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Abstract
This article proposes several advances to sparse nonnegative matrix factorization (SNMF) as a way to identify large-scale 
patterns in urban traffic data. The input to our model is traffic counts organized by time and location. Nonnegative matrix 
factorization additively decomposes this information, organized as a matrix, into a linear sum of temporal signatures. Penalty 
terms encourage this factorization to concentrate on only a few temporal signatures, with weights which are not too large. 
Our interest here is to quantify and compare the regularity of traffic behavior, particularly across different broad temporal 
windows. In addition to the rank and error, we adapt a measure introduced by Hoyer to quantify sparsity in the representation. 
Combining these, we construct several curves which quantify error as a function of rank (the number of possible signatures) 
and sparsity; as rank goes up and sparsity goes down, the approximation can be better and the error should decreases. Plots 
of several such curves corresponding to different time windows leads to a way to compare disorder/order at different time 
scalewindows. In this paper, we apply our algorithms and procedures to study a taxi traffic dataset from New York City. 
In this dataset, we find weekly periodicity in the signatures, which allows us an extra framework for identifying outliers as 
significant deviations from weekly medians. We then apply our seasonal disorder analysis to the New York City traffic data 
and seasonal (spring, summer, winter, fall) time windows. We do find seasonal differences in traffic order.

Keywords Traffic · Normalization · Sparse nonnegative matrix Factorization

Introduction

Motivation

Traffic management is one of the persistent challenges of 
the modern industrialized world. It simultaneously reflects 
both a critical infrastructural necessity and a problem involv-
ing a wide range of scales and interactions. Over the past 2 
decades, floating-car data (for example, from GPS-equipped 
taxis and other vehicles) has become an important source 
of real-time and large-scale city traffic information Deri 
and Moura (2015), Donovan and Work (2015). These data 
streams can be used to manage traffic signals, influence 
equilibrium traffic states Ban et al. (2011), Zheng and Liu 
(2017), Herman and Prigogine (1979), Mahmassani et al. 
(1984), Geroliminis and Daganzo (2008), Krichene et al. 
(2016), Deri and Moura (2015), Zhu et al. (2016), Zhan et al. 
(2014), Guan et al. (2016), Alonso-Mora et al. (2017), Fer-
reira et al. (2013), and optimally route traffic.

Our interest here is in part to quantify and compare 
regularity of traffic behavior, particularly across differ-
ent broad temporal windows. Traffic behavior changes as 
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seasons change, and we would like to build a framework 
for comparing the regularity of these behaviors. With reli-
able methods which allow us to identify broad trends in 
traffic behavior, we can understand responses to urban 
planning decisions and singular events, and hopefully help 
cities be more responsive.

Problem Statement and Contribution

We would like to find broad citywide patterns which can 
be used to describe macroscopic behavior of traffic counts; 
that is, the number of cars on a given link (directed edge) 
in a road network at a certain time. Two-way roads are, 
of course, represented as two links. The challenge is to 
find low-dimensional descriptions of this potentially large 
dataset, and to quantify disorder as the inability to fully 
describe traffic behavior in this low-dimensional way.

Our goal here is to decompose traffic counts on different 
links into different behavioral signatures. The weighted 
summation of such signatures will represent a low-rank 
approximation of the traffic behavior. In this additive 
decomposition method, a given behavioral signature can, 
for example, represent heavy traffic volumes during the 
morning rush hour, medium traffic for the rest of the work-
day, and light traffic in the evening. However, as a signa-
ture spans the entire year, this example suggests a seg-
ment of the overall pattern which regularly repeats (every 
workday). Both the behavioral signatures and the weights 
of links on the signatures should be non-negative; each 
signature describes a pattern of a non-negative number 
of vehicles on a link (e.g., activity near a public gather-
ing place) and there are a non-negative number of people 
behaving according to that pattern; the mathematics of 
non-negative matrix factorization will play a key role.

We are interested in the error of this approximation; 
a large error, roughly, corresponds to disorder in traffic 
behavior. Our low-rank approximation depends on several 
parameters. By looking at this error across several seasonal 
windows and constructing a curve which captures the error 
of this approximation as it depends on these parameters, we 
can compare disorder in traffic patterns.

Dataset

Our method uses traffic counts on links, broken up into time 
increments. In this paper, we will apply our calculations to 
New York City traffic data given in Donovan et al. (2016). 
See Section 4 for more information about the dataset (and 
its limitations). An added component of our analysis is that 

it fills in some missing values via matrix completion; see 
[ZWFM], Xu et al. (2012).

Related Works

Non-negative Matrix (and tensor) Factorization (NMF) 
has already been used for urban and network traffic analy-
sis Ahmadi et al. (2015), Chen et al. (2019), Yufei and 
Fabien (2011), Han and Moutarde (2013), Han and Mou-
tarde (2016), Hofleitner et al. (2012), Liu et al. (2017), Ma 
et al. (2018), Sun and Axhausen (2016), Xu et al. (2015); 
see also Lv et al. (2015). Furthermore, matrix factorization 
has also been used in studying train Gong et al. (2018), 
Ito et al. (2017), bicycle Cazabet et al. (2018), and risk 
Lee et al. (2016) data. Anomaly detection using related 
methods can be found in Djenouri et al. (2018), Zhang 
et al. (2016), Guo et al. (2015), Li et al. (2015), Wang 
et al. (2019).

More generally, NMF has been applied to a wide range 
of problems, like text data mining Chagoyen et al. (2006), 
Pauca et al. (2004), gene expression Brunet et al. (2004), 
Carmona-Saez et al. (2006), Gao and Church (2005), Kim 
and Tidor (2003), Maher et al. (2006), micro-array com-
parative genomics hybridization Carrasco et al. (2006), 
functional characterization of gene lists Pehkonen et al. 
(2005) and facial images Li et al. (2001), Hoyer (2004).

A focus of our work is sparsity in the matrix factori-
zation. Various extensions of NMF have been made to 
impose sparsity, either on both factors, as in Dueck et al. 
(2005), Hoyer (2004), Pascual-Montano et  al. (2006), 
Pauca et al. (2006), Kim and Park (2007), or on only one 
Gao and Church (2005), Pauca et al. (2004). There are fur-
thermore ways of measuring sparsity Hoyer (2004) which 
are different than the algorithmic ways to encourage it; 
see Sect. 3.1.

Another somewhat novel focus of our work is using 
low rank factorization to quantify disorder (and in par-
ticular compare seasonal disorder); see Sect. 5. We carry 
out a range of low rank factorizations, finding that there 
are robust seasonal biases in the error.

Our work follows the ideas of Lee and Seung (2001) 
and Kim and Park (2007). Matrix factorization can be 
viewed as an approach to reduce the dimensionality 
or compress Asif et al. (2013) traffic data. Traffic data 
dimensionality techniques span more classical techniques 
building on principal component analysis Li et al. (2007), 
Yang and Qian (2019), Li et al. (2015), to more recent 
developments using variational autoencoders Boquet et al. 
(2020). Exploiting spatio-temporal patterns can both sup-
port data reduction and also prediction of future traffic 
states on the network,Yang and Qian (2019). For a recent 
review of approaches to exploit structure in traffic data for 
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prediction, we refer to the reviews Ermagun and Levinson 
(2018), Nagy and Simon (2018), Pavlyuk (2019).

Outline

In Sect. 2, we set up the theory and background for the 
algorithm we use. In Sect. 3, we describe metrics and tools 
we use for analyzing error and sparsity associated with the 
approximation. In Sect. 4, we apply our analysis to the data-
set of New York City traffic described in Sect. 1.3. We fur-
ther analyze the error of our algorithm in relation to the New 
York City dataset in Sect.  5. We give some conclusions in 
Sect. 6. The appendix reviews the mathematics behind the 
iterative algorithm we develop in Sect.  2.3.

The supporting source code for this work is published 
at [KYA+].

Setup and Theory

Traffic Counts

We start by organizing traffic counts into a matrix D, where 
Dt,� is the traffic count on link � during time period t. The 
time index ranges through T

def
= {1, 2…T} and the link 

index ranges through a finite set L
def
= {1, 2…L} of links. 

Our interest is seasonal fluctuations, so we assume that T 
represents a large time horizon. If the traffic count on link 
� at time t is unknown (i.e., missing), we set Dt,�

def
= NaN 

and define

as the set of indices for which we have traffic estimates.

Non‑Negative Matrix Factorization

We want to decompose D as

where N is the rank of the factorization, with N ≤ min{T , L} , 
and where the entries of W and H are nonnegative, and 
where WH denotes the standard matrix product.

To quantify the error in (2), let us first define

with I  as in (1). In other words, we replace NaNs with 
zeroes. Then, define

(1)I
def
=

{
(t,�) ∈ T × L ∶ Dt,� ≠ NaN

}

(2)
T×L

⏞⏞⏞
D ≈

T×N

⏞⏞⏞
W

N×L

⏞⏞⏞
H ,

(3)([D]I)t,�
def
=

{
Dt,� if (t,�) ∈ I

0 otherwise
,

with ‖ ⋅ ‖F being the Frobenius norm.

Sparse Nonnegative Matrix Factorization

The rank N denotes the size of the “universe” of possible 
signatures. We can think of the columns of W as temporal 
signatures and the rows of H as weights. Within this col-
lection of temporal signatures, we want to represent each 
column of D (i.e., the traffic count on each link) using as few 
of these signatures as possible.

For any matrix A ∈ ℝ
M×N , let A

⋅,n denote the n-th column 
of A and let Am,⋅ denote the m-th row of A. Sparse Non-
negative Matrix Factorization (SNMF), as seen in Kim and 
Park (2008) (cf. Hoyer (2002)), fixes positive parameters � 
and � and minimizes

Sparsity in the columns of H is encouraged by the penalty 
term involving � (which involves an L1 LASSO-type pen-
alty), while the term involving � is used to prevent the values 
in W from being too large. The choice of these parameters 
is problem-specific.

Normalization

To provide a common reference for comparing behavior in 
different columns (i.e., links), we finally require that the col-
umns of W sum to 1 (i.e., have L1-norm of 1). This gives us 
a relative traffic count; allowing us to better understand how 
the traffic count in the signature is temporally broken down 
(i.e., by time, week, and season). It also explicitly resolves 
ambiguity in the multiplicative decomposition D ≈ WH.

Due to this normalization, our H contains the scale-factor 
of D . In other words, scaling D by a constant factor leaves W 
unchanged but scales up H by that same factor. The choice 
for N and � therefore are independent of the scale of entries 
in D.

Algorithm

Our iterative algorithm is based on Lee and Seung (2001) 
with sparsity modifications as laid out in Kim and Park 
(2008). Details of the calculation are in the appendix.

For positive integers R (number of rows) and C (number 
of columns), let �R×C be the (R × C)-matrix whose entries are 
all 1. For matrices A and B in ℝR×C , let

(4)E
◦
(W,H)

def
= ‖‖[D −WH]I

‖‖
2

F
=

∑

(t,𝓁)∈I

(D −WH)2
t,𝓁
.

(5)E�,�(W,H)
def
= E

◦
(W,H) + �

�

𝓁∈L

��H⋅,𝓁
��
2

1
+ �‖W‖2

F
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denote Hadamard (i.e., elementwise) multiplication and 
division.

Starting with any full-rank (W,H) ∈ ℝ
T×N
+

×ℝ
N×L
+

 , our 
iterative update is given by a sequence of recursive update 
rules:

followed by

Algorithm Termination

There are three natural indicators that the algorithm has 
converged:

• ‖‖W (m+1) −W (m)‖‖F ≈ 0

• ‖‖H(m+1) − H(m)‖‖F ≈ 0

• |||E�,�(W
(m+1),H(m+1)) − E�,�(W

(m),H(m))
||| ≈ 0.

We use a combination of the first two, that is, we stop our 
algorithm when

for a fixed positive threshold �.

Error Analysis

Sparsity

As we increase the parameter � of (5), which increases the 
size of the LASSO-type penalty on the columns of H, we 
expect H to become more sparse; i.e. to have more small 
entries. We can measure this via the calculations of Hoyer 
(2004), which are based on the relationship between the L1 
and L2 norms. For nonzero x ∈ ℝ

N , define

Then,  0 ≤ Sparsity (x) ≤ 1 ,  with Sparsity (x) = 1 i f 
and only if all except one of the entries of x is nonzero, 
and Sparsity (x) = 0 if and only if all entries of x take 

(A⊙ B)i,j
def
= Ai,jBi,j

(A⊘ B)i,j
def
=

Ai,j

Bi,j

for 1 ≤ i ≤ R, 1 ≤ j ≤ C

(6)
W ← W ⊙

(
[D]IH

T
)
⊘

(
[WH]IH

T + 𝜂W
)

H ← H ⊙
(
WT [D]I

)
⊘

(
WT [WH]I + 𝛽�N×NH

)

(7)(W
⋅,n,Hn,⋅) ←

(
W

⋅,n∕
‖‖W⋅,n

‖‖1,Hn,⋅ ×
‖‖‖W

∗
⋅,n

‖‖‖1
)

‖‖W (m+1) −W (m)‖‖F
‖‖W (m)‖‖F

+
‖‖H(m+1) − H(m)‖‖F

‖‖Hn
‖‖F

≤ �,

(8)Sparsity (x) =

√
N − ‖x‖1∕‖x‖2√

N − 1
.

on a common (nonzero) value. We also note that 
Sparsity (�x) = Sparsity (x) for nonzero � ∈ ℝ ; i.e., Sparsity 
is scale-invariant.

For H ∈ ℝ
N×L having no nonzero columns, let us simi-

larly define

Sparsity (H) is the average of the Sparsity (H
⋅,�) over all � . 

We note that this measure of sparsity is unaffected by the 
rescaling of (7).

Tradeoff

Once we have found a reasonable value for � , a range of 
values of the sparsity penalty � and the rank N (see Sect.  
4.1), we can carry out a perturbative analysis of error. For 
a given low-rank decomposition (W, H), we can construct 
the error matrix

We are interested in the seasonal fluctuations of the error 
(10) as an indication of how “ordered” traffic behavior is 
at different times. A small error would mean that traffic 
behavior can, in fact, be additively decomposed into differ-
ent signatures.

We first fix a reference � (see Sect.  4.1). Let’s also fix 
a set N  of possible values of the rank parameter N, and 
a set B of possible values of the penalty parameter � . For 
each (N, �) ∈ N × B (i.e., a grid of values for N and � ) let 
(W∗(N, �),H∗(N, �)) ∈ ℝ

T×N
+

×ℝ
N×L
+

 be the result of the 
iterative scheme of Sect. 2.5, with this � and N, terminated 
according to the criterion laid out in Sect.  2.6. If in some 
cases, the algorithm fails to converge, then we say that 
(W∗(N, �),H∗(N, �)) is undefined.

Fix T′ ⊂ T  , and define

for (N, �) ∈ N × B such that (W∗(N, �),H∗(N, �)) is defined. 
Here in the definition of E∗ , (A)T�×L denotes the submatrix 
corresponding to (At,� ∶ (t,�) ∈ T

� × L) for any A ∈ ℝ
T×L . 

For each N ∈ N  , define the sets

We want to compare E∗ for different subsets T′ of T  (e.g. dif-
ferent T′ ’s corresponding to different seasons). Informally, 
we want to compare E∗(N, �, T�) and E∗(N, �, T��) for the 

(9)Sparsity (H) =
1

L

∑

�∈L

Sparsity (H
⋅,�);

(10)D −WH.

E
∗(N, �, T�)

def
=

‖‖(D −W∗(N, �)H∗(N, �))T�×L
‖‖F

‖‖(D)T�×L‖‖F
Sparsity ∗(N, �)

def
= Sparsity (H∗(N, �))

(11)
B(N)

def
= {� ∈ B ∶ (W∗(N, �),H∗(N, �)) is defined}

S(N)
def
=

{
Sparsity ∗(N, �) ∶ � ∈ B(N)

}



Journal of Big Data Analytics in Transportation 

1 3

same values of N and � . A larger value of E∗ corresponds 
to more disorder on the original data. Note that our matrix 
factorization does not depend on the subset T′ ; we rather 
are evaluating the error over different subsets of time. This 
allows us to use as much data as possible in the factorization, 
and resolve some of the challenges in dealing with sparse 
data. Informally, we are using a common collection of H 
weights, while selecting seasonal parts of the W signatures.

Plot 1 (Monotonicity of sparsity). For each N, we can plot

For a fixed N ∈ N  , we expect that Sparsity ∗ should be 
increasing in � (see Fig.   10 on page 13). If so, we can 
uniquely reparameterize effects of � as effects of Sparsity ∗ 
of (9).

Next, we can understand how Sparsity ∗ and E∗ vary for 
each given N ∈ N .

Plot 2 (Dependence of E∗ on rank and � ) For each N ∈ N  , 
we can parametrically plot

We expect this to be nondecreasing; more sparsity reflects 
more restrictions on the factors in the matrix product, lead-
ing to more error (see Figs.  11–14 on pages 13–15).

We finally can approximately plot error as a function of N 
for fixed sparsity values. Fix N ∈ N  and let SN ∶ B → [0, 1] 
be the piecewise linear function with knots at (12).

Plot 3 (Dependence of E∗ on rank and sparsity). If SN is 
nondecreasing for each N ∈ N  , and s ∈ (0, 1) is in the range 
of all of the Sn ’s (for n ∈ N  ), we can plot

(See Figs.  15, 16, 17, 18 on pages 15–16).

We expect that as sparsity increases, so does the error.

Analysis of New York City Data: Matrix 
Factorization

Let’s apply our analysis to the data of Sect.  1.3 (i.e., Dono-
van et al. (2016)), which reverse-engineers estimates of traf-
fic counts from origin-destination pairs for taxi trips. Our 
taxi dataset is an illustrative (and perhaps scaled) proxy for 
true traffic counts, but we recognize that it is potentially 
biased. Our methodology could readily be modified when 

(12)
{
� vs. Sparsity ∗(N, �)) ∣ � ∈ B(N)

}
.

{
Sparsity ∗(N, �) vs. E∗(N, �, T�)) ∣ � ∈ B(N)

}
.

{
s vs. E∗(N,S−1

N
(s), T�)) ∣ N ∈ N

}
.

non-biased counts (possibly available from private compa-
nies or from dedicated traffic counting sensors installed by 
municipalities; see also [pem]) are available.

The dataset contains hourly traffic data in the interval

We thus have

time records. Arranging them in order, we get T  of Sect. 2.1.
The dataset contains estimates of taxi counts for 

L
◦

def
= 260, 855 one-directional links (roadways) in New York 

City; a two-directional road segment is represented as two 
one-directional links. We use OpenStreetMap labels. Table 1 
gives a statistical summary of these links.

In total, the dataset of Donovan et al. (2016) thus has

entries. About 95% of these (2,181,923,208) are zero. Given 
that New York City is an urban environment and unlikely to 

(13)[2011-01-01 00:00, 2012-01-01 00:00).

T = 365
⏟⏟⏟

days per year

× 24
⏟⏟⏟

hours per day

= 8, 760

8, 760 × 260, 855 ≈ 2.3 × 109

Fig. 1  Nonzero entries with respect to links sorted in decreasing 
order of traffic usage

Table 1  Statistic of link lengths (in meters)

Statistic value for all 260, 855 
links

value for 2, 302 links 
with < 30 missing 
hours

Mean 133.0 106.4
Median 95.6 80.0
Mode 79.3 78.5
Std.Dev 107.8 133.1
Minimum 2.8 40.0
Maximum 3937.1 2676.248
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have empty roads at any time of the day, we reset these zero 
entries to NaN . To restrict our calculations to a subset for 
which we have somewhat reliable data, we will consider only 
those links for which there are at most a total of 720 missing 
hours (30 days worth) of data. We get L with L

def
= 2, 302 . 

Selecting more links comes with the benefit of incorporating 
more traffic data into our analysis while also introducing the 
cost of having a higher number of missing data entries. The 
distribution of entries is shown in Fig. 1. Multiplying these 
links by the time horizon of 8, 760 hours gives over 2 × 107 
data points. Our goal is to understand how to appropriately 
identify and understand complex patterns in this data. Fig-
ure 1 shows that 2, 302 of the most-traveled links captures 
19% of the entries in D. Adding more (sparsely traveled) 
links would correspond to adding sparse columns to D, per-
haps with diminishing returns for data interpretation.

Constants, Initialization, and Computational 
Considerations

For our year-long taxi traffic dataset, on the links of L , we 
use:

• � = max
1 ≤ t ≤ T

1 ≤ � ≤ L

|Dt,�| = 4171,

• rank: N = 50 ,
• � = 5000.

These values stem from a grid search of the results of the 
algorithm of Sect. 2.5. The initial entries of W and H (i.e., 
the initial condition of W and H) are taken to be i.i.d. Uni-
form(0, 1) random variables (thus ensuring that W and H 
start with full rank). We disregard runs which lead to zero 
columns of W; such zero columns are invariant under our 
multiplicative update rule and indicate sub-optimal use of 
rank. Note that, by (5) and (6), an iteration leading to a zero 
column of W will produce a zero row of H and vice versa. 
The algorithm is relatively insensitive to changes in � , and 
the above value of � leads to values of W which are not too 
large. Fixing the value of � (to the above value), we carry out 
a refined grid search on the (N, �) parameters. Table  2 gives 
specific numerical results for two pairs of (N, �) parameters.

By thresholding H, we can forcibly express our approxi-
mation of each D as a linear combination of as few signa-
tures as possible. For each column of H, we set all entries 
in each column below the 40th percentile of that column to 
zero. In practice, this reduces each link to a linear combina-
tion of at most eight signatures. Table  3 updates Table 2 
once we have thresholded.

The results of the grid search in (N, �) are summarized 
in Figs. 2 and 3. These figures confirm a natural tradeoff: 

Table 2  Comparison of 
two (N, �) choices without 
thresholding H

N = 50, N = 70,
� = 5000 � = 2000

Error 25.8 23.7
Sparsity 0.789 0.814

Fig. 2  Results of an (N, �) grid 
search: Relative error percent-
ages (after thresholding H) for 
various (N, �) pairs
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higher N allows lower error and higher � leads to better 
sparsity, and these are competing objectives, however. We 
generally consider a sparsity value between 0.8 and 1.0 to 
be sufficient as it allows for only a handful of dominant sig-
natures per link.

Informally, higher values of � are likely to mean sparser 
H, and higher values of N mean a larger universe of signa-
tures. Hence, in cases where the algorithm produces a zero 
signature, we take this to mean that the matrix factorization 
needs a smaller rank.

To focus on the interpretation of the output of the algo-
rithm, let us now fix N = 50 (the smaller value of N) and 
� = 5000 for the rest of this section. The output consists of 
two matrices W and H of sizes 8, 760 × 50 and 50 × 2, 302 , 
respectively. The columns of W are L1-normalized and the 
columns of H are sparse.

Recall that columns of W represent traffic signatures over 
time. Each signature is a time-series for the entire year and 

hence need not be periodic. For example, the signatures can 
capture traffic anomalies during holidays, hurricanes, and 
blackouts.

Furthermore, the entries of a column of H are coefficients 
for the linear decomposition of a link into distinct signatures. 
For example, if the 4-th column of H is (0, 7, 2, 0,… , 0)T , 
then the traffic in link 4 of L can be written as seven times 
the second signature plus two times the third signature. This 
decomposition allows us to identify spatial patterns in traffic 
across the city. These matrices and the patterns derived from 
them can then aid in making specific observations about the 
large-scale behavior of traffic (as detailed in Sect. 4.4).

Independence of Signatures

To quantify the linear independence of the signatures 
obtained from the algorithm, we can compute the condition 
number of WHagen et al. (2000). A high condition num-
ber (in the thousands) would indicate that the rank should 
be reduced. By performing several runs of our algorithm 
for rank N = 50 with different (W, H)-initializations, we 
determine

This number is low enough to give us confidence in the W 
returned by the algorithm., and further validates our choice 
of N = 50.

Condition Number for W = 24 ± 2

Fig. 3  Results of an (N, �) grid 
search: Sparsity of H (after 
thresholding H) for vari-
ous (N, �) pairs

Table 3  Updated comparison of two (N, �) choices after thresholding 
H

N = 50, N = 70,
� = 5000 � = 2000

Error before thresholding 25.8 23.7
Error after thresholding 39.3 38.2
Sparsity before thresholding 0.789 0.814
Sparsity after thresholding 0.900 0.913
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Robustness of Algorithm

The factors produced by our algorithm are not unique and 
can differ by permutations. If W1 and W2 are produced by 
two runs of the algorithm (starting with different initial 
conditions), we can calculate the Pearson product-moment 
correlation coefficient between the columns of W1 and the 
columns of W2 . A coefficient value close to one implies that 
the signatures follow the same pattern up to a scale factor. 
We can construct a greedy algorithm for searching for a per-
mutation which will maximize correlations by sequencing 
through the columns of W1 , finding the column of W2 which 
maximizes the correlation (with respect to the selected 
column of W1 ), and then removing that column of W2 from 
future computations. We can thus permute the columns of 
W2 to better match those of W1 . After doing this, we can 
construct a heatmap which shows the correlation between 
the columns of W1 and the columns of (the permuted) W2 . 
Figure 4 shows this heatmap for two runs of the Algorithm 
of Sect.  2.5 with different (random) initial conditions and 
with the prevailing values of � = 4171 , N = 50 and � = 5000 
(see Sect. 4.1). 4 gives the correlation between the i-th col-
umn of W1 and the j-th column of the permuted W2 . We see 
high correlation on the diagonal, meaning that the original 
matrix W2 is very close to a permutation of W1.

We make observations about the low-rank decomposition 
are in Sect. 4.4.

Periodicity and Anomalous Observations

We note that the columns of D (and hence the signatures) are 
roughly periodic, with a period of 7 days. A power spectrum 
periodogram of D (averaged over all columns) is shown in 
Fig.  5.

In light of this periodicity, we can look at one day of the 
week across the entire year (e.g., all Mondays) and compute 
the hour-wise median traffic for that day and then identify 
anomalous behavior. See Figs. 6, 7a, 8a, and 8b (in dark red). 
In gray, we plot the relative taxi counts i.e., entries of the 
normalized signatures. We then determine which dates have 
relative taxi counts that differ significantly from the hour-
wise median traffic in the sense that those (signature, day) 
pairs have the highest sum of absolute deviations from the 
median weekly traffic. In the subsections below, we identify 
some possible origins of anomalous behavior.

Hurricane Irene

Figure 6 shows Signature 0, which captures a near-shut-
down of taxi traffic on August 27, 2011. This may have 

Fig. 4  Heatmap of correlation 
coefficients of W-columns from 
two runs of the algorithm
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been caused by Hurricane Irene hitting NYC. There was an 
early warning and all subways and buses were shut down 
at noon on Saturday, August 27. A zoned taxi system was 
implemented at 9 am and taxis were thereafter running flat 
fares instead of meters [wny]. All other signatures also show 
similar behavior on and around August 28.

Wisconsin Labor Rally

Figure 7a shows the behavior of Signature 21 on February 
26, 2011. The traffic deviates from the median Saturday 
trend. This may have been caused by a Labor Rally that 
took place near the New York City Town Hall [wis]. Figure  
7b shows that Signature 21 is used by links near the Town 
Hall, which can be seen as further evidence connecting the 
rally to this traffic deviation.

Christmas Day

Anomalous behavior was also observed on Christmas Day. 
This can be seen in Fig. 8a for Signature 0 and Fig. 8b for 
Signature 4. Note how the Christmas Day traffic is reduced 
by about half throughout the day.

Endemic Signatures

After thresholding as discussed in Sect. 4.1, we can show 
the support {� ∈ L ∶ Hj,� > 0} of signature n on a map, for 
any given n ∈ {1, 2…N} . See Fig. 9. We note that of the 
50 signatures, some tend to be geographically restricted 
(called endemic), while others are spread out over larger 
areas (called dispersed). For example, Signature 0, as seen 
in Fig. 9a is dispersed. Endemic signatures might some-
times explain traffic densities only on a single but long 
stretch of road. For example, Fig. 9b shows that Signature 
10 is largely used by the the northbound 3rd Avenue and 
streets like Bowery, Lafayette St. and the southernmost 
part of Broadway that feed into 3rd Avenue. Similarly, 
Fig. 9d shows Signature 40 being used exclusively by a 
small section of the south-bound Broadway traffic near 
Central Park.

In some other cases, signatures can be seen as having a 
lateral sphere of influence in that they affect not only one 
street but also others feeding into or out of the street trans-
versally—Signature 24, for example, as seen in Fig. 9c.

Analysis of New York City Data: Error 
Analysis

We second carry out the error analysis of Sect. 3. We will 
use

Fig. 5  A power-spectrum periodogram showing 7-day periodicity in 
taxi count data averaged over all links. It is standard practice to meas-
ure y-axis values in periodograms in terms of Volt-squared. The peak 

at 7 shows weekly periodicity. The peaks at 3.5 days (i.e. half-time-
step), 2.33 days (i.e. a third-time-step), and 1.75 days (i.e. a quarter-
time-step) can be seen as overtones of the 7-day periodicity

Fig. 6  Signature 0 during Hurricane Irene (August 27). The other 
low traffic volume day marked by the dashed line is July 09 which 
saw a Yankees vs. Tampa Bay Rays baseball game in Bronx and was 
attended by more than than 48 thousand people
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as the sets of (11).
Figure 10 gives us Plot 1. We see that Sparsity increases 

with an increase in � for every value of N ∈ N  . This 

N
def
= {40, 50, 60, 70, 80, 90}

B
def
= {0, 1000, 2000,⋯ , 9000}.

confirms that we can reparametrize � as Sparsity ∗ from 
Sect.  3.2 for fixed values of N.

Figures 11, 12, 13 14 gives Plot 2. Namely, for each sea-
son T′ , it gives (Sparsity ∗(N, �), E∗(N, �, T�) . We compare 
each season with the yearly average and note that in spring 
and winter, the seasonal (relative) error of our approximation 

Fig. 7  Signature 21 during February 26 2011. The other days with 
anomalous traffic compared to median signature 21 traffic were April 
2 (International Pillow fight Day which involved public gatherings at 
the Union Square as well as several police blockades) and April 30 
(cause for anomalous traffic unknown). This underscores the fact that 

the matrix factorization can pick out patterns and anomalous behavior 
but it is up to us to make sense of it and assign a sensible cause to 
each anomaly. a Signature 21 during the Wisconsin Labor Rally. b A 
map of signature 21 with location of Wisconsin Labor Rally

Fig. 8  Anomalous traffic during Christmas day. a Signature 0 during Christmas day. The other marked day represents Hurricane Irene day 4 
(August 28). b Signature 4 during Christmas day. The other marked day represents Hurricane Irene day 4 (August 28)
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is lesser then the yearly (relative) error. This indicates that 
spring and winter traffic are comparatively low-rank and thus 
more orderly. The fall and summer traffic are more disor-
dered and have higher approximation error than the yearly 
average. We also note that the gap between the season and 
annual approximation errors is more pronounced in fall and 
winter compared to spring and summer. This indicates that 
spring and summer are more representative of the annual 
traffic trends while fall and winter capture more of the anom-
alous behavior in our traffic dataset.

Figures  15, 16, 17, 18 gives Plot 3. As with Figures 11, 
12, 1314, we see a bit more order in the spring and winter, 
and a bit more disorder in the summer and fall. (Since we 

restrict the analysis to links missing at most 30 days (1/4 of 
a season), these conclusions we are likely to be statistically 
meaningful).

Variables Other Than Taxi‑Counts

We looked at variables other than taxi counts and observed 
similar low-rank (periodic) behavior in the data. Figure  19 
shows 7-day periodicity in taxi travel times, speeds, pace 
(reciprocal of speed) and taxi density (which was computed 
as a ratio of the taxi counts to link lengths).

A matrix factorization similar to the one shown here for 
taxi counts might be mathematically carried out for each of 

Fig. 9  Spatial Patterns. a Links highlighted in blue use Signature 0 in their decomposition. b Similarly for Signature 10 (c) Signature 24 repre-
senting 7th Avenue and immediate side streets. d Signature 40 representing a section of Broadway near Central Park

Fig. 10  Sparsity as a function 
of � for different values from N  
(Plot type 1)
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Fig. 11  Seasonal Error as a 
function of Sparsity (Plot type 
2): Spring

Fig. 12  Seasonal Error as a 
function of Sparsity (Plot type 
2): Summer

Fig. 13  Seasonal Error as a 
function of Sparsity (Plot type 
2): Fall
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Fig. 14  Seasonal Error as a 
function of Sparsity (Plot type 
2): Winter

Fig. 15  Seasonal Error as a 
function of rank N (Plot type 3): 
Spring

Fig. 16  Seasonal Error as a 
function of rank N (Plot type 3): 
Summer
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these variables. However, since pace and speed are not addi-
tive, the interpretation of these matrix factorizations would 
have to be carefully motivated.

Conclusions

In this paper, we studied a New York City taxi traffic data-
set using SNMF techniques. This gave us some insight into 
underlying behavior with a small number of signatures. It 
also enabled identification of anomalous traffic patterns 
which we visualized in Sect. 4.4. These visualizations cap-
tured several widespread anomalous events.

We also developed an analysis which might suggest 
comparisons between traffic patterns in different circum-
stances (viz. different time intervals). Various city attrib-
utes can be connected to different traffic conditions and 
signatures. This might be relevant for adaptive urban plan-
ning and scheduling.

One result of any coarse-graining analysis, such as ours, 
is to help focus exploration of large datasets around pat-
terns and events of interest. If one already understands 
the data and is designing, e.g., an incident detection algo-
rithm, then other (perhaps model-based) approaches might 
give more refined and/or complementary insights.

This work did not directly address generalizeability of 
this approach to other cities. Comparable datasets from 
other cities would enable us to search for city-specific idi-
osyncratic behavior as opposed to behavior which might 
be somewhat invariant to the urban environment.

Starting with our analysis of seasonal error in Sect.  5, 
another interesting future direction would be a closer look 
at how different signatures (which last over the interval 
(13) of a year) might preferentially represent behavior of 
different seasons. Informally, the rank of signatures rep-
resenting a particular season’s behavior might be another 
indication of the complexity of traffic in that season.

Fig. 17  Seasonal Error as a 
function of rank N (Plot type 
3): Fall

Fig. 18  Seasonal Error as a 
function of rank N (Plot type 3): 
Winter
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Appendix

For completeness, let’s write down the calculations lead-
ing to the algorithm of Sect. 2.5.

Writing out E�,� of (5), we get

E�,�(W,H) =
∑

(t,�)∈I

||Dt,� − (WH)t,�
||
2

+ �

N∑

n=1

(
L∑

�=1

Hn,�

)2

+ �

N∑

n=1

T∑

t=1

W2
�,t
.

We seek to minimize this by alternating between minimi-
zation problems in W and H. Namely, if we start with a 
fixed (W,H) ∈ ℝ

T×N
+

×ℝ
N×L
+

 , we can construct a descent 
step for the function E�,�(W, ⋅) and then, letting H′ be the 
result, we can construct a descent step for E�,�(⋅,H�) . This 
should decrease the value of E�,� , and we can then proceed 
iteratively.

The gradients of E�,� in the directions of W and H are 
given by

Fig. 19  A power-spectrum periodogram of taxi-traffic data for travel times, pace (i.e. inverse of speed), speed and density (i.e. taxi count divided 
by link lengths). The data were averaged over all links. These periodograms are very similar to the one shown in Fig. 5 for taxi counts
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and

As in Kim and Park (2008), we want to iteratively find the 
critical points of E�,� , i.e. the solutions of

The above formulae suggest a multiplicative descent rule 
(which need not be gradient descent; see Lee and Seung 
(2001)). Fix (W,H) ∈ ℝ

T×N
+

×ℝ
N×L
+

 . Assume that

we can then decrease the value of E�,� by decreasing Hn,� . 
Rewriting (14) as

or rather

since W, H, and D all have nonnegative entries, both sides 
of this equation are nonnegative. This in turn can be written 
as 𝜒h

n,�
(W,H) < 1 where

Thus, another way to decrease Hn,� while still retaining non-
negativity is to multiply it by �h

n,�
(W,H) . Reviewing these 

steps, we also see that if 𝜕E𝛽,𝜂
𝜕Hn,�

< 0 , we want to increase Hn,� , 

and can again multiply by �h
n,�

(W,H) . Finally, if �E�

�Hn,�

= 0 
(i.e., we have found a critical point) �h

n,�
(W,H) = 1 , so mul-

tiplying Hn,� by �h
n,�

(W,H) leaves Hn,� unchanged.
The update rule for Wt,n is similar. To start, assume that

𝜕E𝛽,𝜂

𝜕Wt̂,n̂

(W,H) = −2
∑

�∶(t̂,�)∈I

(
Dt̂,� −

N∑

n=1

Wt̂,nHn,�

)
Hn̂,�

+ 𝜂Wt̂,n̂

= −2
(
[D −WH]IH

T + 𝜂W
)
t̂,n̂

𝜕E𝛽,𝜂

𝜕Hn̂,�̂

(W,H) = −2
∑

t∶(t,�̂)∈I

(
Dt,�̂ −

N∑

n=1

Wt,nHn,�̂

)
Wt,n̂

+ 2𝛽

(
N∑

n=1

Hn,�̂

)

= −2
(
WT [D −WH]I

)
n̂,�̂

+ 2𝛽(�N×NH)n̂,�̂ .

[WH]IH
T − [D]IH

T + �W = 0

WT [WH]I −WT [D]I + ��N×NH = 0

(14)
𝜕E𝛽,𝜂

𝜕Hn,�

> 0;

−2
(
WT [D −WH]I

)
n,�

+ 2𝛽(�N×NH)n,� > 0

(
WT [WH]I

)
n,�

+ 𝛽(�N×NH)n,� >
(
WT [D]I

)
n,�

,

�h
n,�

(W,H)
def
=

(
WT [D]I

)
n,�(

WT [WH]I
)
n,�

+ �(�N×NH)n,�
.

then we can decrease E�,� by decreasing Wt,n . We can rewrite 
(15) as

We can again rewrite this as the comparison of two non-
negative quantities;

This in turn is equivalent to 𝜒w
t,n
(W,H) < 1 where

In other words, we can decrease Wt,n by multiplying by 
�w
t,n
(W,H) . One can similarly see that if 𝜕E𝛽

𝜕Wt,n

< 0 , gradient 
descent again increases or decreases W with the same sign 
as multiplying by �w

t,n
(W,H).

Our proposed update rule for W and H is now

which is equivalent to (6).
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