned with high weights. These wrong particles will then be
used as inputs to calculate the prior distribution for the next
time step. If the correct model variable is not identified for
several consecutive time steps, more particles in the sample will
become incorrect. Eventually, when the incident information
propagates to the sensor, the measurements may not match with
any particles in the sample and the filter collapses.

On the other hand, when there are no incidents and the
sensors are sparse, the particles generated by incident models
may found match well with the measurements for the same
reason discussed above. Consequently, particles generated by
incident models will remain in the sample set, and the estima-
tion accuracy of the algorithm will decrease. To address this

problem, we apply the idea of fixed-lag smoothing and combine
it with the multiple model particle filter.

C. Multiple Model Particle Smoother

A smoothing algorithm estimates the posterior distribution
of the system state at time n given measurements up to some
later time T (T > n). If the estimate of the system state is
not required instantly, measurements at a later time will help
to provide a better estimation of the current system state. The
fixed-lag approximation [33], [34] is described by:

p(Y n|ZT ) ≈ p
(
Y n|Zmin{n+ΔS,T }

)
(13)

where Y n = {y0, . . . , yn}, and ΔS is a fixed time lag. In
general, n+ΔS is smaller than T . The assumption for this
approximation is that measurements after time n+ΔS bring
no additional information about the state Y n.

In our problem, the objective is to jointly estimate the traffic
state xn and the model variable γn at each time step. By
applying smoothing, the model variable γn is identified by its
performance at ΔS time steps in the future beyond time n. In
other words, an additional ΔS time steps are allowed to let the
traffic information propagate to the nearest sensor (mobile or
fixed), where incorrect models can be rejected.

The fixed-lag smoothing algorithm is combined with the
multiple model particle filter. The resulting multiple model
particle smoother (MMPS) is shown in Algorithm 2.

Algorithm 2 Fixed-lag multiple model particle smoother

Initialization (n = 0): generate M samples y0l and assign
equal weights w0

l = 1/M , where l = 1, . . . ,M
for n = 1 to nmax do

Model transition: γn
l = Π(γn−1

l ) for all l
Prediction: xn

l = f(xn−1
l , γn

l ) + ωn−1
l for all l

Measurement processing and smoothing:
for τ = 1 to ΔS + 1 do

calculate the likelihood:
p(zn+τ−1|xn

l (τ), γ
n
l (τ)), with xn

l (1) = xn
l , γn

l (1) =
γn
l for all l

update weights:
wn

l (τ) = wn
l (τ − 1)p(zn+τ−1|xn

l (τ), γ
n
l (τ)) for all l,

with wn
l (0) = 1/M

normalize weights:
ŵn

l (τ) = wn
l (τ)/

∑M
l=1 w

n
l (τ) for all l

wn
l (τ) = ŵn

l (τ) for all l
if τ �= ΔS + 1: then
γn
l (τ + 1) = Π(γn

l (τ)) for all l
xn
l (τ + 1) = f(xn

l (τ), γ
n
l (τ + 1)) + ωn+τ−1

l

end if
τ = τ + 1

end for
Resampling: multiply/suppress samples ynl with high/
low importance weights wn

l (ΔS + 1)
Output: posterior distribution of xn and γn

n = n+ 1
end for
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The main difference between the multiple model particle
smoother and the multiple model particle filter is the measure-
ment processing stage. In the multiple model particle filter, the
weight of each particle is determined by its previous weight and
its likelihood calculated at the current time step. In the multiple
model particle smoother, the weight of each particle is deter-
mined by its previous weight and the likelihoods calculated
during the time period ΔS + 1 [35]:

wn ∝ p(zn+ΔS|Zn+ΔS−1,Γn−1), (14)

where Γn−1 = {γ0, . . . , γn−1}. Accordingly, resampling is
performed using the weight calculated from the measurements
up to Zn+ΔS . During smoothing, each particle is evolved
forward in time. Thus, the state xn generated by a model
variable γn is evaluated for additional ΔS time steps. The
choice of ΔS is up to the algorithm designer, but practically it
should be set as a function of the number of sensors available.
If sensors are dense, the value of ΔS can be small. If sensors
are located far apart, it takes more time for the information to
propagate to sensors, and a larger value for ΔS is needed to
see any significant improvement in performance. Obviously,
there is a price for accuracy improvement. Instead of real-
time estimation, the fixed-lag multiple model particle smoother
practically estimates traffic with a lag of ΔS ×ΔT .

Another way to perform smoothing is to calculate the weight
and resample at each time step during the smoothing period.
However, frequent resampling can result in a loss of diversity
of the particles, which is known as the sample impoverishment
problem [32].

IV. MICROSCOPIC NUMERICAL SIMULATION

To test whether the proposed algorithms have potential to
work in practice, the CORSIM microscopic simulation software
is used to simulate a traffic incident on a three-lane freeway
segment. The simulation results from CORSIM are used as the
source of the traffic measurements, and also as the definition
of the true state, to be estimated by the proposed algorithms.
The claim is that if the algorithms are able to detect traffic
incidents using the data generated by CORSIM, which is an
entirely different modeling framework from the macroscopic
model used in the estimator, it has a higher potential to perform
well in the field.

The microscopic simulation software CORSIM is developed
by the Federal Highway Administration (FHWA). It models
individual vehicle movements based on car following and lane-
changing theories on a second by second basis. The model also
includes random processes to model different driver, vehicle,
and traffic system behaviors. This is in contrast to the dis-
cretized LWR model used in the estimator, which models only
conservation of vehicles and a relationship between average
speed and density.

The CORSIM simulation is performed on a four mile long,
three-lane freeway segment with a speed limit of 65 mph. The
simulation is performed for one hour (180 time steps). One
incident is created in cell four, which is 1.36 miles from the

Fig. 2. Density–flow relationship. (Red dots) Measurements obtained from
CORSIM. (Solid black line) Calibrated density–flow model.

starting point of the freeway segment. The incident occurs
between time steps 60 and 120, and it blocks one lane. In
CORSIM, a rubberneck factor 50% is given for the remaining
lanes at the incident location to model the phenomenon that
drivers will slow down when they see an incident on the road.
The value of the rubberneck factor is selected based on the
HCM. When the rubberneck factor is set as 50%, the capacity
of the remaining lanes is about 0.5 of the original capacity,
which is close to the capacity drop (i.e. 0.49) suggested by
the HCM. Although not presented here, our algorithms per-
form well under perturbations up to plus/minus 10% of the
rubberneck factor.

A. Fundamental Diagram for CORSIM

To test the proposed algorithm in CORSIM, the fundamental
diagram in the macroscopic LWR model needs to be cali-
brated. In particular, the shape of the fundamental diagram for
the traffic evolution of CORSIM needs to be determined. To
calibrate the model, we build a three-lane freeway in COR-
SIM and conduct simulations with various inflow values and
downstream speed limits (to generate congestion). All other
CORSIM parameters are set as the default values. For each
simulation, we collect the traffic occupancy data and traffic
flow data over a two minute interval by processing the vehicle
trajectory data passing over a simulated inductive loop detector.
Then, the traffic occupancy data is converted to traffic density
data to construct the density-flow relationship. The red dots
in Fig. 2 show the resulting density-flow relationship obtained
from our CORSIM simulations. Note that on an experimental
deployment, the density-flow data can be obtained by using
historical data from the loop detectors.

The function q(ρ, γ) is used to fit the data. The maximum
flow is calibrated as 2210 veh/hour/lane according to the cali-
bration procedure described in [36], which is the highest flow
value observed from the data. The maximum speed vmax is set
as 65 mph, which is the free flow speed specified in CORSIM.
The jam density is calibrated as 239 veh/mile/lane by using a
least squares fit.

These parameters are subject to change when an incident
occurs. As described in Section II, the values from the HCM
and [27] are used to determine the parameters used in this work,
as summarized in Table I. With these parameters, the shape of
the fundamental diagram can be determined. The parameters a,
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TABLE I
TRAFFIC MODEL PARAMETERS

TABLE II
SETUP FOR THE MACROSCOPIC MODEL AND NOISE MODEL

b, and c in (4) are calculated by solving the following system of
equations: ⎧⎪⎨

⎪⎩
a(ρJ)

2 + b(ρJ) + c = 0

− b
2a = qmax

vmax
4ac−b2

4a = qmax.

(15)

Other parameters used for the discretized LWR model and
noise models within the estimation algorithms are summarized
in Table II. In this numerical implementation, all of the noise
models are specified by a Gaussian distribution, however, other
types of distributions are applicable since the particle filter is
able to handle non-Gaussian noise.

B. Assumptions for Model Variable Evolution Equations

We make several assumptions on the evolution of the model
variable. First, we assume there is a one percent probability
for the occurrence of a traffic incident at the next time step,
provided the freeway does not have any incidents at the current
time. If an incident occurs, it has an equal probability to occur
anywhere between the two inductive loop detectors with three
possible severities: one, two or all lanes blocked. Second, if
there is an incident on the freeway at the current time step,
there is a 99% probability for the incident to remain in the
next time step, and a 0.5% probability for the incident to be
cleared, and 0.5% probability to have a second incident in
the upstream of the existing incident. The second incident has
an equal probability to occur at any upstream cell with any
severity. Theoretically, we can allow a third or fourth incident
to occur. However, since traffic incident is a rare event, in
this work, we consider two incidents at maximum. Third, if
there are two incidents at the current time step, there is a 99%
probability for the incidents to remain in the next time step, and
1% probability for one of the two incidents to be cleared. With
these assumptions, the transition matrix Π̄ can be constructed.

Note, a relatively high probability for the occurrence of a
traffic incident is assumed. This is because in the multiple
model particle filtering algorithm, the number of particles in
each model is proportional to the transition probability for each
model. Consequently, a relatively high transition probability
into an incident is needed in order to get particles in each model.
If we assume a lower probability of an incident, a larger sample
size may be needed.

C. Simulation and Error Metric Description

For the proposed multiple model particle filtering and
smoothing algorithms, the sample size is set as M = 2500.
Two inductive loop detectors are assumed available in order
to calibrate the fundamental diagram and they are located in
cells one and nine. In the numerical simulations, the proposed
algorithms are tested by assuming different penetration rates of
GPS vehicles, and different boundary conditions.

The initial condition in all cells are assumed to follow a
normal distribution, where the mean is the average of the
density measurements from the inductive loop detectors lo-
cated near both ends of the freeway, and the standard devia-
tion is five percent of the mean. In CORSIM, the simulation
starts after a warm-up period, so the initial density values are
nonzero.

The estimation accuracy of the state vector xn and the
model variable γn is quantitatively evaluated by computing the
average error as follows:

ex =
1

(imax + 1)(nmax + 1)

imax∑
i=0

nmax∑
n=0

|ρ̂ni − ρ̄ni |

eγ =
1

(imax + 1)(nmax + 1)

imax∑
i=0

nmax∑
n=0

|γ̂n
i − γ̄n

i | (16)

where ρ̂ni is the estimated density (mean of the posterior distri-
bution), ρ̄ni is the true density, γ̂n

i is the estimated model
variable (mean of the posterior distribution), and γ̄n

i is the true
model variable at each time n and location i.

D. Estimation Results With Different Penetration Rates

In the first set of simulations, the inflow in CORSIM is
specified as 6000 veh/hour. The density and the model variable
in the time and space domain for the true condition are shown
in Fig. 3(a) and (b).

The left boundary condition assumed in the estimator is
5900 +N (0, 1502). The right boundary condition is in free
flow. The algorithm is first tested by assuming penetration rates
of 4% and 1%, and the estimation results without smoothing
are shown in Fig. 3(c)–(f). As the result shows, when the pen-
etration rate is 4%, the algorithm is able to correctly estimate
the model variable. When the penetration rate is decreased
to 1%, the estimation accuracy for both the traffic state and
the model variable decreases, due to the reasons discussed in
Section III-B.

Next, the multiple model particle smoother is tested when
the penetration rate is 1% and the results are shown in Fig. 3(g)
and (h). The ΔS for this simulation is set as three. Compared to
Fig. 3(e) and (f), which have the same penetration rate (without
smoothing), the accuracy of both the traffic state and model
variable estimates improves with smoothing. Thus, when the
penetration rates of probe vehicles are low, smoothing might be
a meaningful way to improve estimation accuracy, without the
need for additional probe data. The increased accuracy comes
at the cost of a lag in the estimate.
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Fig. 3. True evolution of the traffic density and the model variable (first row).
Estimate of the multiple model particle filter, penetration rate 4% (second
row) and 1% (third row). Estimate of the multiple model particle smoother,
penetration rate 1% and ΔS = 3 (fourth row). The values of the (left) traffic
state and (right) model variable estimate at each time and space domain are
described by the color bar. The value shown is the mean of the posterior
distribution. (a) Density (veh/mile). (b) Model variable (lanes open). (c) Density
(veh/mile). (d) Model variable (lanes open). (e) Density (veh/mile). (f) Model
variable (lanes open). (g) Density (veh/mile). (h) Model variable (lanes open).

To provide a more comprehensive analysis, the algorithms
are tested by assuming four penetration rates. For each pene-
tration rate, five tests are conducted with the multiple model
particle filter and the multiple model particle smoother. The ΔS
for these simulations is set as three. The results are summarized
in Fig. 4, where the reported error is the average over the five
tests. The results show the error of both the state and model
variable estimates becomes large when the penetration rate of
GPS vehicles decreases, and smoothing is able to improve the
estimation accuracy.

Fig. 4. Average error (five tests) for (left) density and (right) model variable
estimates under different headways. The ΔS for these simulations is set
as three.

The proposed algorithms are implemented in Python and
run on a 2.7 GHz Intel Core i7 Macbook Pro. The source
code is available for download [37]. Each one hour numerical
experiment can be run in about 15 minutes when the MMPF is
applied. When the multiple model particle smoothing algorithm
is used with the ΔS = 3, the experiment can be run in about
40 minutes. Thus, the proposed algorithms are suitable for real-
time applications, although parallelization approaches [38] may
be necessary for large networks.

E. Comparison With the Particle Filter, the California
Algorithm, and the IMM EnKF for Different Inflows

The performance of the algorithms are tested with different
boundary conditions and compared with a particle filter [6]
and the California algorithm [10], which estimate the traffic
state and incidents independently, and the IMM EnKF proposed
in our preliminary work [19]. The penetration rate is 4% for
all simulations. The particle filter in [6] is implemented with
the traffic model described in Section II, but without any
incident dynamics (i.e., all lanes are always assumed open). The
California algorithm [10] is implemented and the occupancy
measurements from the inductive loop detectors at cell one and
cell nine are used. Table III shows the comparison between the
algorithms for traffic estimation and incident detection when
the inflow ranges from 1000 veh/hour to 6000 veh/hour.

When one lane is blocked, the remaining capacity for the
three-lane road is about 3300 veh/hour. When the remaining
lanes have enough capacity to accommodate all of the traffic
(i.e., when inflow ranges from 1000 to 3000 veh/hour), the
traffic incident does not generate significant congestion. As a
result, the traffic state estimates of all techniques are accurate
even though the algorithms assume all lanes are open. In
this case, the California algorithm, the IMM EnKF, and the
MMPF fail to detect the incident. For the MMPF, an incident
is reported if the most likely model in the model variable
posterior distribution is an incident model for consecutive
three time steps. Similarly, for the IMM EnKF, an incident is
reported if an incident model is selected for consecutive three
time steps.

When the inflow exceeds the remaining capacity of the road,
congestion will form after the occurrence of an incident. The
MMPF and the IMM EnKF are able to detect the incident
from the sensor data and switch to the incident model, while
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TABLE III
TRAFFIC ESTIMATION AND INCIDENT DETECTION PERFORMANCE OF THE CA, PF, IMM ENKF, AND MMPF ALGORITHMS

Fig. 5. True evolution of traffic density. (a) Inflow: 4000 veh/h. (b) Inflow:
5000 veh/h.

the PF continues to estimate the traffic assuming all lanes are
open. Consequently, the PF collapses and provides bad state
estimates. We conclude the MMPF and IMM EnKF perform
better than a particle filter in terms of traffic estimation under
incidents resulting in congestion.

Compared to the IMM EnKF, the state estimation accuracy
of the MMPF is generally higher. This is because the solution
to the MMPF is a posterior distribution that may contain state
estimates generated from more than one model, while the IMM
EnKF proposed in [19] is a model conditioned filter and the pos-
terior distribution contains samples generated only by the most
likely model. When the traffic model does not perfectly model
the true traffic dynamics, a posterior distribution generated by
multiple models may approximate the true traffic state better.
However, compared to the MMPF, the computation time for the
IMM EnKF is shorter. It takes the IMM EnKF four minutes
to estimate an hour of traffic, while the computation time for
the MMPF is 15 minutes. Thus, the MMPF is more accurate
for traffic state estimation, but the IMM EnKF may be suitable
larger implementations.

The California algorithm is not able to detect the incident
when the inflow is 4000 veh/hour or below. When the inflows
are 5000 and 6000 veh/hour, the California algorithm detects
the incidents 26 and 18 minutes late. Fig. 5 shows the true evo-
lution of traffic density when the inflows are 4000 and 5000 veh/
hour. As Fig. 5(a) shows, the California algorithm cannot
detect the incident when the inflow is 4000 veh/hour since the
incident information does not propagate to the upstream sensor
at cell one. When the inflow is 5000 veh/hour, the California
algorithm reports the incident after the congestion propagates
to the sensor at cell one. In comparison, both the MMPF and the
IMM EnKF are able to detect the traffic incident close to real-
time for both cases by taking additional measurements from
GPS vehicles.

V. CONCLUSION

This paper formulates the joint traffic estimation and incident
detection problem as a hybrid state estimation problem. A
multiple model particle filter and a multiple model particle
smoother are proposed to detect the location and severity of
traffic incidents. The algorithms are tested by synthetic traffic
incident data generated by CORSIM and the results show the
proposed methods are able to detect traffic incidents with good
accuracy when the inflows are large.

Several areas are open for future exploration. First, the output
of the MMPF is a posterior distribution on the model variable,
which indicates the number of open lanes. In this work, we
use the model variable with the highest probability to infer
the existence of an incident. When the mass is not uniquely
centered on one integer, several other approaches can be used
to transform the distribution into a best estimate of the number
of open lanes. For example, a classifier could be trained to link
the posterior distribution of x and γ to incidents.

Additionally, while this work laid the foundation for the de-
sign of the algorithms, the performance of the incident detection
algorithms was only explored numerically. The CORSIM ex-
periments demonstrate that the algorithm might have potential
to work well in the field. Still, CORSIM is itself a simplification
of true traffic, so additional testing with field data is needed.
Moreover, because the particle filter has significantly larger
computational requirements compared to nonlinear Kalman
filtering approaches, more computationally efficient algorithms
and parallelization approaches may be necessary on large
freeway networks. In our future work, the scalability of the
algorithms will be investigated and the estimation framework
will be tested in field experiments.
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