
Modeling and assessing adaptive cruise control
stability: experimental insights

Raphael Stern
Dept. of Civil, Environ., and Geo- Eng.

University of Minnesota
Minneapolis, USA

Dept. of Informatics, Tech. Univ. Munich
Munich, Germany
rstern@umn.edu

George Gunter
Dept. of Civil and Environ. Eng.

University of Illinois
Urbana, USA

gunter1@illinois.edu

Daniel B. Work
Inst. for Software Integrated Systems

Dept. of Civil and Environ. Eng.
Vanderbilt University

Nashville, USA
dan.work@vanderbilt.edu

Abstract—Adaptive cruise control is a first step towards
increasingly automated vehicles, and while ACC offers potential
benefits to the traffic stream depending on the ACC design,
less is known about the impacts that commercially available
ACC vehicles have traffic flow. Therefore, it is of interest to
reliably model commercial ACC vehicle behavior so as to be
able to better understand how ACC vehicles may influence the
emergent properties of the traffic flow. In this article, a set of
car following experiments are conducted to collect data from a
2015 fully electric sedan equipped with a commercial adaptive
cruise control system. Velocity, relative velocity, and space gap
data collected during the experiments are used to calibrate
two dynamical models for the ACC vehicle, one for each of
two following settings. The models are calibrated via model-
constrained optimization. The main finding is that the best fit
models are unstable. To better understand how much the quality
of the models would have to change to alter their stability, we
calibrate the models with the constraint that they must be string
stable and compare both the new model error as well as the
calibrated parameter values. We find that the quality of fit for the
minimum following setting degrades by 26%, while the quality
of fit for the maximum following setting model only degrades by
7%, but requires significant changes in the parameter values.

Index Terms—Adaptive cruise control; phantom traffic jams;
field experiments; traffic modeling.

I. INTRODUCTION

Autonomous vehicles (AVs) have captured the interest of re-
searchers over the past several years. However, not all AVs are
the same in terms of the autonomous capabilities they possess.
Specifically, the Society of Automotive Engineers (SAE) has
defined six levels of automated driving systems (ADSs) that
define different degrees of automation [1]. These levels range
from no automation (Level 0) through full automation (Level
5), with increasing autonomy from Level 0 through Level 5.

The first ADSs that will become prevalent in the traffic flow
are Level 1 and 2 vehicles with driver assist features such
as adaptive cruise control (ACC) [2]. These features were
historically considered premium features on luxury vehicles,
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but are now becoming commonplace on many commercially
available vehicles. For example, 16 of the 20 best-selling
vehicles in the US in 2018 were available with ACC as a
standard or optional feature [3]. Therefore, the impact that
commercial ACC vehicles will have on traffic flow is of
particular relevance.

While some traffic jams arise from bottlenecks in the road,
other traffic jams arise as an emergent property of human
driving behavior [4]. The latter types of traffic jams are often
referred to as phantom jams since they seemingly arise for no
clear reason. However, as was show in the experimental work
by Sugiyama, et al. [4] and Tadaki, et al. [5] and verified by
Wu, et al. [6], [7], these phantom jams are a result of human
driving behavior alone, which is sufficient to trigger stop-and-
go waves. In these experiments, a large circular track was used
with human-piloted vehicles that started with a uniform initial
space gap and at the same speed. The circular ring road setup
was used since it represents infinite traffic where every vehicle
has a vehicle in front of it (a lead vehicle) and a vehicle
behind it. Due to the human driving behavior, this initial
uniform traffic quickly devolves into stop-and-go waves. Such
behavior is a result of string unstable car following dynamics
since small perturbations from the initial equilibrium flow (all
vehicles at the same speed and space gap with no acceleration)
amplify as they propagate from one vehicle to the next back
in the traffic stream [8].

To model traffic flow that exhibits such instabilities, a
variety of models have been proposed. Specifically, models
that describe traffic dynamics at the level of the individual
vehicle are referred to as microscopic models, and frequently
use an ordinary differential equation (ODE) to model the
dynamics of an individual vehicle as a response to the ve-
hicle’s surroundings. These models have been popular since
the 1950s when early experimental work by researchers at
General Motors collected vehicle speed and space gap data to
describe human driving behavior [9]–[13]. Since then, many
popular models have been proposed and become prevalent
in the research literature, including the Gipps model [9],
the intelligent driver model [14], and the optimal velocity
model [15].
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It has been shown that AVs are capable of stabilizing traffic
flow and preventing phantom traffic waves from arising [16].
This has been studied in theory [17] and experimentally. In
the experimental work by Stern, et al. [18], a setup similar to
that in the ring-road experiments described above [4]–[7] was
used with the difference that one vehicle was an autonomous
capable vehicle. This vehicle was used to control the traffic
flow. The result was that a single AV out of 21 vehicles was
able to stabilize the traffic flow. The stabilizing controller
reduced fuel consumption by 39%, reduced emissions by up
to 74%, and increased the throughput of the road by up
to 14% when comparing the oscillatory traffic without an
AV to the stabilized traffic flow when the AV was actively
dampening the traffic waves [16], [18]. Importantly, these
results were achieved with only one in 21 vehicles (roughly 5%
of the overall flow) driving autonomously while the remaining
vehicles were all human piloted.

Other research efforts have focused on the use of coopera-
tive adaptive cruise control (CACC) vehicles to achieve string
stable traffic by forming platoons of CACC vehicles. In such
a scheme, all vehicles in the platoon use the same automation
technology and vehicle to vehicle (V2V) communication to
achieve string stability. Notably, the use of connectivity for
platoons of ACC vehicles has been explored both theoreti-
cally [19]–[23] and through several experiments and demon-
strations [24]–[27]. Many of the significant developments in
vehicle automation including platooning were created from
USDOT Automated Highway System program, see [28] for
an overview.

These previous works highlight that even just a small
number of vehicles driving in a way that is distinct from
the remaining traffic flow may substantially alter the emergent
properties of the flow. Therefore, there is substantial interest
in modeling the vehicle-level dynamics of ACC vehicles to
understand how they may interact with human piloted vehicles,
and how they may influence traffic string stability [29], [30].

The impact that ACC vehicles without connectivity have
on traffic flow and traffic stability has also been an area of
interest in the research community. Simulation-based studies,
for example by Davis [31], [32], have shown that ACC
vehicles may be able to stabilize the traffic flow at a market
penetration rate as low as 20%. However, only a few works
have experimentally studied the string stability properties of
commercially available ACC vehicles. Notably, Milanés et
al. [29] instrumented commercially available ACC vehicles
and found that the vehicle make and model tested was string
unstable.

While commercially implemented ACC systems must meet
a number of design criteria including vehicle safety and rider
comfort, they may currently not be optimized considering
their impacts on overall traffic flow. However, as has been
shown before, changing the dynamics of only a small number
of agents in the traffic flow may be sufficient to change
the emergent properties of the flow and substantially change
the traffic characteristics [16]. Therefore, there is significant
interest in being able to accurately and reliably model the

vehicle-level behavior of ACC systems in a way in which they
can be analyzed to understand their impacts on the traffic flow,
in line with earlier investigations [17], [21], [31], [33]–[37] of
experimental vehicles and simulation studies.

With that in mind, the goal of this article is to determine
the string stability of a commercially available adaptive cruise
control system, and analyze the sensitivity of the model
parameter values and model accuracy to the requirement for
the model to be string stable or string unstable. An extended
version of the experimental setup, model calibration, and
stability analysis is available in [38] (ArXiv preprint available
at [39]), which provides more detail on the experimental setup
and the stability analysis conducted. The new contribution
beyond [39] is to conduct a sensitivity analysis on the stability
of the calibrated model to understand how much the modeling
error must be increased by to obtain the best-fit model that
changes the string stability result. We find that a 26% increase
in training error is required to change the best fit model from
string unstable to string stable when operating at the minimum
following setting, while a 7% increase in training error is
required to change the corresponding maximum following
setting model from string unstable to string stable. For both
following settings, the model parameter values must change
substantially to achieve string stability.

The remainder of this article is outlined as follows: in
Section II the vehicle-level ACC model is introduced and a
method for analyzing the its string stability is introduced. The
experimental setup and test vehicle is described in Section III,
and the calibration methodology is outlined in Section IV. The
stability analysis is conducted in Section V, and it is illustrated
that the stability results for the best fit models are not sensitive
to small changes in the calibrated parameter values. The main
findings are summarized in Section VI.

II. MODELING AND STABILITY ANALYSIS OF ACC SYSTEM

In this section, the ACC dynamical model and method
of analyzing a model for string stability are reviewed. We
begin by introducing a general framework for modeling ACC
vehicles, then present the specific model that will be used in
this article. The model is a simplified ACC model that has
been previously used in [29], [40]. Next, we review method
to assess the string stability of an ACC model.

A. General ACC model

When modeling an ACC vehicle, there are many factors
that influence the vehicle dynamics. These factors may include
engine RPM, engine temperature, and road grade among
others [41]. However, for the purpose of modeling the vehicle-
level behavior in the traffic flow, this simulation granularity
may not be necessary, or even desired.Instead, the focus of this
work is to construct a high-level model of the ACC vehicle as
a whole, and model how the ACC vehicle responds just to its
traffic state.

Specifically, in this article, we model the response of an
ACC vehicle to a lead vehicle immediately in front of it. We
assume that through the on-board sensors, the ACC vehicle is



able to measure the space gap between the lead vehicle and
the ACC vehicle, s, as well as its own speed v and the relative
speed with respect to the lead vehicle ∆v. Using these inputs,
the acceleration of the ACC vehicle ẍ(t) is modeled as an
ordinary differential equation with the general form:

ẍ(t) = f(s, v,∆v), (1)

where s is the space gap, v = ẋ(t) is the velocity of the
follower, and ∆v := ṡ(t) is the relative velocity between the
leader and follower.

When selecting parameter values for such a car following
model, it is desirable that the model satisfy the rational driving
constraints (RDC) [8]:

∂f

∂s
:= fs ≥ 0, (2)

∂f

∂∆v
:= f∆v ≥ 0, (3)

∂f

∂v
:= fv ≤ 0. (4)

Roughly speaking, the rational driving constraints ensure that
the following vehicle behaves as a rational driver would.
I.e., the following vehicle will drive faster when space gap
increases or the lead vehicle increases its speed, and will begin
to slow as it reaches the maximum desirable speed.

B. OVRV model

One model which has previously been used to model ACC
vehicle dynamics is the optimal velocity model with a relative
velocity term (OVRV), which together takes the form:

ẍ(t) = α (V (s) − v) + β (∆v) . (5)

In the above model (5), the first component relaxes the
follower velocity to a desired velocity prescribed by the
optimal velocity function V based on the current space gap to
the vehicle in front, while the second component relaxes the
follower velocity to the velocity of the leader. The parameters
α and β control the tradeoffs between following the optimal
velocity and following the leader velocity.

For the purposes of modeling ACC vehicles, we adopt a
special case of the OVRV model (5) considered in [30], [32],
[40]:

ẍ = f(s, v,∆v) = k1(s− η − τev) + k2(∆v) (6)

where k1 and k2 are the gain parameters on the optimal
velocity term and a follow-the-leader term respectively, η is
the jam space gap (the minimum distance two vehicles will
attain) and the parameter τe is the desired headway. Note
that the model (6) corresponds to a linear optimal velocity
function V (s) := s/τe and with α := k1τe. The model (6) is
selected based on the reported goodness of fit to simulate real
trajectories of ACC equipped vehicles in [30], [40].

C. Stability analysis

String stability tells whether small disturbances from equi-
librium space gap will amplify or dissipate as they propagate
from one vehicle to the next in a platoon. Therefore, string
stability is critical for understanding whether phantom jams
will form, or whether small disturbances will be dissipated
through the traffic flow. To analyze a car following model for
string stability, we follow the common procedure outlined by
Wilson and Ward [8].

Specifically, the string stability of the following model
which satisfies the RDC is considered:

ṡ(t) = ∆v
v̇(t) = f(s, v,∆v) + d,

(7)

where d represents a disturbance to the acceleration. A
straightforward criterion for string stability that relies only on
the partial derivatives of the car following model is presented
by Wilson and Ward [8]:

λ2 :=
fs
f3
v

[
f2
v

2
− f∆vfv − fs

]
< 0. (8)

In the case of the model 5, this can easily be evaluated
for a particular set of calibrated model parameter values since
fs = k1, fv = −k1τe, and f∆v = k2.

To illustrate the string stability of the model (5), we show
the parameter space and corresponding stability result (stable
vs. unstable) in Figure 1. As can be seen in the figure,
increasing k1, k2 or τe all drive the model toward string
stability. However, increasing k1 and k2 may not be feasible
within the physical constraints on the vehicle dynamics, while
increasing τe is generally always possible yet may not always
be desirable since it may result in a lower roadway throughput.
Additionally, note that the value of η does not influence the
string stability of the model.

III. EXPERIMENTAL OVERVIEW AND TEST VEHICLE
DESCRIPTION

In this section we present the design and execution of a of
field experiment to collect ACC car following data. A brief
summary of the data collection methods are provided in this
article, with a more complete description available in [39].

The goal of the experiment is to observe the vehicle follow-
ing dynamics of an ACC-equipped vehicle. Each experiment
involves a lead vehicle that executes a pre-determined velocity
profile and a following vehicle that follows the lead vehicle
under adaptive cruise control.

The test (following) vehicle is a commercially-available
2015 model-year fully electric luxury sedan. The ACC system
in the test vehicle has two input settings: desired speed and
desired following setting (ranging from close to far as selected
by the driver). The desired speed is set by the driver, and can be
specified to the nearest mile per hour. In the tests conducted in
this work, only the minimum and maximum following setting
are considered out of the possible options.

Each vehicle is equipped with a U-blox EVK-M8T GPS
evaluation kit that is capable of tracking the position and speed
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Fig. 1. Model stability for a range of gain values k1 and k2. The model is
string stable for λ2 < 0, indicated in grey. This demonstrates that the model
can be calibrated to be either string stable or string unstable depending on the
selected parameter values. Note that the value of η does not influence string
stability.

of each vehicle throughout the experiment at a frequency of up
to 10 Hz. Each evaluation kit is connected to a Raspberry Pi
computer, which runs a script to log the data as it is recorded.
While GPS is prone to small errors in position, these are often
due to atmospheric conditions and are generally correlated for
different GPS receivers in the same proximity.

During the test, the vehicles are arranged with the lead
vehicle in front under human control, while the following
vehicle operates under control of the ACC system as seen
in Figure 2. The test is designed to capture a range of vehicle
following speeds and transitions between these speeds. A total
of nine different lead vehicle speed profiles are tested, and data
for each speed profile are recorded for the following vehicle
both at the minimum and at the maximum following setting.
Thus, in total, 18 tests are conducted. The tests span a range
of speeds from 5 mph (2.2 m/s) to 70 mph (31.3 m/s) and
include portions of constant speed driving as well as portions
of driving with rapid changes in the lead vehicle’s speed.
A full description of the tests in presented in the extended
manuscript [39].

The test that is used for illustrative purposes in this article
is the medium-velocity 5 mph oscillations test. In this test,
the lead vehicle begins at 50 mph (22.4 m/s) and holds this
speed for 30 seconds before reducing its speed to 45 mph (20.1

Fig. 2. Two-vehicle experimental setup in car following experiments with
lead vehicle under human control and following vehicle under ACC control.
Note that the identifying features of the lead vehicle and following vehicle
have been masked to maintain anonymity of the vehicle being tested.
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Fig. 3. Plot showing the actual lead vehicle and following vehicle speed as
well as the simulated speeds using model that is calibrated to be unstable and
the model that is calibrated to be string stable for the minimum following
setting. The top plot shows the performance on the training data, while the
bottom plot shows the performance on the testing data.

m/s), and holds this speed for 30 seconds before returning to
50 mph. This oscillatory driving is repeated until the test is
over. An example of the oscillatory driving pattern is seen in
the results in Figure 3 and Figure 4.

IV. MODEL CALIBRATION METHODOLOGY

In order to calibrate an ACC dynamical model, the model
parameters must be estimated from the data. The calibration
of the model can be posed as a simulation-based optimization
problem in which an error functional is minimized by selecting
optimal model parameters. In Milanés and Shladover [29] an
absolute valued error metric is proposed that compares the
velocity of the ACC model under a given set of parameters
to the velocity recorded by the real ACC equipped vehicle. In
this work, the root mean square error (RMSE) is used due
to its demonstrated good performance for the vehicle being
tested. The RMSE is computed as follows:
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Fig. 4. Plot showing the actual lead vehicle and following vehicle speed as
well as the simulated speeds using model that is calibrated to be unstable and
the model that is calibrated to be string stable for the maximum following
setting. The top plot shows the performance on the training data, while the
bottom plot shows the performance on the testing data.

RMSE =

√
1

T

∫ T

0

(vm(t) − v(t))2dt. (9)

In (9) the term v(t) is the simulated velocity of the following
vehicle at time t, vm(t) is the measured velocity of the
following vehicle in the data at time t, and T is the duration
of the data collection period. Practically, in implementation,
the RMSE is computed at the discrete time steps when
measurements are collected (10 Hz).

The optimal parameters are found by solving a constrained
optimization problem where the objective function is the speed
RMSE between simulation with the optimal parameter values
and the collected data. The problem is constrained to satisfy
the RDC. Furthermore, for each following setting (maximum
and minimum) the calibration is done twice: once with the
model being unconstrained with respect to string stability,
where the model is found to be string unstable, and once
with the model constrained to string stable parameter values.
This allows for comparison between the quality of fit between
the string stable model and the string unstable model, and
provides a sensitivity analysis on the quality of fit of the
stability finding.

The task of finding the optimal parameter values k1, k2,
τe, and η thus relies on solving the following optimization
problem:

minimize
s,v,k1,k2,τe,η

:
√

1
T

∫ T
0

(vm(t) − v(t))2dt

subject to: v̇(t) = f(s, v,∆v)
ṡ(t) = v`,m(t) − v(t)
s(0) = sm(0)
v(0) = vm(0)
k1 ≥ 0
k2 ≥ 0
τe ≥ 0
η ≥ 0,

(10)

to calibrate the string unstable model and:

minimize
s,v,k1,k2,τe,η

:
√

1
T

∫ T
0

(vm(t) − v(t))2dt

subject to: v̇(t) = f(s, v,∆v)
ṡ(t) = v`,m(t) − v(t)
s(0) = sm(0)
v(0) = vm(0)
k1 ≥ 0
k2 ≥ 0
τe ≥ 0
η ≥ 0
k1

−k31τ3
e

[
k21τ

2
e

2 + k1k2τe − k1

]
≤ 0,

(11)

to calibrate the string stable model. In (10) and (11), v`,m(t) is
the measured velocity of the lead vehicle. In both optimization
problem formulations the last constraint enforces the desired
stability result.

The optimal parameter values are found using an con-
strained quasi-Newton search method as implemented in the
fmincon function in Matlab. The simulation of the follower
vehicle trajectory at each step of the optimization routine is
performed via numerical integration using an explicit forward
Euler scheme. Because the resulting optimization problem is
nonlinear and to account for potential local minima, the opti-
mization routine is run many times using randomly initialized
parameters. The parameter value set that yields the lowest
RMSE is selected as the best fitting parameters. The results
of this approach is presented in the next section.

Data from all speed profiles is used during calibration.
Specifically, each test is divided in two with the first half
being used as training data, and the second half being used
as testing data. The model is calibrated by combining all the
training data.

V. RESULTS

In this section we first provide an analysis of the accuracy
of the GPS units that are used to measure vehicle positions and
speeds. Next the calibration of the dynamical model outlined in
(6) is presented, and the results are compared to the measured
ACC data. The change in the parameters and the overall
model quality of fit required to make the model string stable
(compared to string unstable, which is the best fitting model),
is discussed.

A. Validation of GPS measurements

The U-blox evaluation kits are tested for accuracy in speed
and position by placing two U-blox sensors a known distance
apart on the same vehicle and extensively driving this vehicle
to observe the GPS measured distance and difference in speed
throughout the drive.

The distance between the two antennae mounted on the
same vehicle is computed using the Haversine formula. The
mean recorded sensor distance is 1.37 m compared to an actual
sensor distance of 0.94 m. This corresponds to a mean position
accuracy accuracy of 0.43 m, which translates to roughly
1% error when compared to the following distances observed



in the experiments. The mean absolute difference in speed
between the two sensors is 0.06 m/s (0.13 mph), which is an
error of less than 0.2% of the average speeds observed in the
tests.

Due to the overall good agreement between sensor speed
and position measurements, the U-blox EVK-M8T is a suitable
GPS unit for recording velocity and position data.

B. Model calibration and sensitivity analysis

In this section, the calibration results for both the model
that is unconstrained with respect to string stability as well as
the model that is calibrated with respect to string stability are
discussed. The quality of fit of each of these models for both
following settings is compared.

The calibrated model parameter values and corresponding
training error are presented in Table I. For both the maximum
following setting and the minimum following setting the best
fit model is found to be string unstable when stability is not
enforced. The percent increase in training error from the best-
fit model to the string stable model simulated given k1, k2, and
τ2 is shown in Figure 5 for the minimum following setting.
Recall that the value of η does not influence string stability
of the model. For plotting purposes, the difference in training
error is capped at 100% higher than the best-fit model training
error. Thus, the yellow represents regions of the parameter
space that produce a training error that is twice as high or
higher as compared to the best fit model. This plot shows that
the training error is highly sensitive to τe, since small changes
in the value of τe greatly increase the training error.

In Figure 6, the percent training errors from the overall best-
fit model for the stable and unstable model are shown. The
top plot shows that the best-fit (unconstrained with respect
to stability) model has the lowest overall training error and
lies in the unstable parameter space. However, when the
model is constrained to be string stable, the training error
increases by roughly 26% from the best-fit model and the
resulting model is just above the line λ2 = 0. I.e., the best-fit
model that is constrained to be string stable has substantially
higher training error. However, the corresponding plot for the
maximum following setting in Figure 7 shows that the change
in training error is comparatively small (7%) between the
string unstable model and the string stable model.

Additionally, the model parameter values for both the
maximum and the minimum following setting would have to
change substantially for the model to become string stable.
Specifically, a reduction of over 99% in the value of k1

is required for both the minimum and maximum following
setting, an increase in k2 of 53.8% is require for the minimum
following setting. However, an increase in k2 of only 5.6% is
required for the maximum following setting to become string
stable. The main interpretation of these parameter changes
is that the emphasis on the constant time headway term is
reduced substantially compared to the relative velocity term
when the models are constrained to be string stable. Moreover,
when the model is constrained to string stable parameter
values, the effective headway τe is increased (nearly three
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Fig. 5. Percent change from the best fit model to the model with given
k1, k2, τe and η = 8.34 in Table I for the minimum following setting.
The line λ2 = 0 from Figure 1 is superimposed to show the stable and
unstable parameter space. Recall from Figure 1 that parameters above the line
λ2 = 0 correspond a stable model in (5). Also note that for plotting purposes,
the maximum percent increase displayed is 100%. However, greater percent
increases are present. Thus, the error should be thought of as at least 100%
greater increase between the best-fit model and the model with the given
parameter values.

times as large for the minimum following setting and more
than twice as large for the maximum following setting), and
η is thus decreased by over 99% for both following settings.
Recall though that the value of η does not influence string
stability.

Finally, in Figure 3 the minimum following setting data is
plotted along with the simulated speed profile using both the
string unstable and string stable models. The plot shows that
when the model is allowed to be string unstable, the model is
capable of producing the same overshoots and undershoots
as observed in the experimental data. However, when the
model is constrained to be string stable, these overshoots
are no longer compliant with string stability, and the model
trajectories match the lead vehicle profile. Thus, the string
stable model for the minimum following setting is effectively
a follow-the-leader model and no longer captures the actual
dynamics of the following vehicle. This behavior is observed
in the training data as well as the testing data for the minimum
following setting.

As seen in Figure 4 for the maximum following setting, the
overshoot that the string unstable model produces does not



Following Constraint k1 k2 τe η Speed training Speed testing Spacing training Spacing testing
setting [1/s2] [1/s] [s] [m] error [m/s] error [m/s] error [m] error [m]

minimum unstable 0.0782 0.4445 0.5162 8.3365 0.23 0.22 1.51 1.37
minimum stable 0.0002 0.6835 1.4634 0.0593 0.29 0.28 3.58 3.28
maximum unstable 0.0131 0.2692 1.6881 7.5699 0.28 0.30 3.00 2.77
maximum stable 0.0002 0.2843 3.5137 0.0090 0.30 0.32 6.85 5.65

TABLE I
CALIBRATED MODEL PARAMETER RESULTS FOR BOTH THE MODELS CONSTRAINED TO BE STRING STABLE AS WELL AS THE MODELS CONSTRAINED TO

BE STRING UNSTABLE.

Difference (%)
Following k1 k2 τe η Train Testing

setting error error

minimum -99.7 53.8 183.5 -99.3 26.1 27.3
maximum -98.5 5.6 108.1 -99.9 7.1 6.7

TABLE II
PERCENT CHANGE IN CALIBRATED PARAMETER VALUES BETWEEN

MODEL CALIBRATED TO BE STRING STABLE AND MODEL CALIBRATED TO
BE STRING UNSTABLE. THE BASELINE IS THE STRING UNSTABLE MODEL,

WHICH HAD LOWEST TRAINING ERROR OVERALL. POSITIVE VALUES
INDICATE THE CORRESPONDING PARAMETER VALUE FOR THE STRING

UNSTABLE MODEL IS LARGER THAN THE CALIBRATED PARAMETER VALUE
FOR THE STRING STABLE MODEL.

e =  0.5162
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Fig. 6. Percent error from best-fit minimum following setting model for
different parameter values evaluated at the τe of the unstable (top) and stable
(bottom) best fit models. Note that the value of η does not influence the
stability of the model. The best-fit parameters for each model are represented
as a red dot.
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Fig. 7. Percent error from best-fit maximum following setting model for
different parameter values evaluated at the τe of the unstable (top) and stable
(bottom) best fit models. Note that the value of η does not influence the
stability of the model. The best-fit parameters for each model are represented
as a red dot. Note that for plotting purposes, the maximum percent increase in
training error is 200% higher than the overall best fit model, all errors higher
than this are displayed in yellow.

match the observed overshoot in the data. However, impor-
tantly the string unstable model matches the speed undershoot
below the minimum speed that the lead vehicle brakes to
observed in the data. Similarly to the minimum following
setting, the string stable model for the maximum following
setting becomes a follow the leader model and does not exhibit
any overshoot or undershoot.

VI. CONCLUSIONS

In conclusion, the main finding of this article is that the
tested vehicle is string unstable for both the minimum and
maximum following setting, and that the results are robust. To
assess the sensitivity of the finding, we add a constraint to the
calibration routine requiring the resulting model to be string
stable. With the additional requirement, we find that the quality



of fit for the minimum following setting degrades by 26%,
while the quality of fit for the maximum following setting
model only degrades by 7%. However, for both the maximum
and minimum following settings, the model parameter values
would have to change substantially for the model to become
string stable.
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