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Abstract

Analyzing transportation network vulnerabilities to disruptions is
crucial for society to maintain commodity flows across the globe. How-
ever, most vulnerability analyses focus on impacts that arise from the
deterioration of single network components, which can overlook spa-
tial correlations between multiple components that manifest during
area-spanning disruptions, such as those stemming from natural haz-
ards. Here, we demonstrate an intuitive approach for inferring spatial
vulnerabilities to area-spanning disruptions. In particular, we show
how partial dependency plots derived from gradient boosting machines
trained on routing simulations can be used to depict the average effect
a disruption’s location has on impacts while controlling for other in-
put variables and spatial interdependencies embedded in the network.
Although we demonstrate our approach for Middle Tennessee’s inter-
modal road and rail freight transportation network, our framework
can easily be applied to other networks and regions.

Keywords: Network vulnerability; transportation disruption analysis; par-
tial dependency plot; gradient boosting machine; freight simulation



1 Introduction

1.1 Background

The US multimodal freight transportation network is an extensive collection
of road, rail, air, waterway, and pipeline transports that is vital for maintain-
ing commodity flows throughout the domestic and global economy (Darayi,
Barker, and Nicholson, 2019). In 2017, this system handled approximately
18 billion tons, $17.5 trillion, of freight (USDOT, 2019). Disruptions to this
intermodal network, such as those resulting from extreme weather events,
infrastructure failure, or terrorist attacks, pose a significant threat to its op-
erations and the well-being of communities around the world (Freiria et al.,
2015; Ivanov, 2020). As such, researchers and policy makers have found it
prudent to examine vulnerabilities within this network.

The term wvulnerability spans many disciplines but generally refers to a
system’s or entity’s susceptibility to harm (UNDP, 2011). A common ap-
proach to analyzing vulnerabilities in transportation networks is to examine
impacts that result from the disruption or impairment of network compo-
nents (i.e., links and nodes) (Sullivan et al., 2009; Whitman et al., 2017).
Impacts can be evaluated using theoretical measures derived from graph-
theory, such as loss in connectivity, or empirical measures, such as estimated
increases travel times or distances (A. Chen et al., 1999; Kim et al., 2015;
Murray and Grubesic, 2007; Whitman et al., 2017). Effective risk mitigation
strategies typically entail hardening network components whose disruptions
result in the most adverse outcomes. The range of applications for these
types of vulnerability analyses is vast, including but not limited to emer-
gency health preparedness and disaster response planning (Asakura, 1999;
Baghalian et al., 2013; Freiria et al., 2015; Murray-Tuite and Mahmassani,
2004; Peng et al., 2014; Sohn, 2006).

Network vulnerability analyses can generally be categorized by the types
of scenarios being studied (Haghighi et al., 2018; Murray and Grubesic,
2007). First, worst-case scenario planning entails researchers focusing on
what set of disruptions most severely impact the network (Sullivan et al.,
2009; Gedik et al., 2014; Wang et al., 2016; Xu et al., 2017). For exam-
ple, Murray-Tuite and Mahmassani (2004) modeled a game where an “evil
entity” tries to cause the worst possible situation for a traffic management
agency. Second, case-specific scenarios involve researchers investigating im-
pacts from a particular event(s). For example, Cho et al. (2001) and Tatano



and Tsuchiya (2008) examine impacts to urban transportation networks re-
sulting from prescribed earthquake hazards likely to affect their areas of
interest. Lastly, full-range scenarios involve researchers scanning all possi-
ble link removals in the network and determining their subsequent impacts
(Jenelius and Mattsson, 2012). For example, Sohn (2006) studied the effects
of systematically degrading every link in Maryland’s highway network.

While each approach has its merits, full-range scenarios are particularly
useful for gaining a holistic understanding of vulnerabilities in a network
(Jenelius and Mattsson, 2012; Sugishita and Yasuo Asakura, 2021). Tradi-
tionally, these studies involve researchers enumerating all components of a
network and then examining the effects of degrading each network component
one at a time (Haghighi et al., 2018; Jenelius and Mattsson, 2012; Snyder
and Daskin, 2007; Wang et al., 2016). This single-component approach can
be appropriate for modeling localized disruptions, such as bridge failures or
car accidents (Whitman et al., 2017). However, it fails to capture spatial cor-
relations between network components that are pertinent for area-spanning
disruptions, such as those stemming from extreme weather events (Haghighi
et al., 2018; Jenelius and Mattsson, 2012; Calatayud et al., 2017; Sugishita
and Yasuo Asakura, 2021).

Consequently, several studies have expressed the need to consider simul-
taneous disruptions of multiple components when analyzing network vul-
nerabilities (Jenelius and Mattsson, 2012; Xu et al., 2017; Haghighi et al.,
2018). For example, Patterson and Apostolakis (2007) noted that risks of
terrorist attacks on the Massachusetts Institute of Technology campus’ power
and utility networks differed when they examined components on an area-
spanning basis versus separate from one another. Similarly, Jenelius and
Mattsson (2012) found that impacts from area-spanning disruptions along
Sweden’s roadway were mostly affected by total levels of inbound and out-
bound traffic, as opposed to cases of single-link failures where proximate
network redundancies and segment flows were the main factors.

However, enumerating and evaluating all possible combinations of multi-
component disruptions can be computationally impractical for full-range sce-
narios, especially given a large and/or complex network (Chow and Regan,
2014; Wang et al., 2016; Xu et al., 2017). One way to alleviate this prob-
lem is for researchers to limit the number of scenarios being considered, as
Jenelius and Mattsson (2012) did by representing area-spanning scenarios as
a finite set of grid boxes. One downside with this type of approach is that
some important scenarios may be inadvertently left out of the analysis (Wang
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et al., 2016; Xu et al., 2017). Alternatively, Wang et al. (2016) and Xu et al.
(2017) developed optimization techniques to identify critical network com-
ponents during simultaneous, multi-component disruptions without needing
to scan all possible combinations of events. The drawback of these optimiza-
tion techniques is that although the impacts of all scenarios are technically
considered, they are only evaluated for the best and/or worst case-scenarios
(i.e., they establish a lower and/or upper bound on impacts). Consequently,
accurate interpolations of impacts from other scenarios are largely infeasible.
Lastly, researchers can train surrogate models on a subset of simulated sce-
narios in order to predict outcomes of other scenarios at lower computational
costs (Chow and Regan, 2014; Hartig et al., 2014). For example, Haghighi
et al. (2018) simulated disruptions from several area-spanning earthquakes
in Salt Lake County and trained a linear regression on results to interpolate
outcomes of other related events. However, this type of approach is limited
by the effectiveness of the surrogate model.

1.2 Problem Statement

Analyzing vulnerabilities in transportation networks is crucial for helping so-
cieties maintain their livelihoods (Darayi, Barker, and Nicholson, 2019). A
proven approach for examining vulnerabilities in transportation networks is
to evaluate impacts from disruptions across a full-range of scenarios (i.e., per-
form a complete network scan). However, for simultaneous, multi-component
disruptions, such as those arising from natural disasters, evaluating all pos-
sible disruptions is computationally burdensome. There are several different
approaches to alleviate this problem, such as limiting the number of scenar-
ios being considered, using sophisticated optimization techniques to obviate
the need to specify all scenarios, and employing surrogate models to inter-
polate simulation results at low computational costs. Each approach has
its benefits and drawbacks, and ultimately, “there is no analytical approach
of transportation network vulnerability with a systematic consideration and
quantification of all possible simultaneous disruptions” (Xu et al., 2017).

In this paper, we certainly do not claim to solve this problem but do
demonstrate an intuitive approach for inferring and depicting network vulner-
abilities to area-spanning disruptions that helps mitigate some of the draw-
backs of prior studies. More specifically, we show how partial dependency
plots (PDPs) derived from gradient boosting machine (GBM) surrogate mod-
els trained on outputs from a routing simulation can be used to depict the
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marginal effect a disruption’s location has on impacts while controlling for
other input variables and spatial correlations between network components,
thereby revealing which areas of the network are most vulnerable to disrup-
tions. The GBMs are a much more sophisticated statistical technique than
the linear regressions employed by Haghighi et al. (2018) and are able to ac-
curately predict simulation outcomes and model complex spatial dependen-
cies between network components without making any a-priori, simplifying
assumptions. Additionally, the PDPs are able to depict a heat-map of net-
work vulnerabilities at a much higher resolution, both in terms of space and
scenarios, than the grid-box approached discussed by Jenelius and Matts-
son (2012). Although PDPs have been extensively featured in the machine
learning literature, to the best of our knowledge, they have not been used to
identify vulnerable components in a network.

2 Methods

Our methodology demonstrates how researchers can use PDPs to depict spa-
tial vulnerabilities in transportation disruption analyses. The PDPs are de-
rived from surrogate models that are trained on the results of a transportation
network disruption simulation. Here, we employ GBMs as surrogate mod-
els because they are powerful, non-parametric machine learning procedures
capable of learning spatial interdependencies in networks and accurately pre-
dicting outcomes of complex simulations. However, researchers can use other
machine learning methods if they are better suited to their particular analy-
sis. Related, we demonstrate our approach as a proof of concept with Middle
Tennessee’s intermodal road and rail freight transportation network, but our
overall framework can be easily extended to other applications.

The remainder of the methodology section is outlined as follows. Section
2.1 describes how we constructed Tennessee’s intermodal freight network.
Section 2.2 discusses how we simulate disruption scenarios on this network.
Section 2.3 shows how we trained GBM surrogate models on the results of
the disruption simulations. Section 2.4 discusses how we use PDPs derived
from the GBMs to illustrate spatial vulnerabilities in the network to these
disruptions. As mentioned, researchers can explore alternative means of sim-
ulating impacts from disruptions and training surrogate models (Sections 2.1
- 2.3) and still find utility in the PDPs.



2.1 Middle Tennessee Intermodal Freight Network

In this section, we give an overview of how we construct the road and rail
freight intermodal network for the Middle Tennessee region and discuss how
we instantiate routes in our simulation. Exact details for reproducing our
analysis can be found in Appendix I.

The road portion of the network is primarily based on data from the
Freight Analysis Framework (FAF) (Ford, 2017). With the FAF data, we are
able to create a georeferenced road network that includes edge characteris-
tics such as expected traversal times and corresponding flow metrics such as
freight volume. The road network is depicted in Figure 1 (green lines).

e Stations
= Rail

— Road
[ FAF Zone 472

Figure 1: Middle Tennessee Road and Rail Network

We instantiate road freight routes in the simulation at various parts of the
network. For major interstates, we use the freight volume reported on each
interstate leading into the region, separated by direction, as the originating
volume. These originating flows are then distributed to a set of destinations,
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comprised of each interstate leading out of the region (through-freight) and
a random sample of highway points within the region (terminating routes),
based on reported Nashville freight data (Organization, 2010). In total, there
are 60 unique interstate-origin flows. Non-interstate origins are determined
by randomly selecting 100 non-interstate highway segments in the region.
For each of these origins, flows consisting of total reported freight volume on
that segment are uniformly distributed to a random selection of ten other
non-interstate highway segments as destinations, which results in 1000 dis-
tinct OD flows. These respective allocations create an extensive, empirically
based, and steady baseline flow along both the interstate and non-interstate
highways without the simulation being overly burdensome from a computa-
tional standpoint.

The rail portion of the network is primarily based on private Waybill
data, which contain records of carloads, tons shipped, commodity identifies,
and intermodal capabilities of rail cars that pass through the Middle Ten-
nessee region. However, since each Waybill entry corresponds to an individual
Origin-Destination (OD) shipment, we aggregate records by unique legs of
the rail network to get segment-level flow estimates in order to match the
granularity of the road flows. The US Department of Transportation (US-
DOT) has recognized the necessity of this task and developed a routing tool
to specifically work with the Waybill data to accomplish this task (Wright
and Baker, 2017). We use this tool to map rail freight flows to corresponding
segments defined by the USDOT, shown in Figure 1 (blue lines).

We instantiate the rail freight flows for the simulation by making the rea-
sonable assumption that they originate on the network edges at the boundary
of the region and at major rail yards within the study area. Destinations are
simply all other origin points, resulting in 42 unique rail flows. The total
originating volume at each point is taken from the Waybill-reported volume.
This volume is split between the destination points proportionally, according
to their relative originating volumes.

It should be noted that instead of using segment-level commodity flows
to ground both the road and rail portions of the network, we could have
elected to use the more granular, OD-level Waybill records to ground the
rail portion. However, doing so would complicate the routing logic without
adding additional fidelity to the road portion of the simulation. Ideally, we
would have OD-level data for both rail and road networks on which to base
our simulation.

Using ArcGIS’ network analysis, we then merge the road and rail networks
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into a single, intermodal network, with rail stations serving as the topological
nodes that link the two modes of transport (red dots, Figure 1). At these
intermodal switching points, we assume the time cost of transfer to be one
hour based on industry insights. Next, we convert volumes of road and rail
commodity flows into a common unit for analysis, ton-miles per hour, to
allow for fair comparisons and transitions between modes of transport.

We base edge capacities on this same unit. For road segment capacity,
FAF specifies capacities in ton-miles per hour. For rail, we assume capacity to
be the current volume reported in Waybill because many of the nation’s rail
corridors are operating near capacity in terms of trains per day (Systematics,
2007; Dingler et al., 2010).

All road freight traffic is assumed to be intermodal-capable (i.e., all freight
in trucks can be transferred to rail cars if needed); however, this situation
rarely occurs because road networks have many alternative routes that are
easier to traverse than switching modes of transport. Conversely, the pro-
portion of rail traffic that is intermodal-capable is calculated as the average
amount of existing intermodal-capable volume in the region, divided by the
total amount of rail volume.

2.2 Simulations

Next, we simulate 24,000 different hazard scenarios and determine their im-
pacts on freight travel times and travel distances. In this section, we first
describe the general simulation procedures and then discuss how disruptions
cause changes in routing conditions.

2.2.1 Simulation Setup and Baseline Condition

The 1102 total OD flows (1060 road and 42 rail) established in Section 2.1
itemize the amount of freight flowing between various points on the network
over a time period of one hour, so dispatching all this volume as if it were a
single shipment is not reasonable. As such, we divide the OD freight flows
into blocks of up to 250 tons per road routes and 100 tons per rail routes,
which are distributed uniformly over ten-minute intervals.

At each interval, routes for each flow block are determined simultane-
ously and non-cooperatively with each other, using Dijkstra’s shortest path
algorithm for travel times given the current conditions of the network. This
routing behavior emulates the concept of traffic-aware routing: preferring



lower-traffic routes with marginally longer distance due to overall time sav-
ings (Fotakis et al., 2002). However, routes cannot change once when are
dispatched. Formally, this approach is known as Incremental Traffic Assign-
ment, where fixed proportions of travel demand are incrementally assigned
at set intervals (Saw et al., 2014).

A network segment’s baseline traversal time is determined by the road
and rail network data previously discussed, and this traversal time remains
constant until volume along a segment exceeds its capacity. When a road or
rail network segment exceeds its defined capacity, we penalize its traversal
time in proportion to how much the segment is over capacity (i.e., 50% over
capacity translates to 50% added travel time). This traversal time function
is specified in equation (1) below:

- YT, Vi <, X
: VTlgll, Vi>C 1)

T, is the travel time of the network link [ based on its current volume
Vi, 7 is the hazard severity value (discussed later), 7; is the free flow travel
time of link [, and C} is the capacity of link /. Here, capacity refers to the
point at which free flow traffic conditions are degraded, not a hard limit
for the maximum volume that can traverse a segment. For the purposes
of routing logic in this simulation, imposing a max capacity restriction has
the potential to create unresolvable gridlocks by eliminating certain routes
altogether. Instead, we elect to limit volume per segment by prohibitively
large traversal time penalties.

As such, early simulation flow blocks are routed according to their pure
shortest travel time paths because volume on network segments has not
reached capacity. Once volume builds up on segments to the point of reach-
ing over-capacity, subsequent flow blocks may choose alternative routes if
they take less time to traverse. Ultimately, the simulation runs for a total
of 360 time steps, the equivalent of 60 simulation hours, to provide ample
time for baseline conditions to reach steady flows before being subjected to
disruptions (discussed later).

It should be noted that there are other traffic simulation methods that
would be viable alternatives to the approaches we have taken and potentially
result in higher fidelity simulations. Traffic assignments could be based on
user-equilibrium or stochastic approaches (Saw et al., 2014). Similarly, im-
posing hard capacity limits on links could be implemented in lieu of time
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penalties. Additionally, alternative travel time functions could be used; we
used a piece-wise function in order to better represent railway travel times
that can tolerate additional traffic without experiencing effects on travel
times and because we observed unrealistic effects when using a polynomial
travel time model due to low connectivity in some portions of the network.
Ultimately, these are all modeling choices that can be further explored but
still work with our overall framework.

2.2.2 Disruption Conditions

Hazards are represented as circles with varying size (radius), severity (relative
impairment cost), and centroid location (latitude and longitude). Any part
of the network that the hazard circle overlaps incurs an impairment cost,
modeled as a relative time penalty to traverse that part of the network.
This method is similar to the grid-box approach presented by Jenelius and
Mattsson (2012). However, the randomized circular hazards allow us to vary
the size of the threats and give more precise coordinates to use as inputs to
the machine learning models.

In the presence of a disruption, the travel time of affected network seg-
ments, whether they are over-capacity or not, is increased proportionally by
the severity of the disruption (see, equation (1)). The severity value is ran-
domly chosen from values v = {2,4,8,16,32}, and we use this power-law
progression to help demonstrate the scalability of the statistical models (i.e.,
to show that the GBMs can accurately predict “minor” and “severe” disrup-
tions). We apply the severity uniformly across the hazard. This is a modeling
choice done to more easily depict where the direct impacts are observed and
simply allow indirect effects to propagate outwards from the impact area.
Alternatively, one could also model severity as a decreasing function of dis-
tance from the centroid of the hazard and/or explore other possibilities. The
increased costs of affected network segments (according to equation (1)) are
used during origin-destination route computation by Dijkstra’s algorithm.

Disruptions are modeled to occur for 20 simulation hours (one third of
the overall simulation), beginning 20 hours after the start of the simulation.
This delayed onset of the disruption allows simulation flows to stabilize before
effects from the disruption are imposed, and vice-versa for the final 20 hours
of the simulation where the disruption has ceased. We elect not to vary
hazard duration for simplification purposes; the main goal of the simulation
is not to achieve the highest possible fidelity but to be sufficient enough

10



to demonstrate the scalability of the machine learning procedures discussed
later. As such, disaster scaling is more easily achieved by simply varying
values for severity while keeping the disruption intervals constant. However,
modeling the effects of hazard duration in conjunction with hard capacity
limits is an alternative approach that we plan to explore in the future.

Overall, 24,000 disruption scenarios are simulated. The centroid locations
of the hazards (longitude and latitude coordinates within the study area)
are sampled via stratified randomization to ensure spatial coverage, and the
radius of the hazard is randomly sampled from 1 to 40 miles to capture a
wide range of spatial dependencies between network components within the
study area. As mentioned, severity is randomly sampled from the values 2, 4,
8, 16, and 32 to help incorporate effects of “minor” to “severe” disruptions.
Given these input variables, the primary outputs of the simulations are the
total changes in travel times and travel distances aggregated across all routes
relative to baseline conditions.

It should be noted that we impose the same schedule of dispatched OD
routes for when we run the simulation with a disruption as we do for the
baseline scenario (i.e., no hazard present). It is likely that during a large-
scale disruption network demand would decreased due to reduced commercial
activity and expected transportation issues. However, in the interest of main-
taining consistent conditions to allow for more direct comparison of impacts
between hazard scenarios and that of the baseline case, we assume there are
no changes in travel demand. This assumption can of course be altered or
explored further in future studies.

2.3 Gradient Boosting Machines

We then train gradient boosting machines (GBMs) on the 24,000 simulation
runs, treating each scenario as an observed sample. Specifically, the GBMs
take as inputs a hazard’s size (radius), severity (edge traversal penalty), and
centroid location (latitude and longitude coordinates) to predict changes in
total travel times and distances caused by the given disruption. The GBMs
act as surrogate models that allow us to interpolate outcomes with low com-
putational effort compared to the simulation. Unlike typical, parametric
regressions, such as what Haghighi et al. (2018) used for their surrogate
model, GBMs do not require simplifying assumptions of variable interac-
tions; instead, the GBMs non-parametrically learn these interactions (Chip-
man et al., 2010; Friedman, 2001). This feature is beneficial when trying
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to model the complex, and often unknown, spatial dependencies between
network components that manifest during area-spanning disruptions.

GBMs are a subset of a class of powerful machine learning algorithms
called ensemble decision trees, which include bagging (Breiman, 1996), ran-
dom forests (Breiman, 1996), and boosting (Freund and Schapire, 1999;
Friedman, 2001; T. Chen and Guestrin, 2016). Each of these techniques
uses a different non-parametric approach to fit linear combinations of deci-
sion trees to predict regression or classification responses, depending if the
outcome of interest is continuous or categorical respectively. Boosting algo-
rithms in particular have achieved prominent success in a variety of research
applications and machine learning contests (Chipman et al., 2010; Natekin
and Knoll, 2013).

Boosting algorithms use a sequence of small decision trees to progres-
sively fit variability in the data that is not accounted for by earlier trees in
the sequence (Chipman et al., 2010; Friedman, 2001). These algorithms take
slow, incremental steps toward modeling the data, which helps the model
avoid over-fitting the data and improve predictive performance (Friedman,
2001). This gradual procedure also enables the boosting algorithms to nat-
urally incorporate complex variable interactions and additive effects in its
formulation, which is crucial for effectively capturing spatial correlations in
our freight network that arise during area-spanning disruptions (Chipman
et al., 2010).

Of the several boosting algorithms noted in the literature, we predomi-
nantly use GBM in our analysis (Friedman, 2001). With GBMs, a successive
tree is added to the ensemble by minimizing the gradient of a loss func-
tion, specified by the modeler, with respect to the variability in the data
not accounted for by the current ensemble (Natekin and Knoll, 2013). Each
successive tree contributes the same weight to the ensemble’s overall predic-
tion, controlled by a learning rate parameter. Related, an enhanced version
of GBM, XGBoost, features second order derivatives in its loss functions
and uses regularization techniques to construct trees (T. Chen and Guestrin,
2016). Both GBM and XGBoost have proven to be powerful techniques in
applied and academic research (Natekin and Knoll, 2013). We attempted
both in our analysis; however, although we were able to achieve slightly
more accurate predictions in test samples with XGBoost compared to GBM
(~ 4.5% improvement in RMSE), deriving PDPs via R’s pdp package took
considerably more computational effort with the former (> 24hrs run-time
vs. ~ lhr). For this reason, we elected to use GBM instead of XGBoost.
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When training our GBMs, the independent variables consist of a haz-
ard’s severity, radius, and centroid location. The response variables are the
cumulative time delays (hours) and total increases in travel distance (kilo-
meters) resulting from each disruption scenario. Since the response variables
are continuous, our GBMs comprise regression trees with squared-error loss
functions (Natekin and Knoll, 2013). Note, we log-transform the response
variables prior to training the models to help improve predictions by mak-
ing the squared-error loss function not as susceptible to being skewed by
the exceedingly large and severe disruptions. We formulate one GBM for
each response variable, using 80% of the 24,000 scenarios as training sam-
ples and the remaining 20% as test dataset. Using the training dataset, we
tune the GBMs’ hyper-parameters for number of trees, interaction depth,
and learning rate via a parameter grid search that seeks to minimize 5-fold
cross-validation out-of-sample errors. The final models consist of the best-
fitting hyper-parameters as determined by these out-of-sample errors. Lastly,
we assess the predictive performance of the final models on the test dataset.
The Supplementary Materials include a complete dataset of the independent
and response variables for all 24,000 scenarios as well as an accompanying R
script that details the tuning procedures for the GBMs.

2.4 Partial Dependency Plots

Given that the GBMs sufficiently predict the test dataset, we then use these
models to construct PDPs to provide a map that intuitively depicts spa-
tial vulnerabilities in the network at a high degree of resolution. PDPs are
functional depictions of the relationships between a set of specified input
variables and model predictions while controlling for the effects of the other
non-specified input variables (Friedman, 2001). They are analogous to pa-
rameter coefficients in multiple linear regression and can be viewed as a spe-
cial case of what is more broadly known as average predictive comparisons
for nonlinear and non-parametric models, such as neural networks, kernel-
based methods, and tree ensembles (Gelman and Pardoe, 2007). In this
application, they help researchers intuitively analyze the inner-workings of
oftentimes abstruse non-parametric machine learning models.

The mathematical expression for the partial dependency function is given
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in equation (2).

fos(s) = By [f(ﬂﬁs,wc)} = /f(fBS’xC)P(iUs)d(ﬂﬁc) (2)

Here, xg represents the target set of features for which one wishes to know
their effects on model predictions; z¢ is the complement to this set and con-
tains all other features whose values are marginalized over in the function. By
marginalizing over the complimenting features, one obtains a function that
depends only on the target features while accounting for their interactions
with all the variables (Friedman, 2001). Here, our target variables consist of
permutations of finely-spaced latitude and longitude coordinates (1/10th de-
gree resolution), so the resulting PDPs depict a smooth geographical plot of
the marginal effect a hazard’s centroid location will have on total increased
travel times and distances while controlling for hazard size, severity, and
spatial dependencies embedded in the network.

The partial dependency function is estimated via Monte Carlo approxi-
mation, specified in equation (3).

fos(zs) Zf s, 7)) (3)

Values for xg are held constant as model predictions are evaluated at each
row (i) of complimentary features :U(CZ) in a dataset consisting of n total rows.

Predictions are then averaged across the n sets of a; ) to obtain the partial
dependency function for xg. Values for xg can snnply be those observed
in the data or specified by the modeler as a grid of points. It is assumed
that g and xC) are independent, for if not, average values may include data
points that are unlikely, or impossible, to occur. Related, partial dependency
functions are inherently interpolations of the data, so modelers should use
caution when extrapolating results (Friedman, 2001).

For our analysis, zg consists of 40,000 grid points of approximately 1/10
degree longitude and latitude coordinates that span the Middle Tennessee
region (i.e., each resulting grid box corresponds to an area of roughly 1.5
km?). In other words, each coordinate in the PDP depicts the marginal effect
this particular location has on outcomes while controlling for the effects of
the complimentary features present in all the simulated scenarios. We should
also note that the latitude and longitude coordinates are independent from
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the radius and severity variables, so we do not have to worry about the PDPs
interpolating data points that are unlikely to occur.

Although PDPs can be derived for any statistical model (f,), we found
great utility in pairing them with the GBMs because they are able to non-
parametrically learn the spatial dependencies of the network during disrup-
tions and accurate predict outcomes. These types of variable interactions
would have to be explicitly defined, and likely over-simplified, in more tra-
ditional, parametric machine learning methods such as multiple linear re-
gression. Although PDPs are commonly used to depict the marginal effects
variables have on predictions, to the best of our knowledge, they have not
been previously used to depict spatial vulnerabilities in networks. We use
the pdp package in R to calculate the PDPs for our analysis, and the script
for reproducing our plots can be found in the Supplementary Materials.

3 Results

3.1 Simulation Results

The primary outputs of the simulation are the aggregate changes in travel
times and travel distances relative to baseline conditions. These aggregate
metrics are tabulated from all the individual OD flows that occur during the
simulation; each baseline OD flow has a corresponding counterpart in the
disruption scenario. Figure 2 illustrates an example of one simulation (i.e.,
a disruption on the left and the baseline case on the right).

In this example, an active disturbance (pink shaded circle) occurs over
downtown Nashville. At this point in the simulation run, most road traffic
has diverted into more circuitous routes around the city and rail traffic has
slowed down because of slower network segments inside the disruption. In the
lower left time series plot, the pink section corresponds to the 20-hour time
period when the disruption is active. Shortly after the disruption begins,
the number of active routes (red dashed line) increases due to the added
time required for routes to complete. The total distance traveled (blue line)
increases slightly due to diverted routes.

We use another metric, called the effective route distance, as a diagnostic
tool to help establish the validity of the simulations. This metric is calcu-
lated as the distance (miles) that would have been covered in a flow block’s
pure shortest path route, proportional to the amount of its disrupted route
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Figure 2: Map and time series plots taken mid-simulation at 33:40 simulation
time for a disruption scenario (left) and the baseline case (right)

that it has covered. Conceptually, effective distance represents how much
distance has been covered towards the destination; route detours still make
progress towards the destination, but they cause effective distance covered
to accumulate more slowly compared to a shortest path route. As seen with
the green line in Figure 2, overall progress from the origin to destination
transpires more slowly in the disruption case, even though higher-speed (less
congested) detours might be chosen. Although this metric is useful for ex-
amining impacts of disruptions within simulation runs, it does not carry any
meaning when we compare aggregated results between runs because effective
route distance eventually comes back up to meet actual route distance. As
such, we do not include it as one of the dependent variables for the GBMs.
Although it is not possible to directly validate simulated disruptions with
real world data, results suggest that our simulations are reasonably intu-
itive. Routing behaviors respond immediately to disruptions and continue to
change as traffic builds up in alternative routes, and the magnitude of these
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route shifts and added congestion scale intuitively with severity. Addition-
ally, impacts from disruptions align with expectations based on the topology
of Middle Tennessee’s road and rail network. For example, disruptions near
downtown Nashville tend to result in traffic being diverted around the city
via one of many alternative routes, while disruptions concentrated along links
without nearby alternatives show a build-up of congestion along those routes
(i.e., routes with no alternatives are forced to traverse the hazard).

3.2 Gradient Boosting Machine Results

The GBMs act as surrogate models that predict changes in aggregated travel
times and distances given a simulated disruption’s size, severity, and loca-
tion. Figure 3 shows that the GBMs are able to accurately predict simulation
outcomes. Note, they slightly overestimate effects of lower-impact disrup-
tions and have higher variability when predicting them as well. However,
predictions scale well as outcomes become more severe. The test sample
root-mean-square errors (RMSEs) for the two models are 0.636 and 0.414
respectively. For comparison, the corresponding RMSEs for the null models
(mean-only models) are 2.83 and 1.71.

Test Data — Added Travel Time Test Data — Added Distance Traveled
154
164
— Predictions — Predictions
104
w124
n 2
5 7]
3 5 £
L RMSE = 0.636 o
IS <
£ 38 RMSE = 0.414
01 ]
L]
a O 1000 2000 3000 4000 p O 1000 2000 3000 4000
Scenario (ordered by impact) Scenario (ordered by impact)

Figure 3: (a) GBM predictions vs. observations for total time delays; (b)
GBM predictions vs. observations for total added travel distance

Table 1 displays the relative influence of the input variables. Relative
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influence is the improvement, averaged across all decision trees, that each
variable has on ensemble’s predictions (Friedman, 2001). As Table 1 shows,
the location-based variables (radius and geographic coordinates), are demon-
strably the most influential factors in both GBMs. Additionally, found in
the Supplementary Materials, both models’ optimal hyper-parameters for
interaction depth are large (30) relative to those of typical GBMs (~3-5)
(Wenxin, 2002). GBMs formed with larger variable interaction depths (i.e.,
larger trees) generally do not lead to notable, if any improvement in predic-
tions compared to those formed with smaller interaction depths (i.e., smaller
trees). However, given the intricate spatial dependencies we surmised were
present in the network during area-spanning disruptions, it is not surprising
that our GBMs preferred deep, complex interactions among the location-
based variables. In other words, the GBMs slowly learn which combinations
of network components spatially correlate with one another during disrup-
tions to accurately predict impacts.

Table 1: Relative Influence of Variables

Radius Longitude Latitude Severity
GBM - Time 49.2% 24.8% 15.9% 10.0%
GBM - Dist 61.9% 17.8% 9.6% 10.7%

The PDPs derived from each GBM are presented in Figure 4. These plots
depict the marginal effect a disruption’s location (1/10th degree resolution)
has on the outcome variable of interest while explicitly controlling for the ef-
fects of the complimentary features (i.e., radius and severity) and implicitly
controlling for spatial correlations between coordinates that manifest dur-
ing the area-spanning disruptions (i.e., the spatial dependencies the GBMs
learned in order to accurately predict outcomes). As such, coordinates whose
marginal effects predict the most severe outcomes can be interpreted as the
most vulnerable areas with respect to that outcome.

For example, regarding time delays, the most significant impacts (i.e.,
most vulnerable areas) occur near major rail lines (yellow, Figure 4a). Nashville’s
rail network has few redundancies compared to its road network. As such,
disruptions to rail lines result in lengthy time delays because only rail cars
with intermodal capabilities can seek alternative road routes; the rest are
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forced to traverse the disruption. However, with respect to increased travel
distance, the most significant impacts occur near Nashville’s city center, an
area through which all major roadways pass (Figure 4b). In this situation,
freight is redirected around the roads outside the city, so travel distance in-
creases. Note, points outside the study area (black dashed-line, Figure 4) are
extrapolations (i.e., the GBMs have not been exposed to these locations); as
such, their values should be interpreted with caution.

PDP: Time PDP: Distance

Figure 4: (a) PDP for total time delays - (black dashed-line) study area,
(brown line) rail, (grey line) road; (b) PDP for total added travel distance

4 Discussion

The main benefit of using PDPs in this manner is that they provide a high-
resolution depiction of the average impact a disruption’s location has on
outcomes while properly controlling for the effects of other input variables
and spatial dependencies embedded in the network. As such, the PDPs func-
tion as an intuitive “heat-map” that reveals which areas in the network are
vulnerable to area-spanning disruptions and/or may warrant opportunities
for mitigation. For example, in Figure 4a, if decision makers’ primary con-
cern is to reduce time delays due to disruptions, focusing on rail lines in the
southeast corner of Nashville’s city center might be a prudent exercise, and
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perhaps introducing more rail cars with intermodal capabilities would be an
effective mitigation strategy.

Although PDPs can be paired with any statistical model, they worked
particularly well with GBMs for this application. The GBMs were able to
learn the complex spatial dependencies between components within the net-
work and provide accurate predictions of simulation outcomes. In turn, the
GBMs allowed us to interpolate all the scenarios necessary to create the PDPs
at a fraction of the computational effort that would have been required to
simulate them. Although achieving the same predictive power with paramet-
ric regression techniques is unlikely, other machine learning methods could
serve as viable alternatives to the GBMs, such as other ensemble decision
tree methods or neural networks. Additionally, as mentioned throughout the
paper, the surrogate modeling and PDP framework can be applied to other
traffic simulations and networks.

However, there are some drawbacks to our approach. One is that it can be
difficult to isolate impacts to individual network components, should multiple
components exist within given coordinate cell (here, 1/10th degree resolution
or roughly 1.5 km?). To remedy this issue, one could retrain the GBMs
using the network components themselves as binary input variables, instead
of longitude and latitude coordinates. Thus, the resulting PDPs would yield
a diagram of the marginal effects from individual network segments, instead
of coordinate points. Additionally, since we are not simulating every possible
combination of multi-component disruptions, certain key scenarios may be
left out of the training samples. The optimization approaches developed by
Wang et al. (2016) and Xu et al. (2017) could be used to help establish
bounds on potential impacts to help ensure the GBMs are exposed to the
full range of impacts.

It should also be noted that our analysis does not currently consider the
likelihood of hazards. We modeled the consequences of disruptions without
considering their probabilities of occurrence because we were interested in
revealing vulnerabilities to disruptions in transportation networks, not mak-
ing overall risk assessments due to hazards (Haghighi et al., 2018; Sugishita
and Yasuo Asakura, 2021). However, if we were to analyze the actual risks of
hazards disrupting this network, the probabilistic nature of an event’s sever-
ity, location, and shape could all be derived from empirical data and then
inputted into the GBMs to predict expected impacts.

Additionally, were we to use this analysis for actual decision-making pur-
poses, we would ideally have OD-level data for both road and rail flows to
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ground the baseline conditions for the simulations and would also want to
conduct sensitivity analyses on the routing logic and /or introduce uncertainty
in routing decisions (He and Liu, 2012; Gao et al., 2016; Mahmassani, 1990).
We would also want to link the simulations to regional economic models,
so response variables could include fiscal impacts (Cho et al., 2001; Darayi,
Barker, and Santos, 2017; Tatano and Tsuchiya, 2008).

5 Conclusion

We have demonstrated how researchers can use PDPs to intuitively depict
spatial vulnerabilities to simultaneous, multi-component disruptions in trans-
portation networks. The PDPs are derived from surrogate models that are
trained on the results of a transportation disruption simulation where a sub-
set of all possible link removal scenarios are analyzed. In particular, we
found GBMs to be useful surrogate models for this application because they
are a powerful class of non-parametric machine learning procedures capable
of learning complex spatial interdependencies in networks. Given a disrup-
tion’s location and other simulation input variables, the GBMs are able to
accurately predict outcomes of our simulated scenarios, which allows us to
evaluate outcomes of other link removal scenarios at a much lower compu-
tational cost than would be required to simulate them. In turn, the PDPs
derived from the GBMs are able to interpolate and depict the marginal ef-
fects that a disruption’s location (i.e., latitude and longitude coordinates)
has on outcomes while controlling for the effects of other simulation vari-
ables and spatial correlations within the network that manifest during the
area-spanning disruptions. Although we demonstrate our approach for Mid-
dle Tennessee’s intermodal road and rail freight network, our framework can
easily be applied to other networks.
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thanks are given to Raquel Wright and Gary Baker at USDOT for helping
us understand how to use their Waybill routing tool and to Jimmy Dobbins
at Vanderbilt for teaching us how to properly use the Waybill data.
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6 Appendix I - Modeling Middle Tennessee’s
Intermodal Freight Network

For constructing the road network, the Freight Analysis Framework (FAF)
contains a variety of metrics pertaining to freight movement across states and
metropolitan areas (Ford, 2017). At the time of this analysis, FAF4 was the
most recent version, which bases metrics on commodity flows from the year
2012. The FAF metrics include but are not limited to daily freight volume
per road segment, daily traffic volume per segment, and segment capacity.
The road segments are defined over many intervals, each with identifying
characteristics such as road name, speed limit, segment length, and number
of lanes; each segment also provides a traversal time, which will be used later
in routing across the network.

The FAF also houses geospatial data that includes a collection of georef-
erenced highways and roads across the US. This geospatial data is defined
over the same roadway intervals as the commodity flow data, so we map
the flow metrics to their corresponding edges to create a georeferenced road
network dataset. Additionally, the FAF contains geospatial data of officially
recognized commodity flow survey zones, with Middle Tennessee’s zone (472)
serving as the study area for our analysis. Within ArcGIS, we use the zone
472 shapefile with an added 50km buffer to clip the aforementioned roadway
network dataset. Figure 1 depicts the buffered road network (green lines)
and study area (gold). The buffer allows for more realistic routing behavior
to take place during the simulation. For example, a truck whose origin and
destination lie within zone 472 will reasonably travel outside that zone if it
is quicker to do so. This type of situation commonly arises during disrup-
tions. The size of the buffer is ultimately arbitrary, but given the size of
the Middle Tennessee zone, 50km we consider to be a reasonable balance
between allowing for flexibility in route choices while still focusing on the
area of interest.

For the rail network, the Tennessee Department of Transportation (TDOT)
supplied us with private Waybill data, records of O-D rail freight shipments,
that passed through Tennessee for the year 2014. The records contain metrics
such as but not limited to number of carloads, tons shipped, commodity type
identifiers, and intermodal capabilities of rail cars. Publicly available sam-
ples of the Waybill data are available through the US Surface Transportation
Board, should readers wish to look at the data structure.
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Additionally, the US Department of Transportation (USDOT) manages
publicly available, geospatial data of rail tracks and stations across the coun-
try. Similar to the road network, we map Waybill commodity flows to their
corresponding segments in the geospatial data. However, since each Waybill
entry corresponds to an individual shipment, records first need to be aggre-
gated by unique legs of the rail network to get segment-level flow estimates.
The USDOT has recognized the necessity of this task and developed a rout-
ing tool to work specifically with the Waybill data (Wright and Baker, 2017).
We use this tool to create a map of expected flows of rail freight whose origin
or destination lie within the Middle Tennessee area of interest (FAF Zone
472). This data also provides the network segment traversal time across the
rail network.

7 Appendix II - Supplementary Materials

The dataset of all 24,000 disruption scenarios and the accompanying R scripts
that were used to train the GBMs and produce the PDPs are available on
Open Science Framework:

https://osf.io/vezns/7view_only=725c89c810764be6865545f085316eef
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