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Abstract—We introduce the I-24 Mobility Technology Inter-
state Observation Network (MOTION), a transportation cyber-
physical systems testbed under development in Tennessee. It
consists of a six-mile freeway segment instrumented with 400
4K resolution cameras, processed by a real-time compute
system to enable continuous performance monitoring of free-
way traffic. The testbed is being developed to support next
generation connected and autonomous vehicle technologies and
advanced traffic management. When complete, the testbed will
be the longest continuously observed freeway segment in the
world. This article introduces the testbed, discusses the core
design choices, and outlines the preliminary work conducted
to support the design.
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tion cyber-physical systems;

I. INTRODUCTION

New sensing, communication, and control technologies
are enabling a digital transformation of transportation sys-
tems. As an illustrative example, one of the major technolog-
ical innovations enabling this revolution is the realization of
connected and autonomous vehicles (CAVs). The majority
of the best selling cars in the US are now equipped with
Society of Automotive Engineers (SAE) designated level 1
or level 2 automation systems. These driver-assist systems
control the vehicle differently than human drivers, opening
up possibilities to alleviate “phantom traffic jams” that are a
result of human driving behavior. Even a few CAVs mixed
in regular traffic can dramatically reduce fuel consumption
of the overall vehicle flow [1]. Next generation systems
will integrate infrastructure assets and individual vehicle
control systems to jointly manage traffic flow [2]. This will
necessarily raise the need for freeway monitoring systems
that can accurately monitor the impact of individual vehicles
on overall traffic flow.

Unfortunately, such powerful tools are double-edged. In
some cases, technological innovations proposed to solve
one mobility problem can actually exacerbate issues in
mobility systems as a whole. For instance in [3], [4],
it was shown that many currently commercially available
Adaptive Cruise Control (ACC)-equipped vehicles, while
increasing the driving comfort for a single driver [5], amplify

perturbations and cause downstream instabilities in a traffic
flow. Likewise, [6] proffer using simulated experiments of
platoons of trucks that such a driving strategy can negatively
impact the merging efficiency and overall safety of the
surrounding roadway.

These examples clearly illustrate the need for high-
fidelity open-road testbeds where emerging transportation
technologies can be observed and assessed, particularly to
determine the positive and negative emergent phenomena
when deployed in real traffic environments. Yet it remains
extremely challenging to collect real-time mobility data on
open roads, both with enough fidelity, and enough scale, to
identify and assess such effects.

Motivated by the above needs, in this article we introduce
the I-24 Mobility Technology Interstate Observation Network
(MOTION), which is a densely instrumented freeway that
enables continuous, ongoing coverage of a roadway at the
fine-grained vehicle trajectory level. MOTION consists of
a network of 400 pole-mounted 4K resolution cameras
recording video data that covers a six mile stretch of freeway
in its entirety. The raw video data stream exceeds 130
TB/day of traffic data footage that must be processed in
real-time to extract precise vehicle locations, trajectories,
and other relevant information from the entire monitored
portion of roadway. Data is reported for each of the 180,000
vehicles per day that travel on the roadway throughout the
full length of the instrumented freeway. An illustration of
the concept is shown from the first MOTION prototype pole
located at the I-24/I-40 interchange shown in Figure 1. We
are now installing eighteen cameras on three poles covering
1800 feet of roadway, with full system completion expected
by the end of 2022.

The main contribution of this article is to introduce
the MOTION testbed, which is designed as an open-road
transportation cyber physical systems (CPS) testbed. The
core innovation of MOTION is the ultra-dense deployment
of 4K resolution video cameras that are processed in real
time to generate continuous vehicle trajectories on an open
freeway. We detail motivating considerations in the design of
such a system, and we present our preliminary experiments



Figure 1. I-24 MOTION prototype installation. Multiple overlapping 4K cameras enable tracking vehicles seamlessly along the roadway.

assessing the feasibility of the system, conducted as part of
the first phase of the MOTION deployment.

The remainder of this article is organized as follows. In
Section II, related testbeds and experiments for analyzing
mobility systems are assessed. In Section III, we present
major design considerations of MOTION and discuss our
approach for dealing with the challenges of large-scale
sensor deployments for traffic observation. Section IV details
our initial tests to validate the feasibility of this system, and
Section V concludes the article by identifying areas of future
work.

II. BACKGROUND

In this section we briefly introduce the concept of trajec-
tory data, review major projects in traffic sensing technolo-
gies, and review the state of the art freeway testbeds for
transportation CPS.

A. Trajectory Data

The main challenge in understanding broad system-level
properties in mobility such as overall energy efficiency,
safety, or flow stability is that these properties depend on
the driving characteristics of all vehicles in a traffic stream,
and each vehicle must be analyzed to a very fine level of
detail. Trajectory data, or absolute positions of each vehicle
at regular time intervals, is considered the gold standard
for data collection. High-quality vehicle trajectory datasets
support research on traffic flow theory [7], driver behavior
modeling [8], and many other topics [9]. Unfortunately, such
datasets are hard to come by and are limited both in length
and duration. For this reason, developing reliable, extensive
methods for collection of trajectory data is viewed as one of
the largest challenges for continuing traffic flow research [7].

B. Major Traffic Sensing Projects

Historically trajectory data collection relied on cameras
to view a large portion of a roadway at once. In the

1970’s, [10] utilized a helicopter-mounted camera and
image processing to extract trajectory data explaining the
formation of traffic waves. In the early 2000s, the System
for Assessment of the Vehicle Motion Environment [11]
introduced a portable system of cameras rigged on mast-
poles to extract trajectory data. Despite the novelty of this
concept, its use never extended far beyond initial feasibility
tests which covered 600 feet of roadway for an afternoon.
In 2004, the seminal Next Generation Simulation (NGSIM)
project used building-mounted cameras to gather trajectory
data for several 15 minute datasets spanning several hundred
feet on two freeways in California [12]. The most recent
trajectory dataset, known as the Highway Drone Dataset
(High-D), contains a total of 16.5 hours of trajectory data
at 16 different locations, each approximately 400 meters in
length, making this dataset an order of magnitude larger than
its predecessor NGSIM [13].

Despite the importance of trajectory data, other traffic
sensing technologies are much more widely deployed. For
example, California’s Freeway Performance Measurement
System (PeMS) system was developed to clean and dis-
tribute inductive loop detector data collected throughout
the state [14]. The Mobile Century project introduced the
concept of smartphone based traffic monitoring [15], which
is now widely adopted by navigation companies globally.

C. Existing Open-Road Testbeds

A number of ongoing programs for traffic data and
research exist on open roads. The Northern Virginia Con-
nected Vehicle Testbed, launched in 2013, uses Dedicated
Short-Range Communications (DSRC) devices as well as
cell-network communications to record approximate vehicle
locations along several major stretches of interstate to inform
real-time traffic management systems [16]. Similarly, the
California Connected Vehicle Testbed uses DSRC for com-
munication between DSRC-equipped vehicles and infras-



Vehicle
Data System

Vehicle
Counts

Fine
Trajec-
tories

Seam-
less

< One
Mile

On-
going

PeMS Yes No No Yes Yes
Mobile Century No No Yes Yes No

NGSIM Yes Yes Yes No No
HighD Yes Yes Yes No No
MTO Yes Yes No No Yes

N. VA Testbed No No No Yes Yes
CA CV Testbed No No No Yes Yes

ACTION Yes No No Yes Yes
I-24 MOTION Yes Yes Yes Yes Yes

Table I
COMPARISON OF VEHICLE DATA SYSTEMS.

tructure to enable greater efficiency in driving behavior and
infrastructure operation. [17]. The ACTION testbed, slated
for completion in 2022, will provide an extensive camera
system covering much of Tuscaloosa’s roadway network for
more effective incident management and demand-adaptive
mobility decision-making [18]. The Minnesota Traffic Ob-
servatory’s Beholder system uses traffic cameras and a suite
of other sensors to provide partial trajectories on a dangerous
interstate interchange [19].

Table I provides a summary of the capabilities of historical
and current mobility data systems. The identified shortage
of vehicle trajectory data motivates our implementation of a
large-scale vehicle observation testbed. While each system
offers benefits and useful data for traffic operations, none
offer real time, seamless, large scale trajectory data needed
to support transportation CPS development.

III. SYSTEM ARCHITECTURE

In the following subsections, we discuss major decisions
and motivating factors in the design of I-24 MOTION with
respect to the type and number of sensors deployed, the
computing regime (central versus edge), and the processing
pipeline used to convert sensor readings into trajectory data.
Figure 2 provides a high level overview of the system
networking, hardware and storage components. A video
ingest in the central processing hub stores video in a rolling
buffer while computation nodes process the data stream in
real time.

A. Sensor Components

Sensors for vehicle trajectory data collection are selected
according to spatial and temporal resolution as well as
ruggedness. Sufficient spatial resolution is required to local-
ize a vehicle within approximately one foot of its absolute
position to provide high-quality trajectories. A temporal res-
olution of 10 Hz is required to capture high-speed changes in
traffic conditions such as extreme braking events, as defined
based on [12]. Sensors are also required to be rugged enough
to withstand normal and severe weather conditions such as
heat, ice, and water for an expected operating lifetime of

Figure 2. I-24 MOTION system overview.

five years. Based on these constraints, two main categories
of sensors are considered for I-24 MOTION:
• Light Detection and Ranging (LIDAR) Scanners - Laser

distance scans are used to capture geometric informa-
tion about a scene with high resolution. Current models
provide readings at 15 Hz and capture information at
0.1 deg intervals.

• Cameras - Current 4K resolution sensors capture com-
plete visual information from a scene at 30 Hz and at
0.028 deg intervals (2160 pixels over a 60-degree field
of view).

Cameras are ultimately selected for the I-24 MOTION. At
present, LIDAR units are an order of magnitude more expen-
sive than 4K resolution cameras suitable for traffic monitor-
ing. Cameras preserve color and lighting information, which
will aid in vehicle re-identification and other data analyses
besides trajectory extraction; LIDAR does not. Cameras
provide higher resolution than current LIDAR models and
cover roadway at greater distances with sufficient resolution.
Lastly, cameras have been used in traffic operations for
over 20 years, so are well-proven as a traffic monitoring
solution, whereas LIDAR units are not traditionally used
for long-term fixed traffic monitoring installations. Unlike
LIDAR, which has good performance in day and night time
conditions, a challenge for cameras is that the performance
can deteriorate in low lighting conditions.

B. Infrastructure Components

The precise placement of camera poles along the roadway
will greatly impact the resolution and completeness of
the data collected. Ideally, poles should be tall enough to
provide an un-disrupted viewpoint of the roadway. However,
logistical and cost considerations limit the pole height to 110
feet, and all poles must be located on one side of the freeway.
Thus, four main considerations inform camera placement:
• Perpendicular Occlusion - Vehicles in a lane closer to

the camera can occlude, or block, vehicles in lanes
farther from the camera. This type of occlusion occurs
perpendicular to the roadway, in which direction vehi-



Figure 3. Parallel occlusion and resolution limit diagrams.

cles are spaced approximately 12 feet apart on center
in standard width lanes.

• Parallel Occlusion - Tall vehicles sufficiently far from
the camera can occlude short vehicles travelling in front
of them. This type of occlusion happens in sight-lines
roughly parallel to the roadway, in which direction
vehicles may be closely spaced in slow-moving traffic.

• Resolution - Cameras and LIDAR sensors both provide
constant angular resolution, but this angular resolution
covers an increasingly large distance along the roadway
at locations farther from the sensor. To enable both
accurate vehicle detection as well as to enable a variety
of other use cases, a minimum resolution of 2 pixels
per foot along the roadway is required. This means that
a section of road from d to d+ 1 feet from the camera
must have at least 2 pixels covering it in the direction
parallel to the roadway.

• Field of View - A sufficient number of cameras must
be placed such that their fields of view cover the entire
roadway and also overlap.

Though some state-of-the-art object detection algorithms
provide sub-pixel accuracy, a larger margin of error is added
to account for algorithm inaccuracies and detection difficul-
ties for I-24 MOTION. Camera placements are calculated
to provide a minimum 2 pixels per foot along the roadway
using a straightforward calculation. Perpendicular and par-
allel occlusion limits are calculated to determine whether
all lanes will be free from perpendicular occlusion and at
what distance parallel occlusion will become a limitation.
Standard vehicle dimensions and spacings are used, and
vehicles less than 50% visible are considered occluded. For
calculations, we assume a de-rated pole height of 100 ft
to account for varying terrain elevations adjacent to the
roadway. From these constraints, we find that a 4K (3840 x
2160 pixel) resolution camera can provide 2 pixels per foot
along the roadway up to 305 feet from the pole. Based on
resolution and occlusion constraints (resolution governs as
seen in Figure 3), a conservative coverage radius of 250 feet
is selected for each pole.

Field of view calculations are carried out along the

Figure 4. Camera field of view alignments for complete roadway coverage.

freeway via a 3D model to ensure sufficient cameras are
mounted at each location to provide complete coverage of
the entire radius of coverage along the roadway. Based on
the roadway width for the I-24 MOTION, it is determined
that at least five cameras per pole are necessary to provide
sufficient coverage of the radius of coverage. Figure 4 shows
the resulting configuration.

C. Computing Regime

To extract trajectories from the video data, we consider
both a centralized processing approach and an edge comput-
ing approach. Recently, edge computing has been a popular
choice for IoT mobility sensor applications [20], [21]. I-24
MOTION will have roughly 400 4K cameras when com-
pleted. Using H.264 compression, a conservative estimate
for the network bandwidth requirement is 15 gigabits per
second (GBps). Edge processing reduces network bandwidth
requirements, which can be favorable if the network band-
width is limited (for example on a cellular network). If raw
data contains personally identifiable information (PII), edge
computing can be used to strip the data of PII. Moreover,
decentralized approaches can improve system robustness
by eliminating single points of failure of the computing
resources.

Despite these advantages, most edge computing solutions
are limited in terms of graphics processing unit (GPU) com-
putation performance compared to centralized computing
solutions. The object detection algorithms in I-24 MOTION
must run in real time (at the rate at which data is produced
by cameras). It is possible that specialized edge compute
resources can maintain high frame-rates at lower resolutions
and when there are few objects in the frame [20], or by
intelligently sharing on and off-edge compute resources as
in [22]. Thus, in I-24 MOTION we adopt a centralized
computing paradigm. Moreover, co-locating all of the com-
putational resources allows us to dynamically reallocate
compute resources to manage workload and scale the com-
puting needs as more algorithms are deployed to extract
additional information from the videos. I-24 MOTION is
located concurrently with a pre-existing optical fiber network
installed by the Tennessee Department of Transportation for
intelligent transportation system applications which supports



40 GBps of traffic, a suitable private network for data
transfer.

D. Software Components

The software processing pipeline must reliably and accu-
rately convert camera data into vehicle location data. Object
detection, tracking, and trajectory conversion algorithms
must run in real-time with respect to the input rate to enable
the camera network to operate continuously for a long-
term deployment. We assume that small inaccuracies and
fluctuations in readings, as well as temporary losses of a
vehicle’s location, can be smoothed and corrected in post-
processing steps.

1) Vehicle Detection Algorithm: For I-24 MOTION, ob-
ject detection algorithms are used to extract vehicle positions
from camera image data. The task of object detection is well
explored, and mature algorithms exist for efficiently detect-
ing objects. For example, YOLO-v3 [23] and Faster R-CNN
[24], are two state of the art object detection algorithms.
Both algorithms are based on the use of convolutional neural
networks for extraction of high-level information from image
pixels; the main difference is that Faster-RCNN relies on a
two-stage detection framework in which rough detections are
first output, and then this set of detections is used to create a
second, more refined set of final predicted object locations.
YOLO, on the other hand, relies on a single prediction stage,
making it faster but slightly less accurate. In this work a pre-
trained YOLO-v3 model is used for object detection.

2) Tracking: Object tracking is the task of locating the
same objects in consecutive frames of video data. For I-24
MOTION, a tracking by detection approach is employed,
in which object detection is performed on every frame, and
subsequently detected objects are matched between frames.
Several accurate algorithms for object tracking exist based
on modeling object types and behavior [25], filtering [26],
and direct output from neural networks [27].

The Simple Online Realtime Tracking (SORT) algorithm
[26] is used for tracking for its low computational overhead
and high accuracy. It uses a Kalman filter to predict and
correct the positions of each vehicle over time [28].

To implement SORT, the state of each vehicle:

xn = [xn, yn, sn, rn, ẋn, ẏn, ṡn]T , (1)

is expressed as a 7-dimensional state vector where x and y
denote the bounding box center coordinates, s is the width
of the bounding box, r is the width-to-height ratio of the
bounding box, and ẋ, ẏ, and ṡ denote the rate of change of
x and y. A constant velocity model is assumed resulting in
a state space model (presented here for a single vehicle) of
the form:

xn+1 = Fxn + wn , yn = Hxn + vn, (2)

where xn denotes the state at timestep n, wn ∼ N (0,Σw) is
the process noise, yn is the measurement at timestep n and

Figure 5. Vehicles tracked with YOLO and SORT. Red boxes denote cars,
Blue boxes denote trucks. Point trails denote the position of the associated
vehicle in prior frames.

vn ∼ N (0,Σv) is the measurement noise. The dynamical
model F and the observation model H are written explicitly
as:

F =



0 0 0 0 ∆t 0 0
0 0 0 0 0 ∆t 0
0 0 0 0 0 0 ∆t
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0


, H =



1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0


(3)

where ∆t is the time between consecutive video frames.
The system (1) is observable and thus can be accurately
estimated with a Kalman filter according to the update and
measurement equations (2). Other state spaces and model
dynamics were also considered but were found to perform
worse.

An important detail in the tracking problem is the as-
signment of detected objects to the correct vehicle in the
state space. This is done by matching the predicted posi-
tions in the model prediction step of the Kalman filter to
the actual detected objects from the object detector, using
the Hungarian algorithm for bipartite matching [29]. Once
the assignment is known, a standard Kalman update can
be performed to correct the predicted state based on the
measurement. Figure 5 shows the use of this method for
tracking object trajectories through consecutive frames of
video from a test of I-24 MOTION.

3) Trajectory Conversion: To be useful for intelligent
mobility applications, tracked object trajectories must be
expressed in absolute coordinates, rather that image space
coordinates. Assuming that the ground plane is flat, there
exists a perspective transform expressible as a 3x3 homog-
raphy matrix that maps points from the image plane to the
ground plane while preserving straight lines. If four points



in image space and their corresponding ground plane points
are known, a straightforward system of linear equations can
be solved to determine the 8 parameters of the transform
a11, · · · , a32 (by convention the last parameter is always 1).
Then, an arbitrary image plane point (xn, yn) can be mapped
to its corresponding ground plane point (x′, y′) via:

[
i
j
k

]
=

[ a11 a12 a13
a21 a22 a23
a31 a32 1

][x
y
1

]
(4)

x′ = i/k and y′ = j/k, (5)

where k denotes a scaling coefficient.

E. System Resilience

I-24 MOTION provides robustness to hardware and soft-
ware failures by way of redundancy:

• Single Camera Failure - Cameras are pan-tilt-zoom
enabled and six cameras are mounted per pole for
redundancy. In case of a camera failure, five cameras
can be re-positioned to seamlessly cover the area of
observation.

• Single Pole (Networking Hardware) Failure - Cameras
on neighboring poles have overlapping fields of view
and can cover the area of the failed pole (with possible
occlusion).

• Single Compute Node Failure - Load balancing can
redistribute computational load to other compute nodes.
If available compute resources cannot keep up with data
influx, the frame resolution can be reduced to speed up
the computationally expensive object detection step.

• Storage Failure - Data is stored at multiple locations
and can be restored to failed location after the failure
is addressed.

IV. FEASIBILITY EXPERIMENTS

Preliminary experiments have been carried out to verify
the feasibility of the proposed sensors, physical infrastruc-
ture, and computational pipeline. Data is collected from
a single six-camera pole for one week from August 9-
16, 2019. This data is then processed with the pipeline
described above to produce a trajectory dataset. To enable
tests with six cameras per pole, a custom mounting bracket
and associated networking hardware was also designed,
prototyped, and tested (Figure 6). This prototype serves
as a feasibility analysis for larger-scale deployment of
such a multi-camera mount. Code and videos from the
test can be found at http://github.com/DerekGloudemans/
I24-MOTION-examples. Thorough experiments will en-
hance and validate tracking algorithms in our future work.

Figure 6. Multi-camera mount is raised onto 110 ft pole.

V. CONCLUSION

In this article, we introduce I-24 MOTION which is an
open-road testbed designed to support CPS transportation
research. We present the overarching design and the prelim-
inary work to date on the prototype hardware and tracking.
Our next steps include building a 3-pole, 18 camera network
in 2020 and benchmarking the accuracy and run-time of the
processing pipeline.
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