
Vehicle Tracking with Crop-based Detection

Abstract—End-to-end production of vehicle tracking data from
video in real-time and with high accuracy remains a challenging
problem due to the computational cost of object detection on
each frame. In this work we present Tracking with Crop-based
Detection, a method for speeding object tracking in constrained
contexts (with stable cameras and relatively-predictable object
motion) such as vehicle traffic monitoring. We leverage this
context to provide a strong prior for object locations, which
we use to 1.) boost detection speed by detecting objects only
in regions corresponding to object priors on most frames and
2.) inform the selection of the detector output for each object.
We evaluate Crop-based Detection as an extension to the KIOU
object tracker (Crop-KIOU) on the UA-DETRAC dataset. The
proposed tracker outperforms all other reported algorithms in
terms of PR-MOTA, PR-MOTP, and mostly tracked objects
on the UA-DETRAC benchmark, establishing a new state-of-
the-art. Relative to tracking by detection with KIOU, Crop-
KIOU achieves a 26% higher frame-rate and increases accu-
racy. Furthermore, Tracking with Crop-based Detection can be
combined with frame skipping; we show a 149% increase in
framerate relative to KIOU with no decrease in accuracy using
this combination of methods.

Index Terms—Object tracking, object detection, traffic moni-
toring.

I. INTRODUCTION

In this work we address the task of multiple object tracking
(MOT) from raw video sequences in a traffic monitoring
context. The goal of this task is to accurately localize and
classify each vehicle within a traffic scene at each frame
in the video, and to associate these bounding boxes across
frames to provide matched identities for each unique vehicle
across time. In particular, we concern ourselves with fixed
traffic cameras with overhead fields of view (as in the UA-
DETRAC dataset [1]), which is important but distinct from
the self-driving car context (e.g., the KITTI dataset [2])
in which the camera moves and is taken from a vehicle-
centric field of view. The real-time performance of object
detection and tracking is paramount for a number of tasks
in traffic modeling (a shortage of vehicle trajectory data is
a persistent problem [3, 4]) and to enable next-gen intelligent
transportation systems (ITS) that dynamically respond to real-
time demand to better accommodate traffic [5, 6]. We argue
that existing multiple object tracking methods are not well-
posed to provide such traffic data in real-time.

The vast majority of algorithms for multiple object tracking
decompose the problem into two distinct tasks: First, the

Fig. 1. Overview of Tracking with Crop-based Detection (proposed). (a)
Tracklet a priori locations (solid boxes) are used to (b). crop (dashed boxes)
around likely object locations. (c). Detection is performed on crops to localize
each tracked object. (d). The resulting bounding boxes (solid boxes) are then
transformed back into the frame coordinate system, (e). producing final object
detections for each tracklet.

object detection task locates relevant objects within a frame.
Second, the object association (commonly referred to simply
as object tracking) task associates or matches objects in the
current frame with the same objects in the previous frame such
that each object is uniquely identified across the entire video
sequence. Importantly, though, the most accurate tracking by
detection methods still run below 30 frames per second on a
GPU for frames of modest size (e.g., 960×540 [7], 1392×512
[2], and 1920×1080 [8]. A variety of recent methods [9–16]
have sought to leverage the generic tracking context to provide
additional information for the object detection task, performing
detection and tracking jointly rather than in series. These
methods make use of the the relationship between objects in
consecutive frames to boost object detection and tracking accu-
racy rather than speed. Unfortunately, this increased accuracy
is not realizable if real-time requirements must be met.

In this work, we leverage the traffic domain to further
increase the speed of object detection and tracking. Relative
to other object tracking contexts, vehicles have predictable
motion. They travel roughly along lane lines and undergo
relatively small accelerations. This contextual information,
combined with the fact that traffic monitoring cameras are
static, means that extremely strong priors for object locations



Fig. 2. Expected increase false negative rate due to new undetected objects
appearing between detection steps based on average object longevities for UA-
DETRAC training and testing datasets. If every d frames is fully detected, on
average a new object is missed in d

2
frames after it initially enters the field

of view.

within a video frame are available before that frame is pro-
cessed. Generalized object tracking methods [9–28] cannot
take advantage of object priors to reduce their object search
space because they are intended to also track in contexts where
camera and object motion is unpredictable.

By contrast, our method (summarized in Figure 1) leverages
this context to reduce the search space over which objects are
detected within a frame. We make use of object priors from
previous frames (Figure 1(a)) by (b) cropping portions of the
frame we expect to contain existing tracked objects. Within
each crop, (c) we solve the task of localization (identifying
the location of a single object of interest) with an object
detector trained specifically on images of this smaller crop
size. We make use of object priors to weight each output before
removing any outputs from consideration as would be done in
NMS or soft NMS [29]. The selected object bounding boxes
are (d) converted into their corresponding locations within the
overall frame. We call this method Tracking with Crop-based
Detection.

Because detection is not run on every full frame, there is
a potential to increase the number of false negatives due to
missed detections when objects first appear. However, Figure
2 shows that the expected increase in the false negative
rate is small for real-world datasets. Moreover, we show in
Section IV that crop-based tracking improves overall tracking
performance because of a dramatic reduction in false positives
that appear when performing detection on every frame.

The primary contributions of this work are as follows. First,
in constrained tracking contexts such as traffic monitoring
where cameras are static and object motion is predictable,
we show that detection can be performed on a limited set
of crops from each frame without a loss in overall tracking
accuracy. Second, we demonstrate that crop-based detection
can significantly speed the joint object detection and tracking
process. We implement and evaluate a crop-based detector
which we call Crop-KIOU. We demonstrate on the UA-
DETRAC benchmark, the most widely used benchmark for
tracking in a traffic monitoring context, that Crop-based De-
tection increases the speed of the baseline tracker without
compromising on tracking accuracy (MOTA), and Crop-KIOU
outperforms all existing methods on this benchmark in terms
of PR-MOTA, PR-MOTP, and mostly tracked objects. Further,
we show that Crop-KIOU extends the pareto-frontier of the

speed-accuracy tradeoff for KIOU on this benchmark.
The remainder of this article is organized as follows. In

Section II, existing approaches to multiple object tracking are
reviewed. Section III introduces Tracking with Crop-based
Detection and describes the implementation of Crop-KIOU.
Section IV details the experiments used evaluate Crop-KIOU.

II. BACKGROUND

Multiple object tracking algorithms such as [9–28] can
be roughly divided into three main categories: tracking by
detection methods, integrated object detection and object as-
sociation, and adaptations of single object trackers. We briefly
review prominent methods in each category.
Tracking by Detection. Most modern object trackers follow
the tracking by detection framework [30, 31] This paradigm di-
vides the task of producing tracked objects from raw video into
two steps. First, relevant objects are detected in each frame.
Then, detected objects are associated across frames [19]. This
subdivision of tasks into detection and tracking is encouraged
by popular benchmark datasets for object tracking such as
MOTChallenge [32], KITTI [2], and UA-DETRAC [1].
Object Detection. Most top-performing object detectors rely
on convolutional neural networks (CNNs) for feature extrac-
tion from an image. Common approaches include one stage
detection, such as in YOLO [33] and RetinaNet [34], where
features output by a convolutional neural network are directly
used to regress object bounding box coordinates. Two stage
detectors such as Faster RCNN [35] and Evolving Boxes [36]
attempt to boost accuracy by adding an intermediate step
in which promising candidate regions are selected, and then
only from these regions are bounding boxes regressed. Seg-
mentation models such as Mask-RCNN [37] have also been
adapted to perform bounding box-based detection. Recently,
these approaches have been bolstered by adding additional
awareness of foreground and background [38], by use of atten-
tion networks [39], or by regressing the location of keypoints
such as bounding box corners [40] or object centers [41] with
custom pooling layers that better convey keypoint information
through convolutional layers. Importantly, though, the best-
performing algorithms in terms of detection accuracy still run
below 30 frames per second on a GPU for frames of modest
size (e.g., 960×540 [7], 1392×512 [2], and 1920×1080 [8]).
Object Association. Object association methods compare ob-
jects from sequential frames in terms of position, appearance,
and/or physical dynamics to match objects from one frame to
the next. In Simple Online Realtime Tracking (SORT) [17],
Kalman filtering is used to predict object locations and these
predicted positions are matched to current frame detections
based on straight-line distance. DeepSORT [18] refines SORT
by additionally using an appearance embedding for each object
to aid matching. The IOU tracker [19] utilizes bounding box
overlap rather than straight-line distance as the distance metric,
and KIOU [21] combines this method with Kalman filtering
for more accurate matching. Continuous Energy Minimization
(CEM) combines bounding box overlap ratio, color-based
appearance dissimilarity, object physical dynamics, and logical



constraints to match objects [22]. Other successful recent
approaches for cross-frame association leverage CNN-based
reID features and [23, 42, 43] or otherwise explicitly regress
future object positions from a frame using CNNs [13]. Weakly
supervised methods such as SimpleReID [25] have also been
successful for tracking tasks.
Single Object Tracking Methods for MOT. Recently, a few
works have approached multiple object tracking as a set of par-
allel single object tracking (SOT) tasks. The parallel SOT task
has been posed as a Markov Decision Process [26], or handled
using a CNN with single-target-specific branches that utilize
shared features [27]. The work proposed in [28] combines both
object detector detections and rough single object tracking
object positions to refine object position estimates. Similarly,
VIOU [20] extends IOU tracking by employing a single object
tracker to recover lost objects, reducing fragmentations. Thus
far, SOT-based methods for multiple object tracking have not
been scalable in terms of speed, due either to 1.) the need to
update appearance models for each object online or 2.) the
need to initialize new objects, which has been addressed by
additionally performing detection on each frame [44].
Joint Detection and Tracking. Some tracking approaches
have integrated information from the tracking context for
object detection. Some pass pairs [9] (or larger sequences
[10, 11]) of consecutive frames to CNNs to regress detections
across multiple frames. [12] passes the previous frame as well
as a “heatmap” of previous object positions to the object
detector which predicts object locations and offsets used to
aid greedy matching of objects. Other works perform tracking
by object re-detection, passing previous inputs to an object
detector as additional anchor boxes [13, 14]. [15] uses the
same CNN to output bounding box coordinates and object
embeddings for re-identification and matching. [16] regresses
bounding box pairs for consecutive frames, performing IOU-
based matching on the two sets of bounding boxes correspond-
ing to each single frame. Recently, graph neural networks
have also been used to leverage spatial-temporal relationships
for both object detection and object association [45], and
transformer networks have also been used to detect and track
jointly [46].

Different from existing SOT and joint detection and tracking
works, our approach is the first to perform detection only over
a limited set of crops rather than each overall frame. Existing
trackers in these categories utilize object priors to refine object
detection and boost accuracy, rather than to increase the speed
of object detection. While our approach is a joint detection and
tracking method, the primary focus of our tracker extension is
on faster rather than more accurate performance.

III. METHODOLOGY

We detail the process for modifying the popular Kalman-
filter enhanced Intersection-over-Union (KIOU) tracker [19,
21] to rely on Crop-based Detection in this section. We call
this modified tracker Crop-KIOU. We note that Crop-based
Detection is applicable to many other trackers following the
tracking by detection paradigm.

Step 4: Post-process - update tracklet states, initialize
unmatched objects, delete unmatched / low-confidence

objects, etc.

Step 1: Preprocess - predict tracklet locations

Detect using full frame or sparse crops?

Full Frame Sparse Crops

Step 2: Detect -
detect objects in frame n

Step 2a: Crop frame - crop
tracklets and source regions

from frame n 

Step 3b: Transform - local
boxes to global coordinates

Get frame n

Step 3: Match - match
detections to existing
tracklets and initialize

unmatched objects

Step 2b: Detect -
predict boxes, confidences
and classes for each crop

Step 3a: Select outputs

Fig. 3. Crop-based Detection (green) used to extend the base tracker (white).

A. KIOU Tracker

A graphical overview of KIOU is shown in Figure 3 (white
boxes). A Kalman Filter models the motion (with constant
velocity assumptions in pixel-space) of each tracked object
such that (Step 1) the position of each object in frame n can
be predicted a priori (before detection is performed). New
objects are detected by (Step 2) running any object detector
on the whole frame n. Detected objects in frame n are (Step
3) matched to existing object tracklets by bipartite matching
between the two sets, where intersection-over-union metric
between tracklet a priori locations and new detections used
as the distance metric between object pairs. Then, (Step 4)
matched detections are used to update the estimated locations
of each corresponding object tracklet within the Kalman Filter.
Objects in frame n without a suitable match are initialized as
new tracked objects and objects from frame n − 1 without
a suitable match in frame n are marked as inactive; after a
number of inactive frames, objects are considered lost and are
no longer tracked.

B. Crop-KIOU Tracker

Figure 3 shows the added steps of Crop-KIOU in green
boxes. Rather than performing (slow) object detection on every
full frame, Crop-KIOU skips d frames before performing
frame object detection, where d is a tuneable parameter. On
detection frames, Crop-KIOU is identical to KIOU. On all
other frames, (Step 2a) a set of crops is selected from the
overall frame. Specifically, the estimated a priori location of
each existing object is used to crop a portion of the frame
around that object within the the overall frame. (Step 2b) These
small crops are then processed by a crop detector (identical to



Fig. 4. a priori object i location in global (frame) coordinates, bõxgi =

[x̃gi , ỹ
g
i , w̃

g
i , h̃

g
i ] (red), is made square (yellow solid) and expanded by a factor

of β to produce cropi := [x̃gi , ỹ
g
i , si] (yellow dash) before being passed to

crop detector. Expansion helps to ensure that actual tracked object will be
contained within the crop area.

the detector but retrained on images of the expected crop size).
All non-cropped portions of the image are ignored. The “best”
box from each object crop is selected as the detection for that
crop (Step 3a) . Because each object crop is already associated
to an object when it is generated, there is no need to perform
a (possibly error prone) data association step. All detections
within crops can trivially be transformed back into the full
frame coordinate space (Step 3b.). Lastly, object tracklets are
updated within the Kalman Filter based on the set of detections
as in KIOU. Each step new to Crop-KIOU is detailed more is
subsequent sections.

Step 2a: Crop frame. Generate a square cropping box
centered on each a priori object location in frame n. To ensure
that the full object is contained within the crop, expand the
crop to be larger than the a priori object estimate.

More precisely, let O := {1, · · · , i, · · · , omax} be the set
of all tracked objects, indexed by i. The a priori (denoted by
tilde) bounding box for object i in global (frame) coordinates is
defined by the center x-coordinate x̃gi , the center y-coordinate
ỹgi , the width w̃g

i and height h̃gi . Let bõxg
i := [x̃gi , ỹ

g
i , w̃

g
i , h̃

g
i ].

Similarly, we define the corresponding square crop for object
i as cropi := [x̃gi , ỹ

g
i , si], where si is the scale. The scale is

computed as:
si = max{w̃g

i , h̃
g
i } × β, (1)

where β is a box expansion ratio (a parameter) used to ensure
the full object is within the crop. Figure 4 shows a graphical
representation of crop generation for a single object.

By construction, cropi is of size (si × si) pixels. Before
detection, each crop re-scaled to a size (C ×C) pixels, where
C is a constant across all crops.

Step 2b: Detect in Crops. All image crops corresponding
to a priori object locations are processed by the crop detector,
which produces bounding boxes that estimate the location
of the object within each crop. In this work, a Retinanet
detection network [34] is used for both the full frame de-
tector and the crop detector, with each trained separately on
data with images of the corresponding scale. Given cropi,
the localizer returns lmax bounding boxes indexed by j

in the local crop coordinates. Each output is an estimated
location of object i within the crop, defined by the object
center, box width, and box height. The j-th bounding box
output of the detector corresponding to cropi is written as
boxl

i,j := [xli,j , y
l
i,j , w

l
i,j , h

l
i,j , confi,j ], where confi,j ∈ [0, 1]

is the confidence of the j-th detector output associated with
cropi.

Step 3a: Select outputs. We score each box with a weighted
combination of detection confidence and IOU overlap with the
object prior (IOU+Conf), thus incorporating information from
the prior before removing any candidate boxes. Section IV-B
describes the experiments motivating this choice. Each can-
didate bounding boxes is scored according to this IOU+Conf
metric defined as:

score(boxl
i,j , bõxli) = W×confi,j+(1−W )×Φ(boxl

i,j , bõxl
i),
(2)

where Φ is the IOU similarity function between two boxes and
W is a scalar used to balance the two terms. The bounding
box with the highest score is selected as the detected boxli for
object i.

The best detector output corresponding to cropi is written as
boxl

i := [xli, y
l
i, w

l
i, h

l
i], in coordinates local to the crop. Since

the set of detection outputs for a crop are compared to the
single a priori object i’s location, output selection across all
objects is O(omax × lmax) in complexity, where omax is the
total number of tracked objects and lmax is the total number of
detection outputs per crop. This operation is significantly less
complex than a O(o3max) global min-cost matching problem
in Step 3 of the base tracker [47]. Moreover it avoids object
association errors that can occur in Step 3.

Step 3b: Local to global transformation. The best de-
tection boxli for each crop i is converted back into global
coordinates, where it can be used to update the i-th tracklet.
Step 4 is then performed as for the base KIOU tracker.

IV. EXPERIMENTS

We perform experimental analysis using the UA-DETRAC
Benchmark, the most comprehensive object tracking dataset
in a traffic monitoring context. We first test our proposed
IOU+Conf method for parsing crop-detection outputs against
existing strategies (NMS and Soft NMS). Second, we test
Crop-KIOU at a variety of parameter settings for d and assess
its performance relative to baseline KIOU. We next evaluate
Crop-KIOU on the UA-DETRAC test benchmark where we
achieve state of the art performance. Finally, we compare
the use of Crop-based Detection to speed object tracking to
the current standard method for speeding tracking (frame-
skipping).

A. UA-DETRAC

The UA-DETRAC Benchmark Suite contains 10 hours of
video containing traffic sequences divided into 60 training and
40 testing videos. The training and test data contain an average
of 7.1 and 12.0 objects per frame, respectively [1]. We further
subdivide the training data into 45 training videos and 15



d Hz ↑ PR-MOTA ↑ PR-MOTP ↑ PR-MT ↑ PR-ML ↓ PR-IDS/id ↓ PR-FM/id ↓ PR-FP/obj ↓ PR-FN/obj ↓

0 22.7 / 22.9 66.4 / 55.8 77.5 / 70.7 87.7% / 72.0% 3.9% / 8.6% 0.27 / 0.45 0.27 / 0.69 0.192 / 0.220 0.121 / 0.189
1 26.4 / 26.7 69.4 / 59.7 79.9 / 76.8 73.4% / 53.7% 6.7% / 14.3% 0.51 / 0.64 0.90 / 1.35 0.093 / 0.090 0.190 / 0.275
3 28.5 / 29.1 67.2 / 58.0 78.1 / 75.7 70.0% / 50.7% 7.3% / 14.9% 0.43 / 0.53 1.13 / 1.39 0.095 / 0.094 0.208 / 0.287
7 31.3 / 31.9 63.9 / 56.6 76.6 / 75.4 63.3% / 44.4% 8.4% / 16.5% 0.35 / 0.39 0.95 / 1.15 0.098 / 0.092 0.236 / 0.306
15 32.5 / 33.1 60.7 / 53.6 76.0 / 74.9 52.2% / 34.9% 10.9% / 20.6% 0.20 / 0.23 0.67 / 0.85 0.096 / 0.089 0.272 / 0.338
31 34.6 / 35.7 55.6 / 47.6 75.7 / 74.2 36.8% / 25.2% 17.5% / 28.1% 0.10 / 0.12 0.49 / 0.65 0.088 / 0.084 0.337 / 0.397

TABLE I
TRACKING METRICS (TRAINING/VALIDATION) FOR KIOU (d = 0) AND CROP-KIOU ON UA DETRAC DATASET. BEST RESULTS FOR EACH METRIC ARE

SHOWN IN BOLD. WHEN APPLICABLE, METRICS ARE NORMALIZED BY NUMBER OF UNIQUE OBJECTS (ID), OR NUMBER OF UNIQUE OBJECT
OCCURRENCES (OBJ)

validation holdout videos. We train all frame and crop detec-
tors using the 45 training videos, and perform experimental
analysis on each data partition (training/validation) separately.
We evaluate Crop-KIOU according to the PR-metrics defined
in [1] which evaluate tracking performance at varying levels
of detection confidence levels.

B. Evaluation of bounding box selection method

We test three strategies for selecting from amongst output
bounding boxes for each frame. 1.) Perform non-maximal
suppression (NMS) and subsequently select the remaining box
with the highest IOU with the object prior location, evaluated
at multiple threshold overlaps Nt. 2.) Same as 1, but use Soft-
NMS instead of NMS, evaluated at several Gaussian factors
σ [29]. 3.) The proposed IOU+Conf box-scoring described in
Section III evaluated at several weighting parameters W .

To evaluate each method we generate a set of crop-detector
outputs for each of 500 object image inputs. We provide an
associated prior for use in bounding box selection by adding
random noise to the ground truth bounding box for each
object. We use three levels of noise such that the object priors
have an average IOU of 0.85, 0.75, and 0.60, respectively,
with the ground truth bounding box. We use as comparison
metric between methods the average IOU of the final selected
bounding box with the ground truth bounding box, averaged
over all examples. Figure 5 shows the result.

Fig. 5. Mean IOU of ground truth and bounding box selected with each
method, given object priors that overlap with ground truth by a.) 0.85, b.) 0.75,
and c.) 0.60 on average. θ is a stand-in variable for the changeable parameter
for each method (Nt for NMS, σ for soft NMS, and W for IOU+Conf).

The proposed IOU+conf approach outperforms both NMS
and soft NMS across a wide range of parameter settings, and

at all tested levels of object prior accuracy. The best overall
output IOU (0.81,0.76, and 0.70 respectively) is achieved
using IOU+Conf for each object prior accuracy condition.
Intuitively, when the quality of the prior is lower (in terms of
average IOU), the optimal value for W is lower, as it places
less emphasis on overlap with the prior and more emphasis
on high detector confidence. IOU+Conf shows promise over
NMS and SoftNMS in constrained tracking contexts because
the prior is incorporated earlier into the box selection process
before any candidate boxes are deleted.

C. Crop-KIOU versus KIOU baseline

We evaluate Crop-KIOU for multiple object tracking on the
UA-DETRAC training and validation partitions with varying
numbers of frames between detection d. Tracking is performed
at d = 0, 1, 3, 7, 15 and 31 frames. Note that d = 0 is the
baseline (KIOU) because detection is performed on every full
frame. Results are reported in Table I.

As seen in Table I, Crop-KIOU achieves increased accuracy
(PR-MOTA) and increased frame-rate relative to the base
tracker. When the number of frames between detection is
small (d = 1 and d = 3), Crop-based Detection increases
the overall accuracy (PR-MOTA) of KIOU by drastically
reducing the number of false positives (PR-FP). Average
tracking precision (PR-MOTP) is also increased, meaning
more tracklets output by the tracker correspond to ground
truth objects. Most importantly, Crop-based Detection also
results in a speedup relative to the base tracker. At d = 3,
a 25%/27% (train/validation) speedup relative to baseline is
achieved in addition to an increase in accuracy. When d = 7
a 38%/39% speedup is achieved for a -2.5%/+0.8% change in
PR-MOTA relative to the base tracker. This increase in speed
does come at a slight penalty: False Negative rate (PR-FN),
fragmentations (PR-FM), and identity switches (PR-IDS) all
at first increase with increasing d. However, we find that these
types of errors are more desirable than false positives in a
traffic monitoring context. Since object motion is fairly regular,
we can often impute missing object positions during post-
processing, whereas false positive tracked objects that persist
for several frames are more difficult to identify as anomalous.

Based on these results, we select d = 7 as the best parameter
setting for Crop-KIOU as it results in the largest speedup while
still increasing accuracy in terms of PR-MOTA, and we use
this setting for evaluation on the UA-DETRAC test data.



Tracker PR-MOTA ↑ PR-MOTP ↑ PR-MT ↑ PR-ML ↓ PR-IDs* ↓ PR-FM* ↓ PR-FP*↓ PR-FN*↓

GOG 23.9 / 11.7 47.4 / 34.4 20.5% / 10.8% 21.0% / 21.1% 0.0158 / 0.0124 0.0148 / 0.0119 0.119 / 0.123 0.70 / 0.70
IOUT 34.0 / 16.4 37.8 / 26.7 27.9% / 14.8% 20.4% / 18.2% 0.0109 / 0.0084 0.0115 / 0.0089 0.031 / 0.061 0.64 / 0.66
JTEGCTD 28.4 / 14.2 47.1 / 34.4 23.1% / 13.5% 18.3% / 18.7% 0.0013 / 0.0020 0.0050 / 0.0065 0.096 / 0.127 0.63 / 0.65
JDTIF - / 28.0 - / 41.8 - / 34.2% - / 20.9% - / 0.0034 - / 0.0166 - / 0.270 - / 0.73
MFOMOT 34.6 / 14.8 46.6 / 35.6 30.2% / 11.9% 12.0% / 20.8% 0.0040 / 0.0042 0.0091 / 0.0098 0.073 / 0.103 0.52 / 0.73
KIOU 40.1 / 31.0 49.8 / 49.9 42.3% / 37.4% 5.8% / 10.4% 0.0021 / 0.0035 0.0024 / 0.0048 0.165 / 0.253 0.25 / 0.46
V-IOU 37.9 / 29.0 41.7 / 35.8 38.1% / 30.1% 24.7% / 22.2% 0.0004 / 0.0007 0.0008 / 0.0012 0.073 / 0.069 0.66 / 0.70
DMC - / 14.6 - / 34.1 - / 11.6% - / 20.6% - / 0.0044 - / 0.0062 - / 0.078 - / 0.68
GMMA - / 12.3 - / 34.3 - / 10.8% - / 21.0% - / 0.0030 - / 0.0117 - / 0.124 - / 0.70
SCTrack-3L 25.9 / 12.1 47.2 / 35.0 15.0% / 7.7% 20.6% / 24.8% 0.0017 / 0.0018 0.0062 / 0.0046 0.047 / 0.040 0.74 / 0.79

Crop-KIOU (Ours) 64.5 / 46.4 79.3 / 69.5 50.1% / 41.1% 8.2% / 16.3% 0.0028 / 0.0051 0.0091 / 0.0186 0.061 / 0.113 0.26 / 0.44

TABLE II
TRACKING METRICS FOR UA-DETRAC TEST DATA (BEGINNER/ADVANCED) PARTITIONS. A − INDICATES THE RESULT IS NOT AVAILABLE. RESULTS

TAKEN FROM [7].

* PR-IDs,PR-Frag,PR-FP and PR-FN are normalized by the total number of ground truth object detections.

D. UA-DETRAC testing results

Next, we present the result of Crop-KIOU compared to
state of the art methods for the UA-DETRAC Benchmark test
dataset as reported in [7]. Table II shows that Crop-KIOU
outperforms all existing methods both on overall accuracy
(PR-MOTA) and tracking precision (PR-MOTP). Additionally,
Crop-KIOU performs best overall in terms of mostly tracked
objects (50.1% and 41.1% PR-MT on beginner and advanced
subsets, respectively.) Notably, Crop-KIOU has the lowest rate
of false negatives (PR-FN) of any tracker on the advanced
test dataset partition, and the second lowest PR-FN rate on
the beginner partition. This means that, despite missing some
new objects as they appear, Crop-KIOU tracks known objects
accurately enough to produce very few false negatives, more
than making up for missed new objects.

Using Crop-based Detection to extend KIOU establishes a
new state-of-the-art for this benchmark. Further, Crop-KIOU
process at an average of 29.1 fps (realtime for this 25 fps
benchmark). This speed is not directly comparable to the other
reported trackers as it includes the time of object detection.

E. Comparison to frame skipping

We compare CBT against the main existing method for
speeding up object trackers. Frame skipping involves skipping
s frames between frame detections, and imputing tracked
object locations between these frames. We evaluate KIOU
with frame skipping (s = 1, 2, 3, 4 and 5) against Crop-
KIOU results shown above. We also combine frame-skipping
with Crop-KIOU by skipping s frames between any detection
and performing a varying number of crop-based detections
between full frame detections. We evaluate each method on
the UA-DETRAC test dataset at a single detector confidence
threshold and use the Multiple Object Tracking Accuracy
(MOTA) metric defined in [48] rather than PR-Metrics as
in [7]. This disentangles the speed of each method from the
slowdown caused by parsing and matching large numbers of
detections when a low confidence threshold is used (a low con-
fidence threshold is necessary for PR-Metric calculation, but
is not generally used in real-world fast tracking applications).
Results are shown in Figure 6.

Fig. 6. Comparison of tracking algorithm extensions. Each point represents
tracking results at a single parameter setting. Crop-based Detection (green)
and Crop-based Detection + Skipping (blue) extend the state of the art (red)
in terms of the tradeoff between accuracy (MOTA) and speed (Hz).

Crop-based Detection (green) extends the pareto-frontier
of the accuracy-speed tradeoff for this traffic monitoring
dataset. While frame-skipping (red) results in large speedups
but exclusively reduces accuracy relative to the base tracker,
Crop-based Detection increases accuracy considerably (50.3
to 55.6 MOTA) while also increasing speed by 21% relative
to the baseline tracker, or increases speed by 57% without
decreasing accuracy. Furthermore, the combination of Crop-
based Detection and frame-skipping (blue) results in even
larger speedups (21.0 to 52.4 fps or 149%) without a decrease
in overall accuracy relative to the KIOU baseline. This above
real-time performance allows for multiple traffic cameras to
be processed simultaneously on the same device in real-time.

V. CONCLUSION

This work presented Tracking with Crop-based Detection,
a powerful technique for extending existing object trackers
to boost detection and tracking speed. A tracker using Crop-
based Detection (Crop-KIOU) was implemented and evaluated
on the UA-DETRAC dataset, the leading traffic monitoring
multiple object tracking benchmark. Crop-based Detection was



found to increase the speed of the baseline tracker (KIOU) by
around 30% with no loss in PR-MOTA. Crop-KIOU achieved
state of the art performance on the UA-DETRAC benchmark
while producing tracklets from raw video at 29 fps. Moreover,
Crop-based Detection was shown to compete and combine
favorably with frame skipping, allowing for a 149% increase
in framerate relative to KIOU with no decrease in accuracy.

This work establishes the potential of Tracking with Crop-
based Detection to push the state of the art for object detection
and tracking in real-time, constrained tracking applications
such as traffic monitoring. Future work will use Crop-based
Detection to extend trackers that utilize visual information for
object association, and will further utilize 3D object detection
and state estimation to more accurately localize vehicles in
real-world coordinates as well as to predict vehicle motion
more accurately. Code and full parameter settings for this work
are available at https://github.com/DerekGloudemans/crop-
tracking-detrac.
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