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Abstract— This article uses experimentally collected car
following data from seven different commercially available
adaptive cruise control (ACC) vehicles to calibrate microscopic
models for each system’s car following behavior using three dif-
ferent common car following models. Calibration is conducted
by selecting the model parameters that minimize the error
between the simulated vehicle trajectories and the experimental
data. The goal of this study is two-fold: (i) assess which car-
following models typically used to describe human driving
behavior are best for describing ACC car-following dynamics,
and (ii) provide best-fit calibrated car following models for seven
different commercially available ACC vehicles, which can be
used to understand the traffic flow impact of ACC systems via
simulation analysis. We find that the intelligent driver model
and the optimal velocity model with a relative velocity term
perform best, and with similar performance to one another,
while the Gazis-Herman-Rothery model as calibrated does not
capture all the ACC car following dynamics.

I. INTRODUCTION

The emergence of autonomous vehicles (AVs) on high-
ways and urban roadways has the potential to substantially
impact traffic flow [1]–[3]. This is true not only for fully au-
tonomous vehicles such as Society of Automotive Engineers
(SAE) Level 5 AVs [4], but also vehicles with driver assist
features (SAE Level 1 and 2 AVs) such as adaptive cruise
control (ACC), which have been shown to be able to change
the emergent properties of the traffic flow even at low AV
penetration rates [1], [2], [5].

While fully autonomous vehicles may not be
commercially-available for several more years, driver
assist vehicles such as ACC have already become common
place in many modern, commercially-available vehicles.
With this in mind, it is important to be able to accurately
model the car following behavior of ACC. This will
be important for understanding how ACC vehicles may
influence the traffic flow.

To model traffic flow at the level of the individual vehicle
(microscopically), car following models are commonly used
to describe the acceleration of a vehicle as a function of
measurements from the vehicle’s surroundings, which often
consists of information about the next vehicle ahead in the
traffic flow. This modeling approach dates back to experi-
mental work conducted at General Motors in the 1950s [6]–
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[8], and generally takes the form:

ẍ(t) = f(s(t), v(t),∆v(t)), (1)

where s(t) is the inter-vehicle space gap or space-gap, v(t) is
the speed of the following vehicle, and ∆v(t) is the relative
velocity between the lead vehicle and the following vehicle,
which are all time varying. The function f(s(t), v(t),∆v(t))
then describes the acceleration of the following vehicle as a
function of these variables. To simplify the notation, we will
omit the time index of most models. Using models of this
form, it is possible to model both human-driver behavior as
well as the vehicle-level dynamics of ACC vehicles [9]–[11].

Fundamental to calibrating such models is the collection
of high-quality experimental field data that measures the
trajectory of each individual vehicle. This has been the focus
of several important works and is still highly relevant today
as AVs and partially autonomous vehicles begin to enter
our roadways and alter the traffic flow. Beyond the work
at General Motors in the 1950s [6]–[8] other pioneering
data collection efforts includes work done by Triterer in the
1970s, which involved flying a helicopter over freeways in
Ohio to photograph traffic to reconstruct vehicle trajecto-
ries [12]. Perhaps the most widely used vehicle-level dataset
is the the NGSIM data that was collected by placing video
cameras on a 900 m section of I-80 in California. Also
notable is the data collected by Gorte, et al. [13], where a
helicopter was flown over Dutch freeways to collect vehicle
trajectories. All of these data collection efforts have collected
experimental data of human driving behavior.

More recently, there has been renewed interest in un-
derstanding vehicle-level behavior, with a focus on mixed
human and AV traffic. For example, prior work by Gunter, et
al. [10], [11] collected experimental data from ACC vehicles
to understand whether commercially available ACC vehicles
were string stable, while the experimental work by Stern, et
al. [2] showed that controlling just a small fraction of AVs
in human-piloted traffic flow could change the emergent
properties of the flow.

The focus of this article is to compare the performance of
different microscopic traffic models to simulate car following
behavior of commercially available ACC vehicles. This is
done by calibrating prospective models using experimentally
collected data. The contribution of this work is two-fold:
(i) this study enables future theoretical works by exploring
which car following models are best suited for modeling the
dynamics of commercially available ACC systems, and (ii)
this study provides best-fit calibrated car following models
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for seven different commercially available ACC vehicles,
which can be used to understand the traffic flow impact of
ACC systems via simulation analysis. Importantly, this work
does not consider a specific vehicle dynamical model, but
instead calibrates a microscopic traffic model to the overall
performance of the ACC vehicle, without considering the
low-level controller that may be implemented on the vehicle.
Instead, we describe the traffic-level performance of the
vehicle, which is important to understand the impact of ACC
vehicles on the traffic flow.

In previous publications by the authors [11] a single delay
differential equation car following model was developed
and fit to ACC following data and then assessed for string
stability while in [10] a single car following model was
calibrated for a high performance electric vehicle to assess
string stability of the ACC system. The present work differs
in that three common car following models are calibrated
to compare the performance for modeling ACC following
behavior of commercially available vehicles. The car follow-
ing vehicle trajectory dataset used to calibrate the models in
this article come from a series of field experiments that was
originally published by Gunter, et al. [11] and contains over
1,000 miles of car following trajectories for seven different
commercially available ACC vehicles.

The remainder of this article is outlined as follows: in
Section II the three car following models used are reviewed:
the Gazis-Herman-Rothery model (GHR) [8], the intelligent
driver model (IDM) [14], and the Optimal Velocity with
Relative Velocity model [9], [10]. The experimental data used
to calibrate the models is presented in Section III, and the
model calibration methodology is presented in Section IV.
The results of the model calibration are presented in Sec-
tion V, and we conclude that the OVRV model and IDM
model perform roughly the same, and outperform the GHR
model in Section VI.

II. MODELING ACC VEHICLE BEHAVIOR

In this section, we briefly outline the general modeling
framework used to model the car following behavior of the
ACC vehicle, and then provide details on the specific car
following models that are used in this article.

A. General modeling framework

The car-following behavior of an ACC vehicle may depend
on many external factors such as the internal state of the
engine, the current gear, and road grade, among others.
However, modeling each of these components may not be
necessary, or even desirable, when considering the vehicle-
level car following behavior of an ACC vehicle. Instead,
the vehicle-level dynamics may be more useful when trying
to model ACC vehicles in the traffic flow. Therefore, this
article considers the modeling approach used by Milanés
and Shladover [9] as well as Gunter, et al. [10], [11] to use a
differential equation to model the vehicle-level car following
behavior. This differential equation can then be used as a
proxy for the ACC car following dynamics and analyzed for
theoretical properties such as string stability.

Specifically, in this article, we model the response of an
ACC vehicle to a lead vehicle immediately in front of it.
We assume that through the on-board sensors, the ACC
vehicle is able to measure the space gap between the lead
vehicle and the ACC vehicle s as well as its own speed v
and the relative speed with respect to the lead vehicle ∆v.
Using these inputs, the acceleration of the ACC vehicle ẍ is
modeled as a differential equation with the general form:

ẍ = f(p, s, v,∆v), (2)

where p is a vector of model parameters, s is the space gap,
v = ẋ(t) is the velocity of the follower, and ∆v := ṡ(t) is
the relative velocity between the leader and follower. Next,
we review three common car following models that will be
considered in this article.

B. Gazis-Herman-Rothery model

One of the first commonly-used car following models is
the GHR [8] car following model, which is one of the most
widely-known car following models and originates from
research conducted by General Motors in the 1950s. The
model contains a delay term to account for human reaction
time, but is considered to be the delay of the ACC system
in this study. The model is therefore a delayed differential
equation that takes the form:

ẍ(t) = cv(t)m
∆v(t− T )

s`(t− T )
, (3)

where c, m, and ` are model parameters, T is the delay, and
all other terms are defined as before.

C. Intelligent driver model

The IDM [14] was developed by Treiber, Hennecke, and
Helbing in 2000 and is one of the most widely used mi-
croscopic traffic models today. In the IDM, the acceleration
function takes the form:

ẍ = a

(
1−

(
v

v0

)δ
−
(
ŝ(v,∆v)

s

)2
)
, (4)

where

ŝ(v,∆v) = s0 + τv −max

(
0,
v∆v

2
√
ab

)
. (5)

Here v0 is the desired speed, which can be interpreted as
the ACC setpoint speed, τ is the time headway, a is the
maximum acceleration that the ACC vehicle can achieve, b is
the maximum braking rate that the ACC vehicle can achieve,
δ is a model parameter, and s0 is the jam distance. The values
of a and b should fall within the bounds that are prescribed
in the relevant standards (e.g., ISO15622:2010 [15]).

D. Optimal velocity model with relative velocity term

One model, which has previously been used to model
ACC vehicle dynamics [9], [10], is the optimal velocity (OV)
model with a relative velocity term (OVRV):

ẍ(t) = α (V (s)− v) + β (∆v) . (6)
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Fig. 1. Experimental setup with lead vehicle in front of following vehicle
on straight, flat track. Note that the images are blurred to obscure vehicle
make and model.

In the above model (6), the first component relaxes the
follower velocity to a desired velocity prescribed by the
optimal velocity function V based on the current space gap
to the vehicle in front, while the second component relaxes
the follower velocity to the velocity of the leader. The model
parameters α and β control the tradeoffs between following
the optimal velocity and following the leader velocity.

For the purposes of modeling adaptive cruise control
vehicles, we adopt a special case of the OVRV model (6)
considered in [3], [10], [11], [16], [17]:

ẍ = k1(s− η − τv) + k2(∆v) (7)

where k1 and k2 are the gain parameters on the constant time-
headway term and a follow-the-leader term respectively, η
is the jam space gap (the minimum distance two vehicles
will attain) and the parameter τ is the desired headway.
Note that the model (7) operates under a linear optimal
velocity function V (s) := s/τ and with α := k1τ . It
is considered a constant time-headway term because the
space gap s is adjusted based on the speed such that the
headway τ is maintained. It is well known that constant time-
headway based controllers are important to overcome the
inherent limitations of linear controllers to achieve a string
stable constant space gap policy and is often assumed for
commercial ACC vehicles [18].

III. EXPERIMENTAL DATA

The experimental data used in this study is collected
by, and presented in the article by Gunter, et al. [11].
The dataset consists of car following vehicle trajectories
from seven different modern, commercially available ACC
vehicles. The data contains over 1,900 km of car following
data ranging from speeds of roughly 55 km/h to 110 km/h
on flat ground. The experiments are briefly described below
for completeness. For a full description of the experimental
methods, please see the article by Gunter, et al. [11].

Each experiment is conducted with a lead vehicle driving
a consistent, pre-determined speed profile, and the following
vehicle driving behind the lead vehicle with ACC engaged.
The vehicles are arranged on a straight, flat track as shown
in Figure 1 with the lead vehicle in front of the following
vehicle. Position and speed data are collected from each
vehicle using a high-resolution GPS sensor.

Vehicle Style Engine type

A Full-size sedan Combustion
B Compact sedan Combustion
C Compact hatchback Hybrid
D Compact SUV Combustion
E Compact SUV Combustion
F Mid-size SUV Combustion
G Full-size SUV Combustion

TABLE I
SUMMARY OF TESTED VEHICLES.

Each vehicle is tested both at the minimum (closest) and
the maximum (furthest) following settings to acquire an
understanding for the range of car following behaviors that
the vehicle may exhibit under ACC driving. Each vehicle
is driven in four different experiments at each following
setting for a total of roughly 130 km (80 miles) of driving
for each vehicle. These tests are designed to include steady
state and transient behavior over a range of speeds from
15.6 m/s (35 mph) to 33.5 m/s (75 mph). Thus, in total,
these experimental data represent over 1000 km (620 miles)
of car following data.

The seven vehicles tested range in size from a small
compact hybrid electric hatchback to a large, fill-size SUV.
An overview of the tested vehicles is provided in Table I.

IV. MODEL CALIBRATION

In this section the calibration of the different models is
explained. For each model the optimal model parameters that
produce the smallest error with respect to the experimental
data are found by by solving a simulation based optimization
problem. Here each potential model is compared against the
data, and an error metric is calculated to describe its good-
ness of fit. In this work, all models are calibrated according
to the root mean squared error (RMSE) in between simulated
speed data and recorded speed data. The general optimization
scheme can be formulated as follows:

minimize
s,v,∆v,p

:
√

1
T

∫ T
0

(vm(t)− v(t))2dt

subject to: v̇(t) = f(p, s, v,∆v)
ṡ(t) = vl,m(t)− v(t)
s(0) = sm(0)
v(0) = vm(0)
∆v(0) = ∆vm(0)
p ≥ U
p ≤ L

(8)

where s, v, and ∆v are the ACC vehicle space gap and
speed, and speed difference between the ACC vehicle and a
leading vehicle. The variable p refers to the vector of model
parameters, where f(p, s, v,∆v) is a model that describes
how the speed of the vehicle changes. In the case of the
OVRV, IDM, and GHR models these are explicit differential
equations on the acceleration, which must be integrated to
determine speed and space gap values. The terms sm(0),
vm(0) and ∆vm(0) refer to initial conditions on the speed,
space gap, and speed difference for the following vehicle, and
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vl,m is the lead vehicle speed. In addition to the constraints on
the initial conditions, for some of the models it is desirable
to constrain the range over which the parameters values (p)
can vary. As such the optimization scheme is a constrained
one in which potential lower bound L and upper bound U
are placed on the parameters, p. Note that this implies that
p, L an U are vectors that all have the same length.

The parameter values for each of the models are calibrated
for each of the seven vehicles (A-G) at each of the two tested
following settings (minimum and maximum). Thus, a total
of 14 sets of best-fit parameter values are calibrated for each
of the three tested car following models. To calibrate each of
the models, data from three of the tests are used as training
data, and data from the fourth test are reserved as a hold-out
test set to evaluate the model performance on data that were
not used to calibrate the model.

In the case of the GHR model, to expedite computational
time since it is a delay differential equation, the model is
calibrated using a two-step process where first the model
parameters c, m, and ` are calibrated using (8) without
considering the impact of the delay. Next, a parameter sweep
in the neighborhood of the optimal model parameter values
is conducted to find the best-fit delay differential equation
parameter values that consider the delay T . While this does
not guarantee the best fit model globally, this methodology
is adopted since calibrating the delay differential equation in
one step using (8) was found to be extremely computationally
demanding. Specifically, the calibration of a single model
took over 120 hours of computation time on a 16-core
computer.

V. RESULTS

In this section the calibrated model parameters are pre-
sented, and the relative performance of each model for each
vehicle is discussed and compared. Model parameter values
are calibrated for acceleration in units of m/s2, velocity in
units of m/s, and space gap in units of m.

The training error for the best-fit model for both speed and
space gap are shown in Figure 2 and Figure 3, respectively.
Here the performance for the calibrated model for each of the
seven vehicles (A-G) at each of the two following settings
tested (minimum and maximum) are presented separately for
each of the three car following models (GHR, IDM, and
OVRV). The average errors are presented in Table II. The
OVRV and IDM have the same average speed error across
all vehicles with a train RMSE of 0.27 m/s. The OVRV has
the lowest space gap train error with an RMSE of 2.51 m.
The GHR has the greatest training error with a speed RMSE
of 0.38 m/s and a space gap RMSE of 7.11 m. However,
note that this higher training error may be in part because
the GHR is a delay differential equation, and thus a different
training routine was used to calibrate the model. To give a
sense of the quality of fit, the model performance of each
best-fit model for Vehicle B is shown in the example speed
plot in Figure 4. Here one of the training datasets is used as
the lead vehicle trajectory, and the actual following vehicle
data as well as the simulated following vehicle using each

Model Speed Speed Space gap Space gap
train (m/s) test (m/s) train (m) test (m)

GHR 0.38 0.74 7.11 8.79
IDM 0.27 0.41 4.00 4.23

OVRV 0.27 0.46 2.51 4.10

TABLE II
AVERAGE TRAIN AND TEST RMSE FOR EACH MODEL.

of the three calibrated models for Vehicle B at the minimum
following setting is shown.

Fig. 2. Relative comparison of the speed RMSE on the training data for
each model.

Fig. 3. Relative comparison of the space gap RMSE on the training data
for each model.
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Fig. 4. Comparison of models for Vehicle B, minimum following setting.

The calibrated model parameters for each vehicle and
each model are presented in Table III. To better interpret
the results, they are also graphically displayed in Figures 5
through 7.

As seen in Figure 5 for the GHR model, the calibrated
parameters values for c range from roughly 0 to 8, while the
values for m range from roughly -1.5 to 1, the values for
` range between -1.5 and 1, with the majority of the values
between 0.5 and 1, and the values for T range from 0.8 s to
1.5 s. Note that c, m, and ` are all unitless, but calibrated for
SI units as inputs. In terms of the parameter value distribu-
tion, with the models calibrated for the maximum following
setting having smaller values of c than models calibrated
for the minimum following setting and larger values for the
delay in the differential equation T generally corresponding
to the maximum following setting. The calibrated parameter
values for m and ` do not show a clear pattern with respect
to the following setting.

As seen in Figure 6 for the IDM as well as in Table III,
the model parameter values for V0 range from roughly 30
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GHR IDM OVRV
Vehicle Setting c m ` T V0 τ s0 δ a b k1 k2 τ η

[-] [-] [-] [s] [m/s] [s] [m] [-] [m/s2] [m/s2] [s−2] [s−1] [s] [m]

A Minimum 7.57 -0.54 0.35 1.03 37.26 0.76 19.95 155.12 0.79 3.50 0.04 0.18 0.60 17.74
A Maximum 0.09 0.86 0.38 1.43 36.5 1.65 20.00 155.34 0.67 3.50 0.02 0.13 1.71 21.51
B Minimum 3.86 -0.8 -0.13 1.23 33.51 0.83 16.19 151.05 1.13 3.50 0.07 0.25 0.87 12.3
B Maximum 0.02 -1.32 -1.69 1.5 33.97 2.00 15.57 154.08 0.81 3.13 0.02 0.16 1.84 16.04
C Minimum 0.85 0.69 0.85 0.77 44.34 0.76 15.89 154.52 0.48 3.50 0.02 0.24 0.31 28.42
C Maximum 0.22 0.82 0.61 1.36 45.45 1.90 15.98 155.64 0.53 3.44 0.01 0.15 1.84 20.52
D Minimum 5.99 -0.30 0.49 1.14 41.3 0.71 18.90 154.76 0.75 3.50 0.04 0.21 0.63 16.64
D Maximum 0.52 0.16 0.30 1.39 46.90 1.85 16.13 155.02 0.68 3.50 0.02 0.15 1.98 13.20
E Minimum 2.58 -0.75 -0.13 1.07 40.63 1.13 13.99 154.68 1.02 3.50 0.06 0.11 1.50 1.08
E Maximum 0.84 -0.6 -0.23 1.25 46.11 1.66 20.00 155.35 1.14 3.50 0.06 0.07 2.04 10.31
F Minimum 0.79 0.08 0.22 1.18 50.00 0.00 20.00 1.06 2.00 3.50 0.06 0.17 0.79 12.88
F Maximum 3.02 -0.73 0.00 1.21 48.81 1.45 20.00 154.88 0.87 3.50 0.05 0.09 2.04 3.31
G Minimum 0.96 -0.59 -0.34 0.97 36.15 0.59 19.99 155.36 0.95 3.50 0.07 0.17 0.80 12.51
G Maximum 1.94 -0.73 -0.11 0.88 38.87 1.51 19.3 154.49 0.88 3.50 0.05 0.10 2.06 4.17

TABLE III
CALIBRATED MODEL PARAMETER VALUES FOR ALL VEHICLES AND MODELS.

Fig. 5. Parameter values for IDM. Blue circles for minimum following
setting models, red squares for maximum following setting models.

m/s to 50 m/s, the values for T range from 0 s to 2 s, the
values for s0 range from 14 m to 20 m, the values for δ
are unitless and range from 0 to 160, the values for a range
from 0.4 m/s2 to 2 m/s2, and the values for b range from
3.1 m/s2 to 3.5 m/s2. Note that the values for a and b were
calibrated to fall within the required bounds prescribed by
the relevant ISO 15622 standard of 2.0 m/s2 and 3.5 m/s2

as the maximum acceleration and braking, respectively [15].
No other parameters were constrained. The values for V0,
s0, a, and b show no clear trend between the minimum and
maximum following setting, while the values for T show
that lower values correspond to the minimum setting model,
and the values for δ show a clear outlier with the minimum
following setting model for vehicle F being substantially
lower than all other models.

Fig. 6. Parameter values for IDM. Blue circles for minimum following
setting models, red squares for maximum following setting models.

For the OVRV model, the resulting parameter values are
presented in Table III and graphically displayed in Figure 7.
The values for k1 range between 0.01 s−2 and 0.08 s−2,

with smaller values typically corresponding to the maximum
following setting model. The values for k2 range from
0.05 s−1 to 0.25 s−1, again with smaller values typically
corresponding to the maximum following setting model.
The values for τ range from 0.3 s to just over 2 s, with
smaller values corresponding to the minimum following
setting model, and the values of η range from roughly 1 m to
nearly 30 m with values for both the minimum and maximum
following setting model spread throughout that range.

Fig. 7. Calibrated parameter values for OVRV model. Blue circles
correspond to minimum following setting models, and red squares refer
to maximum following setting models. See Table III for proper units.

The testing errors on the hold-out test set for speed and
space gap are shown in Figure 9 and Figure 10, respectively,
as well as in Table II. Overall, the IDM and the OVRV
perform roughly the same with an average speed RMSE of
0.41 m/s and 0.46 m/s, respectively and an average space
gap RMSE of 4.23 m and 4.10 m, respectively, while the
GHR model generally has a higher average RMSE. However,
again, it is possible that this is a result of the training routine
used for the GHR, and it is possible that a better-fitting model
could be found.

The model performance on the hold-out test data can bee
seen in Figure 8 where the best-fit models for Vehicle A
at the minimum following setting are simulated. As seen in
Figure 8, the GHR model closely follows the lead vehicle
speed, and therefore does not match the following vehicle
dynamics. In contrast, the OVRV model and the IDM model
are able to incorporate the fact that ACC vehicles are space
gap-error based controllers and considered whether or not
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Fig. 8. Comparison of model responses for Vehicle B at the minimum
following setting.

the vehicle is at the appropriate space-gap for a given speed.
Thus, for practical modeling and analysis applications of
ACC following behavior, the OVRV and IDM model are
both suitable. Note that the IDM has the added benefit that
it can be calibrated to explicitly take to take into account
physical constraints on acceleration and braking.

Fig. 9. Relative comparison of the speed RMSE on the testing data for
each model.

Fig. 10. Relative comparison of the space gap RMSE on the testing data
for each model.

VI. CONCLUSIONS

In conclusion, the OVRV and IDM model both performed
well in modeling the ACC following vehicle behavior, while
the GHR model produced a higher speed and spacing RMSE.
However, it is possible that a different calibration routine
could yield GHR model parameters with a lower RMSE. The
calibrated parameter values show that there is variability in
ACC car following behavior across the vehicle fleet tested.
These models can now be used to gain a better understanding
of how ACC vehicles will influence traffic flow. This work
goes beyond the prior work by comparing three different car
following models for the purpose of modeling ACC vehicle
following behavior. The resulting calibrated models represent
the first set of calibrated car following models for a wide
range of vehicles.
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