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Abstract. We consider a partial differential equation - ordinary differential equation system
to describe the dynamics of traffic flow with autonomous vehicles. In the model the bulk flow
is represented by a scalar conservation law, while each autonomous vehicle is described by a car
following model. The autonomous vehicles act as tracer vehicles in the flow and collect measurements
along their trajectories to estimate the bulk flow. The main result is to both prove theoretically and
show numerically how to reconstruct the correct traffic density using only the measurements from
the autonomous vehicles.
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1. Introduction. In recent years autonomous vehicles (AVs) have been tested
on urban and highway networks and appear to be the technology with the highest
chance of disruptive changes for the future of traffic monitoring and management.
Traffic monitoring already underwent a major disruption when the use of fixed location
sensors and cameras were supplemented by Lagrangian sensing via mobile phones and
other devices. AVs will further contribute to this disruption by acting as highly reliable
moving sensors equipped with high-tech on-board devices that can record local traffic
conditions. The aim of this paper is to show how a small number of AVs immersed
in bulk traffic are capable of monitoring the traffic density along a road without any
other data sources. Mathematically we rely on a coupled ordinary differential equation
partial differential equation (ODE-PDE) model representing the combined evolution
of bulk traffic density and the positions of AVs.

Let us start providing some background on traffic estimation. The field of traffic
reconstruction began with experiments in the Lincoln Tunnel in New York City [14,
25]. Since then, the field has seen significant development in terms of the modeling
employed as well as the estimation algorithms used to integrate realtime data [26,
27, 18]. For a recent summary of the developments of model based traffic estima-
tion, see [20, 11]. More recently there has been an interest in exploring estimation
in Lagrangian coordinates [28, 15], where sensors are embedded in the traffic flow
instead of being placed at fixed locations in the infrastructure. For example, the
Mobile Century project [16, 27] used GPS data from mobile phones as measurements
for Lagrangian traffic state estimation. Such Lagrangian traffic state estimation tech-
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TRAFFIC RECONSTRUCTION WITH AVs 1749

niques have often relied on GPS data from the vehicles [27, 13] and more recently
from spacing measurements from on-board sensors [21]. Since AVs are also highly
instrumented vehicles, they may be able to provide additional measurements that can
further improve traffic estimation.

We now briefly describe the mathematical aspects of the paper. One of the
most widely used macroscopic models in traffic is the celebrated Lighthill--Whitham--
Richards model [17, 19], which consists of a single conservation law for the traffic
density. Particle trajectories for the model represent car trajectories and can be
constructed using solutions to discontinuous ODEs (see [6]). Considering together
the traffic density and a small number of particle trajectories gives rise to a partially
coupled PDE-ODE system, where the ODEs depend on the PDE solution but not vice
versa [5]. Alternatively, in [8] the authors introduced scalar conservation laws with
moving flux constraints. The latter represent a moving bottleneck, which in turn may
correspond to a vehicle such as a truck or an AV driving differently than the bulk
traffic. The model [8] is a completely coupled PDE-ODE model. Here we assume
that the AVs do not influence traffic by their driving, and therefore we consider the
partially coupled model.

Our problems can be formulated as control problems. We consider a stretch of
road with incoming and outgoing traffic and a small number of AVs entering the road
that are able to measure the density along their trajectories. The aim is to control
the speed of each AV (compatibly with the traffic conditions) in such a way that
the collected data allows for a complete reconstruction of the traffic density along
the road after a certain time. This corresponds to generating moving boundaries (by
controlling the AVs), so that the solution to the conservation law compatible with
the measured data along such boundaries is unique. This problem is new and can be
addressed using typical tools from the theory of conservation laws. More specifically,
initial-boundary value problems are well understood [10, 2, 22, 23] and semigroups
of solutions are constructed via wave front tracking (WFT) [9, 1, 3]. Using these
results, we first show that it is possible to define explicitly a time horizon such that,
if such a horizon is finite, then complete traffic reconstruction is possible for all times
after such a horizon. Moreover, the main result (Theorem 3.3) determines all initial
conditions which give rise to the observed density at the time horizon. The result is
then extended to the case of a ring road.

We then turn attention to the problem of reconstructing the density from the
measurements from AVs (which is proved possible by the main Theorem 3.3). Again
using the wave front tracking approach, we define an algorithm which takes the data
from AVs as input and returns the reconstructed traffic density as output. Since
we use wave front tracking, our solution is piecewise constant in time-space and the
trajectory of each AV has a piecewise constant speed (changing only at points where
the trajectory intersects with a wave). Therefore, all data (including each AV tra-
jectory and the measurements along it) are finite dimensional and the algorithm can
be implemented on a regular personal computer. We are then able to present various
numerical experiments of traffic reconstruction along a stretch of road.

The paper is organized as follows. In section 2, we briefly introduce the coupled
ODE-PDE model before describing the main theoretical results in section 3. In sec-
tion 4 a numerical scheme to estimate the traffic density from the AVs is introduced,
and in section 5 the scheme is applied to numerical experiments. Section 6 discusses
possible extensions of the work.
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1750 DELLE MONACHE, LIARD, PICCOLI, STERN, AND WORK

\rho \rho cr \rho max

fmax

f(\rho )

0

Fig. 1. The flux function (2.2) is commonly referred to as a fundamental diagram in the
transportation literature.

2. Model description. By detecting the local density via sensors of autono-
mous vehicles, we want to reconstruct the density at a certain time T and on a portion
of a road. In order to do this, we need to be able to describe the traffic dynamics and
reconstruct the density starting from the measurements of the autonomous vehicles.
Let us consider a stretch of road \BbbR with mixed traffic, i.e., partly human-piloted traffic
and partly autonomous vehicles. This situation can be modeled with a PDE-ODE
system consisting of a scalar conservation law accounting for the human-piloted traffic
and a system of ODEs describing the dynamics of the autonomous vehicles. From a
mathematical point of view this means that the main bulk of human-piloted traffic is
described with the Lighthill--Whitham--Richards (LWR) macroscopic model [17, 19],
i.e., the mass conservation equation

(2.1) \partial t\rho + \partial xf(\rho ) = 0, (t, x) \in \BbbR + \times \BbbR .

In (2.1), \rho = \rho (t, x) \in [0, \rho max] is the mean traffic density, \rho max is the maximal density,
and the flux function f : [0, \rho max] \rightarrow \BbbR + is given by the following flux-density relation:

(2.2) f(\rho ) = \rho v(\rho ),

where v(\rho ) is a smooth decreasing function denoting the mean traffic speed. We will
assume for simplicity that the following hold:

(A1) \rho max = 1;
(A2) f(0) = f(1) = 0;
(A3) f is a strictly concave function.

Assumptions (A2), (A3) ensure the uniqueness of a maximum point of the flux func-
tion at a critical density \rho cr \in [0, 1].

A typical example of a flux function for the LWR model is given in Figure 1.
The conservation law (2.1) with initial density \rho 0(\cdot ) \in BV (\BbbR , [0, 1])\cap L1(\BbbR , [0, 1])

admits an entropy solution \rho \in C0
\bigl( 
[0,+\infty [;L1 \cap BV (\BbbR ; [0, 1])

\bigr) 
(see [4]). For every

t \in [0,\infty ), \rho (t, \cdot ) \in BV (\BbbR ; [0, 1]), thus it admits right and left limits: \rho (t, x0+) :=
limx\rightarrow x0,x>x0

\rho (t, x) and \rho (t, x0 - ) := limx\rightarrow x0,x<x0
\rho (t, x0).

Let us briefly recall the concept of a Riemann problem and its solution. For (2.1)
a Riemann type initial data is given by

(2.3) \rho 0(x) =

\biggl\{ 
\rho L if x < 0,
\rho R if x > 0.

Entropic self-similar solutions to the Riemann problem are defined as follows:
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TRAFFIC RECONSTRUCTION WITH AVs 1751

t

xα0

t−1

AV−N1

t−2 +

t−N1 +

+

y00

+

AV−N1

y10

+

AV−2

AV−1

AV0 AV1 AV2

· · ·

...

yN2
0

+

Fig. 2. AVs along the road at a certain time t.

\bullet If \rho L < \rho R: a shock wave (\rho L, \rho R) traveling with speed given by the Rankine--

Hugoniot condition \sigma (\rho L, \rho R) =
f(\rho L) - f(\rho R)

\rho L - \rho R
, namely,

\rho (t, x) =

\biggl\{ 
\rho L if x < \sigma (\rho L, \rho R)t,
\rho R if x > \sigma (\rho L, \rho R)t.

\bullet If \rho L > \rho R: a rarefaction wave (\rho L, \rho R), namely,

\rho (t, x) =

\left\{   \rho L if x < f \prime (\rho L)t,
(f \prime ) - 1(xt ) if f \prime (\rho L)t < x < f \prime (\rho R)t,
\rho R if x > f \prime (\rho R)t.

We will also make extensive use of the theory of generalized characteristics. Since
\rho is, in general, discontinuous in the space variable, classical characteristics must
be replaced by generalized ones, which solve a differential inclusion, instead of an
ordinary differential equation. We refer the reader to [7] for details. In Appendix A.1
we provide a brief overview. We consider that along the road at a certain time t there
are N autonomous vehicles that are able to detect the local vehicle density via sensors.
We assume that we can collect their information starting at a position x = \alpha \in \BbbR and
at time t \geqslant 0. The N autonomous vehicles are distributed in two groups N1, N2 + 1
in the following way (see Figure 2):

\bullet N1 vehicles enter the stretch of road considered at time t > 0 via an entrance
ramp positioned at x = \alpha .

\bullet N2 + 1 vehicles are located at position x \geqslant \alpha at time t = 0.
All the autonomous vehicles are modeled via the following ODE system:

(2.4)

\biggl\{ 
\.yi(t) = ui(\rho (t, yi(t)+)), t \in [ti,+\infty ), i =  - N1, . . . , N2,
y(ti) = yi0, i =  - N1, . . . , N2.

Above, ui is a decreasing function verifying that

(2.5)

\biggl\{ 
ui(\rho ) > f \prime (\rho ) if \rho > 0,
ui(\rho ) = f \prime (\rho ) if \rho = 0.
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1752 DELLE MONACHE, LIARD, PICCOLI, STERN, AND WORK

The autonomous vehicles move faster than every wave front allowing the existence of
solutions to (2.4) in Carath\'eodory sense, that is to say, for t \in (ti,+\infty ), (2.4) holds.
If i \in \{  - N1, . . . , - 1\} , the vehicles enter the road [\alpha ,\infty ) at time ti > 0 in a position
yi0 = \alpha . If i \in \{ 0, . . . , N2\} , the vehicles are already in the stretch of road [\alpha ,\infty ), and
therefore ti = 0 and \alpha \leqslant yi0.

The Cauchy problem that describes the traffic dynamics is then

(LWR-AVs)

\left\{       
\partial t\rho + \partial x(f(\rho )) = 0, (t, x) \in \BbbR + \times \BbbR ,
\rho (0, x) = \rho 0(x), x \in \BbbR ,
\.yi(t) = ui(\rho (t, yi(t)+))), t > ti, i =  - N1, . . . , N2,
yi(ti) = yi0, i =  - N1, . . . , - 1,

with \biggl\{ 
t - N1

> \cdot \cdot \cdot > t - 1 > 0 = t0 = \cdot \cdot \cdot = tN2
,

y - N1
0 = \cdot \cdot \cdot = y - 1

0 = \alpha \leqslant y00 < \cdot \cdot \cdot < yN2
0 .

Above, \rho 0(\cdot ) \in BV (\BbbR , [0, 1])\cap L1(\BbbR , [0, 1]) and, for every i \in \{  - N1, . . . , N2\} , yi0(\cdot ) \in \BbbR 
are the initial conditions. From [6, 8], the Cauchy problem admits an entropy solution
\rho \in C0

\bigl( 
[0,+\infty [;L1 \cap BV (\BbbR ; [0, 1])

\bigr) 
and for every i \in \{  - N1, . . . , N2\} , a Carath\'eodry

solution yi \in W 1,1([ti,+\infty ),\BbbR ).
Our goal is to find a time T at which it is possible to reconstruct the true density

\rho between two autonomous vehicles based only on the measured local density of each
AV.

3. Main results. Let us first introduce the following operators that aim at
simplifying the notation of the proofs:

\bullet St : L1(\BbbR ) \cap BV (\BbbR , [0, 1]) \mapsto \rightarrow L1(\BbbR ) \cap BV (\BbbR , [0, 1]) is an L1-Lipschitz semi-
group defined by St(\rho 0) = \rho (t, \cdot ) s.t. \rho is the solution of

(LWR)

\biggl\{ 
\partial t\rho + \partial x(f(\rho )) = 0, (t, x) \in \BbbR + \times \BbbR ,
\rho (0, x) = \rho 0(x), x \in \BbbR .

\bullet \Gamma : BV (\BbbR , [0, 1]) \cap L1(\BbbR ) \rightarrow (C0(\BbbR +, BV (\BbbR , [0, 1]) \cap L1(\BbbR ))2)N defined by
\Gamma (\rho 0) = (\rho (\cdot , yi(\cdot )\pm ))i\in \{  - N1,...,N2\} , where (\rho , yi) is the solution of (LWR-
AVs) with initial data \rho 0 and N := N2+N1+1 is the number of autonomous
vehicles. \Gamma i(\cdot ) denotes the ith component of \Gamma (\cdot ).

Let \=\rho 0 \in BV (\BbbR , [0, 1])\cap L1(\BbbR ) be some unknown initial data. For i \in \{  - N1, . . . , N2 - 
1\} , by collecting only (\Gamma i(\=\rho 0),\Gamma i+1(\=\rho 0)) := (\rho (\cdot , yi(\cdot )\pm ), \rho (\cdot , yi+1(\cdot )\pm )) via sensors
of the ith autonomous vehicle and the (i + 1)th autonomous vehicle, we want to
reconstruct STi(\=\rho 0)(x) for every x \in [yi(Ti), yi+1(Ti)] at a certain time Ti \geqslant 0. For
every i \in \{  - N1, . . . , N2\} the trajectory of the ith autonomous vehicle is described by
(2.4).

Example 3.1 shows that we cannot reconstruct the solution at any time. Theo-
rem 3.3 gives a way to find the reconstruction time T .

Example 3.1. Assume that f(\rho ) = \rho (1  - \rho ) and two autonomous vehicles are
deployed at (0, 0) and at (3, 0), respectively, with speed u1(\rho ) = u2(\rho ) = 1  - \rho (see
Figure 3). Let \rho 0 < \rho 1 < \rho 2 and 1

\rho 1
= 1

\rho 2 - \rho 0
. We introduce the following two initial

densities:

\=\rho 0 = \rho 01( - \infty ,1+
\rho 2 - \rho 1
\rho 2 - \rho 0

)
+ \rho 21(1+

\rho 2 - \rho 1
\rho 2 - \rho 0

,\infty )
,

\~\rho 0 = \rho 01( - \infty ,1) + \rho 11(1,2) + \rho 01(2,\infty ).
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(a) \rho 0(x) = 0.161( - \infty ,1.33) +0.631(1.33,\infty )

with two autonomous vehicles positioned
at y1

0 = 0 and y2
0 = 3.

(b) \rho 0(x) = 0.161( - \infty ,1) + 0.471(1,2) +
0.631(2,\infty ) with two autonomous vehicles
positioned at y1

0 = 0 and y2
0 = 3.

Fig. 3. Illustration of Example 1: \Gamma is not a surjective function.

x

t

0

t1

ϕi(t1)
yi0

Fig. 4. Representation of the domain of dependence by backward characteristics: \varphi i(t1) with
t1 > 0 (shaded region). The trajectory of the ith autonomous vehicle is represented by a dashed red
line.

We have \Gamma (\~\rho 0) = \Gamma (\=\rho 0) and for every t \in [0, 1
\rho 2 - \rho 1

), St(\~\rho 0) \not = St(\=\rho 0). Thus, we cannot

reconstruct \rho (t, \cdot ) for every t \in [0, 1
\rho 2 - \rho 1

) by collecting only \Gamma (\=\rho 0) = \Gamma (\~\rho 0) via the
sensors of both autonomous vehicles.

We define the multifunction \varphi i : [ti,+\infty ) \mapsto \rightarrow \scrP (\BbbR ), where \scrP (\BbbR ) is the set of
subsets of \BbbR , as follows:

(3.1) \varphi i(t) = [f \prime (\rho (t, yi(t) - ))(ti+1  - t) + yi(t), f
\prime (\rho (t, yi(t)+))(ti+1  - t) + yi(t)].

Remark 3.2. The minimal backward characteristic s \mapsto \rightarrow f \prime (\rho (t, yi(t) - ))(s  - t) +
yi(t) and the maximal backward characteristic s \mapsto \rightarrow f \prime (\rho (t, yi(t)+))(s - t)+ yi(t) from
the point (t, yi(t)) bound the domain of dependence of \rho (t, yi(t)) (see the shaded
region in Figure 4).

Theorem 3.3. Let \=\rho 0 \in BV (\BbbR , [0, 1])\cap L1(\BbbR ). For every i \in \{  - N1, . . . , N2  - 1\} ,
the ith autonomous vehicle starts at time ti in the position yi0 and its trajectory is
described by (2.4). Moreover, we impose that ui verifies (2.5). Let Ti \in [ti,+\infty )\cup \{ \infty \} 
be defined by

(3.2) Ti := sup
\{ T\in \BbbR +/yi+1

0 \in \varphi i(T )\} 
T.
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1754 DELLE MONACHE, LIARD, PICCOLI, STERN, AND WORK

If Ti < \infty , then for every \rho 0 \in \Gamma  - 1(\Gamma (\=\rho 0)), STi
(\rho 0)(x) = STi

(\=\rho 0)(x) for every
i \in \{  - N1, . . . , N2\} and for almost every x \in [yi(Ti), yi+1(Ti)] with (yi, yi+1) the
solutions of (2.4).

Example 3.4. Assume that f(\rho ) = \rho (1  - \rho ) and two autonomous vehicles are
deployed on the road at (0, y10) and at (0, y20) with speed u1(\rho ) = u2(\rho ) = 1  - \rho .
Assume that the first autonomous vehicle collects only the density \rho 1, that is to say,
\rho (t, y1(t)) = \rho 1 for every t \in \BbbR +. Then, we have, for every t \in \BbbR +,

\varphi 1(t) =  - f \prime (\rho 1)t+ (1 - \rho 1)t+ y10
= \rho 1t+ y10 .

From (3.2), we conclude that T1 =
y2
0 - y1

0

\rho 1
.

In Example 3.4, lim\rho 1\rightarrow 0 T1 = lim\rho 1\rightarrow 0
y2
0 - y1

0

\rho 1
= \infty . Theorem 3.5 gives a suf-

ficient condition on the initial density \=\rho 0 to have a finite reconstruction time Ti,
i \in \{  - N1, . . . , N2  - 1\} .

Theorem 3.5. We assume that \=\rho 0 \in BV (\BbbR , [0, 1]) \cap L1(\BbbR ) with the additional
property that for every x \in \BbbR , 0 < \rho min \leqslant \=\rho 0(x) \leqslant \rho max. Then, we have

ci = min
\rho \in [\rho min,\rho max]

(ui(\rho ) - f \prime (\rho )) > 0

and for every i \in \{  - N1, . . . , N2\} ,
(3.3)

yi+1
0  - yi

0

ui(\rho min) - f \prime (\rho max)
+ ti+1 \leqslant Ti \leqslant 

(yi+1
0  - yi

0 + f \prime (\rho min)(ti  - ti+1))

ci

\biggl( 
1 + exp

\biggl( 
\alpha TV (\rho 0)

ci

\biggr) \biggr) 
with \alpha = sup\rho \in [0,1] f

\prime \prime (\rho ).

The proofs of Theorems 3.3 and 3.5 are presented in Appendix A.

Remark 3.6. The reconstruction time Ti in Theorem 3.5 depends on the distance
between the initial positions of the AVs. For a fixed road one can estimate the number
of AVs needed to guarantee a reconstruction time as a function of the road length.

Main ideas of the proof of Theorem 3.3. Let \=\rho 0 be an unknown initial
data. For every time t > 0, the ith AV (denoted by AVi) measures locally in time
the density \rho (t, yi(t)\pm ) and its new speed becomes ui(\rho (t, yi(t)+)). The trajectory
of AVi is described by (2.4). Since ui(\rho ) \geqslant f \prime (\rho ) for every \rho \in [0, 1], the speed of
AVi is faster than (or equal to) the speed of every discontinuity. At time Ti, defined
in (3.2), the AVi has already interacted with every discontinuity wave coming from
(0, x) with x \in (yi0, y

i+1
0 ) or from (t, \alpha ) with t \in (ti+1, ti). Thus, the solution over

\{ (Ti, x) \in \BbbR + \times \BbbR / yi(Ti) \leqslant x \leqslant yi+1(Ti)\} can be deduced using only the data
\rho (\cdot , yi+1(\cdot ) - ) collected by the AVi+1. Therefore, Theorem 3.3 is proved using the
uniqueness of (LWR) defined on \{ (t, x) \in \BbbR + \times \BbbR , x < yi+1(t)\} with the boundary
condition \rho (\cdot , yi+1(\cdot )).

A smaller reconstruction time as compared to (3.2) can be found when the speed
of AVi is constant.

Lemma 3.7. Let i \in \{  - N1, . . . , N2\} . We assume that ui(\rho ) \geqslant f \prime (\rho ). Let Ti > 0
such that (3.2) holds. If there exists a \in \BbbR + and b \in \BbbR + such that \rho (\cdot , yi(\cdot )) is
a constant function over [a, b) and Ti \in [a, b), then, for every \rho 0 \in \Gamma  - 1(\Gamma (\=\rho 0)),
Sa(\rho 0)(x) = Sa(\=\rho 0)(x) for almost every x \in [yi(a), yi+1(a)] with (yi, yi+1) the solution
of (2.4).
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The proof is deferred to Appendix A.5.

3.1. Extension to ring roads. We consider a ring of length L. By detecting
local traffic density via M autonomous vehicles, we want to reconstruct the density
on the whole ring at a certain time Tmax. We consider the following LWR model with
periodic boundary conditions:

(LWR-ring)

\left\{   \partial t\rho + \partial x(f(\rho )) = 0, (t, x) \in \BbbR + \times [0, L],
\rho (0, x) = \=\rho 0(x), x \in [0, L],
\rho (t, 0) = \rho (t, L), t \in \BbbR +.

All the autonomous vehicles are modeled via the following iterative method: t \in 
[0, t1i ) \rightarrow yi(t) is solution of

(3.4)

\biggl\{ 
\.yi(t) = ui(\rho (t, yi(t)+)), t \in [0, t1i ), i = 1, . . . ,M,
y(0) = yi0, i = 1, . . . ,M,

with t1i > 0 defined as follows: if there exists a time \=t > 0 such that yi(\=t) = L, then
t1i = \=t. Otherwise, we have t1i = +\infty . If t1i \not = +\infty , t \in [t1i , t

2
i ) \rightarrow yi(t) is a solution of

(3.5)

\biggl\{ 
\.yi(t) = ui(\rho (t, yi(t)+)), t \in [t1i , t

2
i ), i = 1, . . . ,M,

y(t1i ) = 0, i = 1, . . . ,M,

where t2i > t1i is defined as t1i > 0 and so on.

Theorem 3.8. Assume \=\rho 0 \in BV ([0, L], [0, 1]) \cap L1([0, L]) with the additional
property that for every x \in [0, L], 0 < \rho min \leqslant \=\rho 0(x) \leqslant \rho max, and let

(3.6) c = min
i\in \{ 1,...,M\} 

min
\rho \in [\rho min,\rho max]

(ui(\rho ) - f \prime (\rho )).

There exists Tmax < \infty satisfying

Tmax \leqslant max
i\in \{ 1,...,M\} 

(yi+1
0  - yi0)

\Biggl( 
1 + exp(\alpha TV (\rho 0)

c )

c

\Biggr) 
,

such that for every \rho 0 \in \Gamma  - 1(\Gamma (\=\rho 0)), STmax(\rho 0)(x) = STmax(\=\rho 0)(x) for every x \in [0, L].

The proof of Theorem 3.8 is postponed to Appendix A.6

4. Numerical scheme. The goal of this section is to describe the numerical
scheme that is used to reconstruct the density. Our aim is to design a scheme that is
able to numerically approximate the conservation law and the autonomous vehicles
on a fixed mesh and use this scheme for the reconstruction algorithm. In the following
section we show how to simulate the PDE-ODE system by describing the numerical
methods adopted. Then we describe the reconstruction algorithm in detail.

4.1. Construction of the true state (\bfitrho \bfitn , \bfity \bfitn ).

4.1.1. Wave front tracking method for the conservation law. To con-
struct piecewise constant approximate solutions, we adapt the standard WFT method
(see, for example, [4, Chapter 6]). The goal of the WFT is to approximate and com-
pute the solution of the conservation law. Fix a positive n \in \BbbN , n > 0, and introduce
in [0, 1] the mesh \scrM n = \{ \rho ni \} 2

n

i=0 defined by

\scrM n = (2 - n\BbbN \cap [0, 1]).

The WFT method works as follows:
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1756 DELLE MONACHE, LIARD, PICCOLI, STERN, AND WORK

(1) Approximate the initial data \rho 0 \in BV(\BbbR , [0, 1]) with piecewise constant func-
tions \rho n0 such that for every x \in \BbbR , \rho n0 (x) \in \scrM n.

(2) Solve the Riemann problems generated by the jumps (\rho n0 (xi - ), \rho n0 (xi+)) for
i = 1, . . . , N , where x0 < \cdot \cdot \cdot < xN are the points where \rho n0 is discontinuous.

(3) Piece the solutions together approximating rarefaction waves with fans of
rarefaction shocks where the speed of each shock has strength 2 - n and is
prescribed by the Rankine--Hugoniot condition.

(4) The piecewise constant approximate solution \rho n that is constructed can be
prolonged up to the fist time t1 > 0, where the two discontinuities collide. In
this case, a new Riemann problem arises and needs to be solved.

4.1.2. Numerical method for the ODE. Let \rho n(t, \cdot ) be the WFT approxi-
mate solution associated to \rho n0 (see subsection 4.1.1). In this section, we describe how
to solve the following ODE numerically:

(4.1)

\biggl\{ 
\.yni (t) = ui(\rho 

n(t, yni (t)+)), t \in [ti,+\infty ], i =  - N1, . . . , N2,
y(ti) = yi0, i =  - N1, . . . , N2.

Since the solution yni of (4.1) is a continuous piecewise linear function, it is enough

to find the points of discontinuity of \.yni , denoted by (ti,k, y
n,k
i )k\in \{ 1,...,K\} .

Step 0. We impose (ti,0, y
n,0
i ) = (ti, y

i
0).

Step 1. From (ti,k, y
n,k
i ), we determine the position of the autonomous vehicles

(ti,k+1, y
n,k+1
i ) as follows. For the ODE (4.1), we have

yn,k+1
i = ui(\rho 

n(ti,k, y
n,k
i +)))(ti,k+1  - ti,k) + yn,ki ,

where ti,k+1 is the first interaction time between the straight line defined by

\{ ui(\rho 
n(t, yn,ki +)))(t - ti,k) + yn,ki , t > ti,k\} 

and elements of the set of discontinuity waves of \rho n(t, \cdot ) with t > ti,k.

4.2. Reconstruction scheme. In this section we describe in detail the algo-
rithm for the density reconstruction. For simplicity, we drop the index n. We assume
that the initial density \rho 0 : \BbbR \rightarrow \scrM n is a piecewise constant function and \rho is the
solution to (LWR) with initial density \rho 0.

Algorithm. Algorithm for the reconstruction of the density between two AVs i and
i+ 1.
Input data:

\bullet Discontinuity points (ti,k)k\in \{ 1,...,K\} of \.yi.

\bullet AV trajectories yi(ti,k) := yki and yi+1(ti,k) := yki+1.
\bullet Densities measured by the AVs \rho (ti,k, y

k
i \pm )) and \rho (ti,k, y

k
i+1\pm )).

Step 0. Impose ti,K+1 = \infty , \rho i+1,rec(t, x) = \rho (ti+1, y
i+1
0  - ) for every (t, x) \in 

[ti+1, ti+1,1]\times \BbbR . To avoid misunderstanding, we recall that ti+1 is the starting time
of AVi and ti+1,1 > ti+1 is the first discontinuity point of yi.

Step 1. Compute the reconstruction density \rho i+1,rec(ti+1,k, \cdot ) at every time ti+1,k

only using data collected by the (i+ 1)th-autonomous vehicle.
For every k \in \{ 1, . . . ,K  - 1\} ,
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\bullet solve all Riemann problems at time ti+1,k for (LWR-AVs) associated with

\rho i+1,rec(ti+1,k, \cdot )1(\infty ,yi+1(ti+1,k)) + \rho (ti+1,k, yi+1(ti+1,k+))1(yi+1(ti+1,k),\infty ),

\bullet piece solutions together where the speed of each wave front is prescribed by
the Rankine--Hugoniot condition,

\bullet prolong the solution (denoted by \rho i+1,rec) until min(t1, ti+1,k+1), where t1 is
the first time when two wave fronts interact. If t1 \leqslant ti+1,k+1, the Riemann
problems associated with \rho i+1,rec(t1, \cdot ), which is still a piecewise constant
function, can again be approximately solved within the class of piecewise
constant functions and so on until t = ti+1,k+1.

end
We end our construction by taking the restriction over \{ (t, x) \in \BbbR +\times [yi(t), yi+1(t)]\} .

Step 2. Compute the reconstruction time Ti only using (yki , \rho (\cdot , yki (\cdot )\pm )) and yi+1
0 .

For every k \in \{ 1, . . . ,K\} ,
if yi+1

0 \in [f \prime (\rho (t, yki  - ))(ti - ti,k)+yki , f
\prime (\rho (t, yk+1

i  - ))(ti - ti,k+1)+yk+1
i ], then Ti = ti,k.

end

Output data: \rho i+1,rec(Ti, x), for every x \in [yi(Ti), yi+1(Ti)].

Remark 4.1. If we start with a density \rho 0 \in BV (\BbbR , [0, 1]), the source of errors in
the reconstruction of the true solution only comes from the approximation of \rho 0 \in 
BV (\BbbR , [0, 1]) (step (1) subsection 4.1.1) and the fact that we split a rarefaction wave
into a sequence of rarefaction shocks with strength 2 - n (step (3) subsection 4.1.1).
Thus, the reconstruction procedure presented in section 4.3 does not create additional
errors. To simplify the numerical results, we will only consider initial data \rho 0 : \BbbR \rightarrow 
\scrM n in the next section.

5. Numerical results. Numerical results are simulated using the flux function
f(\rho ) = \rho (1 - \rho ) and the speed of each AVi is ui(\rho ) = 1 - \rho . Simulations are conducted
using the WFT method described above. Rarefaction shocks are approximated as
waves with a change in density of 2 - 5 \simeq 0.03. This prescribes Card(\scrM n) = 33
possible initial densities.

In Figure 5(a), we consider the case where the initial density \rho 0 : \BbbR \rightarrow \scrM 5 :=
(2 - 5\BbbN \cap [0, 1]) is defined as follows: \rho 0(x) = 0.9688 for x \in ( - \infty , 10) and \rho 0(x) =
0.0938 for x \in (10,\infty ]. Two autonomous vehicles, denoted by AV0 and AV1, are
deployed on the road at (0, 8) and (0, 12), respectively (N1 = 0, N2 = 1, and N = 2).
The solution (\rho , y0, y1) of (LWR-AVs) is

\rho (t, x) =

\left\{   0.9688 if x \leqslant  - 0.9376t+ 10,
1
2  - (x - 10

2t ) if  - 0.9376t+ 10 \leqslant x \leqslant 0.8124t+ 10,
0.0938 if 0.8124t+ 10 \leqslant x

and

y0(t) \approx 

\left\{   
0.0312t+ 10 if t \leqslant 2.06,

10 + t - 2.78
\surd 
t if 2.06 \leqslant t \leqslant 220.22,

0.9062t - 10.60 if 220.22 \leqslant t.

and y1(t) = 0.9062t+ 10,

Using the on-board sensors on the AVs, we observe \rho (\cdot , y0(\cdot )\pm ) and \rho (\cdot , y1(\cdot )\pm ).
From Theorem 3.3, T0 \approx 240.93. Using Lemma 3.7, we can reconstruct the den-
sity \rho (220.22, \cdot ) over [y0(220.22), y1(220.22)]. To solve numerically (LWR-AVs) with
initial density \rho 0, we use the wave front tracking method described in subsection 4.1.1
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1758 DELLE MONACHE, LIARD, PICCOLI, STERN, AND WORK

(a) True state over the first 20 seconds
solved using wave front tracking.

(b) Reconstructed traffic state using two
AVs over the first 20 seconds.

Fig. 5. Traffic state reconstruction with two autonomous vehicles starting at x = 8 and x = 12
with initial density defined as follows: \rho 0(x) = 0.9688 for x \in ( - \infty , 10) and \rho 0(x) = 0.0938 for
x \in (10,\infty ].

(a) True state over the first 20 seconds
solved using wave front tracking.

(b) Reconstructed traffic state using three
AVs over the first 20 seconds.

Fig. 6. Example comparison of the true state solved using wave front tracking and the recon-
structed state reconstructed using three AVs starting at x = 5, x = 9, and x = 12. The initial
density \rho 0 is defined as follows: \rho 0(x) = 0.0938 for x \in ( - \infty , 8], \rho 0(x) = 0.9062 for x \in (8, 10],
\rho 0(x) = 0.2188 for x \in (10, 13], and \rho 0(x) = 0.9062 for x \in (13,\infty ). Note that the reconstruction is
exact and thus there is no error between the reconstructed density and the true density after time
T .

with n = 5. The trajectories of the autonomous vehicles are plotted in black in Fig-
ures 5(a) and 5(b). In Figure 5(b), we reconstruct the traffic state using two AVs over
the first 20 seconds. Since we don't observe enough time (20 < 220.22), we notice
that the reconstructed traffic state is not the true traffic state.

In Figure 6, we consider the example of two shocks with a fan of rarefaction
shocks between the two shocks. A total of three AVs, denoted by AV0, AV1, and AV2,
are used to reconstruct the traffic state (resulting in two regions of reconstruction
between AV0 and AV1 and between AV1 and AV2). Specifically, the initial density \rho 0
is defined as follows: \rho 0(x) = 0.0938 for x \in ( - \infty , 8], \rho 0(x) = 0.9062 for x \in (8, 10],
\rho 0(x) = 0.2188 for x \in (10, 13], and \rho 0(x) = 0.9062 for x \in (13,\infty ). AV0, AV1, and
AV2 start at x = 5, x = 9, and x = 12, respectively. The resulting traffic state solved
using wave front tracking over the first 20 seconds is shown in Figure 6(a), while the
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(a) True state over the first 30 seconds
solved using wave front tracking.

(b) Reconstructed traffic state using four
AVs over the first 30 seconds.

Fig. 7. Example comparison of the true state solved using wave front tracking and the recon-
structed state reconstructed using four AVs starting at x = 4, 8, 12 and x = 17.5. The reconstruction
is exact and thus there is no error between the reconstructed density and the true density after time
T .

reconstructed state between the AVs is shown in Figure 6(b). The time at which
the reconstruction becomes valid is T0 = 6.87 between AV0 and AV1 and T1 = 3.39
between AV1 and AV2.

In Figure 7, a total of four AVs, denoted by AV0, AV1, AV2, and AV3, are used
to reconstruct the traffic state (N1 = 0, N2 = 1, and N = 2). The initial density \rho 0 is
defined as follows: \rho 0(x) = 0.0938 for x \in ( - \infty , 2.1), \rho 0(x) = 0.9688 for x \in [2.1, 10.1),
\rho 0(x) = 0.2500 for x \in [10.1, 12), \rho 0(x) = 0.4375 for x \in [12, 16), \rho 0(x) = 0.7812 for
x \in [16, 19), and \rho 0(x) = 0.9688 for x \in [19,\infty ). The initial positions of AV0, AV1,
AV2, and AV3 are 4, 8, 12, and 17.5, respectively. The time at which a reconstruction
is found is T0 = 5.12 between AV0 and AV1, T1 = 12.45 between AV1 and AV2, and
T2 = 0.00 between AV2 and AV3.

In Figure 8, AV - 2, AV - 1 and AV0 start, respectively, at (t - 2, y
 - 2
0 ) = (6, 0),

(t - 1, y
 - 1
0 ) = (1, 0), and (t0, y

0
0) = (0, 8) (N1 = 2, N2 = 0,N = 3). The initial density

\rho 0 is defined as follows: \rho 0(x) = 0.3125 for x \in ( - \infty , - 1], \rho 0(x) = 0.5 for x \in [ - 1, 4],
\rho 0(x) = 0.8125 for x \in [4, 10], and \rho 0(x) = 0.5 for x \in (10,\infty ). Thus, AV - 2 and AV - 1

start after AV0 is already driving. The times at which the state can be reconstructed
is T - 2 = 8.615 for the state between AV - 2 and AV - 1 and T - 1 = 5.538 between the
AV - 1 and AV0.

In Figure 9, one autonomous vehicle, denoted by AV0, is deployed on a ring
(M = 1 in subsection 3.1). The initial density \rho 0 is a 10-periodic function defined as
follows: \rho 0(x) = 0.8125 for x \in (0, 2), and \rho 0(x) = 0.3125 for x \in (2, 10). Since \rho 
and y0 are also 10 periodic functions, both trajectories plotted in black in Figure 9(b)
are the ones of AV0. The traffic state on the whole ring can be reconstructed after
Tmax = 15.444.

6. Conclusions. The main result of this work is the theoretical analysis and a
numerical scheme to reconstruct the bulk traffic density using only data along the
trajectory of a small number of autonomous vehicles. The results are derived for
the case when the bulk flow is described by LWR-type traffic flow models. Moving
forward, there are several interesting extensions of the present work. For example,
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(a) True state over the first 20 seconds
solved using wave front tracking.

(b) Reconstructed traffic state using two
AVs over the first 20 seconds.

Fig. 8. Traffic state reconstruction with three autonomous vehicles starting at (t - 2, y
 - 2
0 ) =

(6, 0), (t - 1, y
 - 1
0 ) = (1, 0), and (t0, y00) = (0, 8). The initial density \rho 0 is defined as follows: \rho 0(x) =

0.3125 for x \in ( - \infty , - 1], \rho 0(x) = 0.5 for x \in [ - 1, 4], \rho 0(x) = 0.8125 for x \in [4, 10], and \rho 0(x) = 0.5
for x \in (10,\infty ). The reconstruction is exact and thus there is no error between the reconstructed
density and the true density after time T .

(a) True state over the first 18 seconds solved
using wave front tracking.

(b) Reconstructed traffic state using one AV
over the first 18 seconds.

Fig. 9. Traffic state reconstruction with one autonomous vehicles on a ring of length 10 with
a 10-periodic initial density defined as follows: \rho 0(x) = 0.8125 for x \in (0, 2), \rho 0(x) = 0.3125 for
x \in (2, 10). The reconstruction is exact and thus there is no error between the reconstructed density
and the true density after time T .

we are also interested in using AVs to estimate the traffic in and around phantom
traffic jams [24], which are jams that seemingly appear without a cause but are due
to human driving behavior. These jams are particularly challenging to track on real
freeways due to the space and timescale on which they are found. Extending the
methods developed in the present article to bulk flow models (e.g., [12]) that are able
to reproduce these waves is a promising direction. Other directions include extension
of the developed methods to traffic flow networks and testing of the algorithm on
empirical traffic data collected from the field.

Appendix A. Proof of Theorems 3.3, 3.5 and 3.8, and Lemma 3.7.
In order to simplify the notation, we introduce the function gi : [ti,+\infty ) \rightarrow [0, 1]
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in
gi(t+) := lim

x\rightarrow yi(t),yi(t)<x
\rho (t, x) = \rho (t, yi(t)+)

and
gi(t - ) := lim

x\rightarrow yi(t),x<yi(t)
\rho (t, x) = \rho (\cdot , yi(\cdot ) - ),

where (\rho (t, yi(t)\pm ))i\in \{  - N1,...,N2\} = \Gamma (\=\rho 0). Since the speed of the AV is faster than
(or equal to) the speed of every discontinuity, the function gi is well-defined.

We recall that the ith autonomous vehicle starts at time ti in the position yi0. If
i \in \{  - N1, . . . , - 1\} , y0i = \alpha , and ti > 0, and if i \in \{ 0, . . . , N2\} , \alpha \leqslant y0i and ti = 0.

A.1. Generalized characteristics. The proofs of Theorems 3.3 and 3.5 and
Lemma 3.7 are based on the concept of generalized characteristic (see [7, Chapter
XI]). A generalized characteristic \xi (\cdot ) is a Lipschitz curve, defined on the time interval
[\sigma , \tau ] \subset [0,\infty ) associated with the solution \rho , verifying for almost all t \in [\sigma , \tau ],
(A.1)

\.\xi (t) =

\Biggl\{ 
f \prime (\rho (t, \xi (t)) when \rho (t, \xi (t)+) = \rho (t, \xi (t) - ) = \rho (t, \xi (t)),
f(\rho (t,\xi (t)+)) - f(\rho (t,\xi (t) - ))

\rho (t,\xi (t)+) - \rho (t,\xi (t) - ) when \rho (t, \xi (t) - ) < \rho (t, \xi (t)+).

Let \=t > 0. We denote by \xi  - (\cdot , \=t, \=x) and \xi +(\cdot , \=t, \=x) the minimal and maximal backward
characteristics, associated with an admissible solution \rho , coming from a point (\=t, \=x).
From [7, Theorems 10.3.1 and 11.1.3], we have, for every i \in \{  - N1, . . . , N2\} ,
(A.2)\left\{   \xi  - (t, \=t, yi(\=t)) = \xi +(t, \=t, yi(\=t)) = f \prime (gi(\=t))(t - \=t) + yi(\=t) when gi(\=t - ) = gi(\=t+),

\xi  - (t, \=t, yi(\=t)) = f \prime (gi(\=t - ))(t - \=t) + yi(\=t)
\xi +(t, \=t, yi(\=t)) = f \prime (gi(\=t+))(t - \=t) + yi(\=t)

\bigm| \bigm| \bigm| \bigm| when gi(\=t - ) < gi(\=t+).

The next Lemma gives the domain of dependence of (LWR) for a point (t, x) \in \BbbR +\times \BbbR 
(see [7, Theorem 10.2.2]).

Lemma A.1. Let i \in \{  - N1, . . . , N2\} , \rho 0 \in L1(\BbbR ) \cap BV (\BbbR , [0, 1]), and (t, x) \in 
(ti,\infty ) \times [yi0,\infty ). The value St(\rho 0)(x) := \rho (t, x) depends only on values of \rho (\cdot , \cdot ) in
the subset \{ (s, y) \in [0, t]\times \BbbR /\xi  - (s, t, x) \leqslant y \leqslant \xi +(s, t, x)\} \cap \{ (s, y) \in [0, t]\times \BbbR /yi0 \leqslant y\} 
of \BbbR 2.

A.2. Some properties of \bfitvarphi \bfiti . First, using (A.2), \varphi i defined in (3.1) can be
rewritten as follows:

(A.3) \varphi i : t \rightarrow [\xi  - (ti+1, t, yi(t)), \xi +(ti+1, t, yi(t))].

Lemma A.2. \varphi i is an increasing application over [ti,\infty ] in the following sense:
for every ti \leqslant t1 < t2,

f \prime (gi(t1+))(ti+1  - t1) + yi(t1) \leqslant f \prime (gi(t2 - ))(ti+1  - t2) + yi(t2).

Proof. Let ti \leqslant t1 < t2. If \xi +(\cdot , t1, yi(t1)) and \xi  - (\cdot , t2, yi(t2)) coincide over [ti, t1],
then, from (A.2),

f \prime (gi(t1+))(ti+1  - t1) + yi(t1) = f \prime (gi(t2 - ))(ti+1  - t2) + yi(t2).

Otherwise, since \xi +(\cdot , t1, yi(t1)) and \xi  - (\cdot , t2, yi(t2)) are shock-free,1 from [7, Corol-
lary 11.1.2], \xi +(\cdot , t1, yi(t1)) and \xi  - (\cdot , t2, yi(t2)) cannot interact for any t \in (0, t1].

1A generalized characteristic \xi (\cdot ), associated with \rho and defined on [\sigma , \tau ], is called shock-free if
\rho (\xi (t) - , t) = \rho (\xi (t)+, t) for almost all t in [\sigma , \tau ].
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1762 DELLE MONACHE, LIARD, PICCOLI, STERN, AND WORK

Moreover, using that ui(\rho ) \geqslant f \prime (\rho ) for every \rho \in [0, 1], we have \xi +(t, t1, yi(t1)) \leqslant 
\xi  - (t, t2, yi(t2)) for every t \in [ti+1, t1]. In particular, we obtain \xi +(ti+1, t1, yi(t1)) \leqslant 
\xi  - (ti+1, t2, yi(t2)). From (A.2), we deduce that if ti \leqslant t1 < t2, then f \prime (gi(t1+))
(ti+1  - t1) + yi(t1) \leqslant f \prime (gi(t2 - ))(ti+1  - t2) + yi(t2).

Lemma A.3. Let 0 < \rho min \leqslant \=\rho 0(\cdot ) \leqslant \rho max and ci := min\rho \in [\rho min,\rho max](ui(\rho )  - 
f \prime (\rho )) > 0.

\bullet Let t0 > 0. Assuming that g\prime i(\cdot ) is well-defined over (t0, t1) and g\prime i(t) < 0 for
every t \in (t0, t1) then

(A.4) t1 \leqslant t0 exp

\biggl( 
f \prime (gi(t1 - )) - f \prime (gi(t0+))

ci

\biggr) 
.

\bullet Assuming that gi(\cdot ) is an increasing function over (t0, t1) then, for every
x1 \in \varphi i(t1) and x0 \in \varphi i(t0),

x1  - x0 \geqslant ci(t1  - t0).

\bullet If gi(t0 - ) < gi(t0+), then

\lambda (\varphi i(t0)) = (f \prime (gi(t0+)) - f \prime (gi(t0 - )))(ti+1  - t0),

where \lambda denotes the Lebesgue measure.

Proof.
\bullet Since g\prime i(t) < 0 for every t \in (t0, t1), then there exists xr \in R such that

gi(t) = (f \prime ) - 1(y1(t) - xr

t ) for every t \in (t0, t1). Thus, yi verifies\biggl\{ 
\.yi(t) = ui((f

\prime ) - 1(y1(t) - xr

t )), t0 < t \leqslant t1,
yi(t0) = x0.

Above, xr is the starting point of the rarefaction wave crossed by the ith

autonomous vehicle over (t0, t1). Let \~yi(\cdot ) defined by

(A.5)

\biggl\{ 
\.\~yi(t) =

\~yi(t) - xr

t + ci, t > t0,
\~yi(t0) = x0.

Since ui(\rho ) \geqslant f \prime (\rho ) + ci, we have \~yi(t) \leqslant yi(t) for every t \in [t0, t1]. In
particular, \~yi(t1) \leqslant yi(t1) = f \prime (gi(t1 - ))t1 + xr. From (A.5), for every t \geqslant t0,
\~yi(t) = cit ln(

t
t0
) + xr + tf \prime (g1(t0+)). Thus, we have

t1 \leqslant t0 exp

\biggl( 
f \prime (gi(t1 - )) - f \prime (gi(t0+))

ci

\biggr) 
,

whence the conclusion of (A.4).
\bullet Let x1 \in \varphi i(t1) and x0 \in \varphi i(t0). By definition of \varphi i in (3.1) and using that
yi is solution of (2.4), we have

x1  - x0 \geqslant f \prime (gi(t1 - ))(ti+1  - t1) + yi(t1) - f \prime (gi(t0+))(ti+1  - t0) - yi(t0)

\geqslant f \prime (gi(t1 - ))(ti+1  - t1) - f \prime (gi(t0+))(ti+1  - t0) +
\int t1
t0

ui(gi(s)) ds.

Since gi(\cdot ) is an increasing function over (t0, t1) and ui(\rho ) \geqslant f \prime (\rho ) + ci for
every \rho \in [\rho min, \rho max],

x1  - x0 \geqslant f \prime (gi(t1 - ))(ti+1  - t1) - f \prime (gi(t0+))(ti+1  - t0)

+ f \prime (gi(t1 - ))(t1  - t0) + ci(t1  - t0)

\geqslant (f \prime (gi(t1 - )) - f \prime (gi(t0+)))(ti+1  - t0) + ci(t1  - t0).
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Using that f \prime (gi(t1 - )) - f \prime (gi(t0+)) \leqslant 0 and ti+1  - t0 \leqslant 0, we conclude that

x1  - x0 \geqslant ci(t1  - t0).

\bullet We have

\lambda (\varphi i(t0)) = f \prime (gi(t0+))(ti+1  - t0) + yi(t0) - f \prime (gi(t0 - ))(ti+1  - t0)

+ yi(t0)

= (f \prime (gi(t0+)) - f \prime (gi(t0 - )))(ti+1  - t0).

A.3. Proof of Theorem 3.3. Let

\rho 0 \in L1(\BbbR )\times BV (\BbbR , [0, 1]), i \in \{  - N1, . . . , N2  - 1\} ,

and x \in (yi(Ti), yi+1(Ti)).
Since Ti verifies (3.2) and using that Ti < +\infty with (A.2), we have

(A.6) yi+1
0 \in [\xi  - (ti+1, Ti, y(Ti)), \xi +(ti+1, Ti, y(Ti))].

Above, \xi  - (\cdot , Ti, y(Ti)) and \xi +(\cdot , Ti, y(Ti)) are the minimal and maximal backward
characteristics, respectively, associated with \rho 0, coming from the point (Ti, y(Ti)).
Using that yi(Ti) < x and since Ti verifies (3.2) we have

(A.7) \xi +(ti+1, Ti, y(Ti)) < \xi +(ti+1, Ti, x).

From (A.6) and (A.7), we conclude that yi+1
0 < \xi  - (ti+1, Ti, x), and since ui+1(\rho ) \geqslant 

f \prime (\rho ), \xi  - (\cdot , Ti, x) (resp., \xi +(\cdot , Ti, x)) interacts only once at time t - \geqslant ti+1 (resp., at
time t+ \geqslant ti+1) with yi+1(\cdot ). Thus, STi

(\rho 0)(x) depends only on \{ St(\rho 0)(yi+1(t)), t \in 
[t - , t+]\} . Since, for every \rho 0 \in \Gamma  - 1(\Gamma (\=\rho 0)) and for every t \in \BbbR +, St(\rho 0)(yi+1(t)) =
St(\=\rho 0)(yi+1(t)), we have

STi
(\rho 0)(x) = STi

(\=\rho 0)(x).

A.4. Proof of Theorem 3.5. Since, for every x \in \BbbR , 0 < \rho min \leqslant \=\rho 0(x) \leqslant \rho max,
we have \rho min \leqslant gi(t) \leqslant \rho max for every i \in \{  - N1, . . . , N2\} . Thus, for every t \geqslant ti,

\varphi i(t) \subset [(t - ti+1)(ui(\rho max) - f \prime (\rho min)) + yi0, (t - ti+1)(ui(\rho min) - f \prime (\rho max)) + yi0].

Since ui(\rho ) \geqslant f \prime (\rho ), for every \rho \in [0, 1], we have ui(\rho min)  - f \prime (\rho max) \geqslant 0 and we
conclude that

Ti \geqslant 
yi+1
0  - yi0

ui(\rho min) - f \prime (\rho max)
+ ti+1.

Since the quantity ui(\rho max) - f \prime (\rho min) may be negative, finding an upper bound of Ti

is not as straightforward as before. Using TV (\=\rho 0) < \infty , there exists (\=t2k+1)k\in \{ 0,...,N\} 
such that gi(\cdot ) is a nonincreasing function over \cup N

k=0(\=t2k+1, \=t2k+2) with N \in \BbbN \cup 
\{ \infty \} and gi(\cdot ) is an increasing function over \BbbR \setminus \{ \cup N

k=0(\=t2k+1, \=t2k+2)\} . For every k \in 
\{ 0, . . . , N + 1\} , \=t2k+1 \geqslant ti and since yi is solution of (2.4), we have \=t1 > 0. We
introduce the set \scrI \subset \BbbN \cup \{ \infty \} defined by

\scrI =
\bigl\{ 
k \in \BbbN \cup \{ \infty \} /\xi +(ti+1, \=t2k+1, yi(\=t2k+1)) = \xi  - (ti+1, \=t2k+2, yi(\=t2k+2)) \leqslant yi+1

0

\bigr\} 
.

Using (A.4), for every k \in \BbbN , we have

(A.8)

\left\{   \=t2k+2 \leqslant \=t2k+1 exp
\Bigl( 

f \prime (gi(\=t2k+2 - )) - f \prime (gi(\=t2k+1+))
ci

\Bigr) 
,

\=t2k \leqslant \=t2k - 1 exp
\Bigl( 

f \prime (gi(\=t2k - )) - f \prime (gi(\=t2k - 1+))
ci

\Bigr) 
.
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If \=t2k+1 = \=t2k, from (A.8), we have immediately that

(A.9)

\=t2k+2 \leqslant \=t2k - 1 exp

\biggl( 
f \prime (gi(\=t2k+2 - )) - f \prime (gi(\=t2k+1+)) + f \prime (gi(\=t2k - )) - f \prime (gi(\=t2k - 1+))

ci

\biggr) 
.

Otherwise,

(A.10)

\=t2k+2 \leqslant exp
\Bigl( 

f \prime (gi(\=t2k+2 - )) - f \prime (gi(\=t2k+1+))
ci

\Bigr) 
\cdot 
\Bigl( 
\=t2k+1  - \=t2k + \=t2k - 1 exp

\Bigl( 
f \prime (gi(\=t2k - )) - f \prime (gi(\=t2k - 1+))

ci

\Bigr) \Bigr) 
.

Since, for every k \in \BbbN , f \prime (gi(\=t2k+2 - )) - f \prime (gi(\=t2k+1+) \leqslant \alpha (gi(\=t2k+1+) - gi(\=t2k+2 - ))
with \alpha = sup\rho \in [\rho min,\rho max] f

\prime \prime (\rho ), we have, for every p \in \{ 0, . . . , k\} ,

(A.11)

k\sum 
j=p

f \prime (gi(\=t2j+2 - )) - f \prime (gi(\=t2j+1+))

ci
\leqslant 

\alpha TV (\=\rho 0)

ci
.

We introduce A(k) = \{ j \in \{ 0, . . . , k\} /\=t2j+1 \not = \=t2j\} . Using (A.9), (A.10), and (A.11),
by induction we obtain, for every k \in \BbbN ,

(A.12) \=t2k+2 \leqslant 

\left(  \sum 
j\in A(k)

(\=t2j+1  - \=t2j)

\right)  exp

\biggl( 
\alpha TV (\=\rho 0)

ci

\biggr) 
.

Above, \=t0 := 0, \=t1 \geqslant ti and \=t1 > 0.
\bullet If ti = 0, we have immediately that ti+1 = 0. For every j \in A(k), for every
t \in (\=t2j , \=t2j+1), gi(\cdot ) is an increasing function, and using Lemma A.3, we have,
for every x2j \in \varphi i(\=t2j) and for every x2j+1 \in \varphi i(\=t2j+1),

(A.13) x2j+1  - x2j \geqslant ci(\=t2j+1  - \=t2j).

Since \=t1 > 0 and \=t0 := 0, we have 0 \in A(k) and \varphi i(0+) = \{ yi0\} . Since k \in \scrI ,
for every x2k+1 \in \varphi (\=t2k+1), x2k+1 \leqslant yi+1

0 . Using that, by Lemma A.2, \varphi i is
an increasing function and (A.13), we conclude that

(A.14)
\sum 

j\in A(k)

(\=t2j+1  - \=t2j) \leqslant 
yi+1
0  - yi0

ci
.

\bullet If ti \not = 0, by definition of \varphi i in (3.1) and using that 0 < \rho min \leqslant \=\rho 0(x) \leqslant \rho max,
for every x \in \varphi i(ti+), x \geqslant f \prime (\rho min)(ti+1  - ti) + yi+1

0 . Since k \in \scrI , for
every x2k+1 \in \varphi (\=t2k+1), x2k+1 \leqslant yi+1

0 . Using that, by Lemma A.2, \varphi i is an
increasing function, we conclude that

(A.15)
\sum 

j\in A(k)

(\=t2j+1  - \=t2j) \leqslant 
yi+1
0  - yi0 + f \prime (\rho min)(ti  - ti+1)

ci
.

Combining (A.12) with (A.15), we have, for every i \in \BbbN \ast ,

(A.16) t2k+2 \leqslant 
(yi+1

0  - yi0 + f \prime (\rho min)(ti  - ti+1)) exp(
\alpha TV (\=\rho 0)

ci
)

ci
< +\infty .
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\bullet If Card(\scrI ) < \infty , we have Ti \in [t2Card(\scrI )+2, t2Card(\scrI )+3] and gi(\cdot ) is an increas-
ing function over (t2Card(\scrI )+2, t2Card(\scrI )+3). We notice that t2Card(\scrI )+3 may
be infinite. Thus, from Lemma A.3, we deduce that

Ti  - t2Card(\scrI )+2 \leqslant 
(yi+1

0  - (f \prime (\rho min)(ti+1  - ti) + yi0))

ci
.

Using (A.16), we conclude that

Ti \leqslant 
(yi+1

0  - yi0 + f \prime (\rho min)(ti  - ti+1))

ci

\biggl( 
1 + exp

\biggl( 
\alpha TV (\=\rho 0)

ci

\biggr) \biggr) 
.

\bullet If Card(\scrI ) = \infty , from (A.16), the increasing sequence \{ t2k+2\} k\in \scrI is bounded.
Thus, there exists t\infty (\geqslant ti) such that limk\rightarrow \infty t2k+2 = t\infty .
From Lemma A.3, we deduce that

Ti  - t\infty \leqslant 
(yi+1

0  - yi0 + f \prime (\rho min)(ti  - ti+1))

ci
.

Using (A.16), we conclude that

Ti \leqslant 
(yi+1

0  - yi0 + f \prime (\rho min)(ti  - ti+1))

ci

\biggl( 
1 + exp

\biggl( 
\alpha TV (\=\rho 0)

ci

\biggr) \biggr) 
.

A.5. Proof of Lemma 3.7. Let

\rho 0 \in L1(\BbbR )\times BV (\BbbR , [0, 1]), i \in \{  - N1, . . . , N2  - 1\} ,
and x \in (yi(a), yi+1(a)). Since gi(\cdot ) := \rho (\cdot , yi(\cdot )) is a constant function over [a, b) and
Ti \in [a, b) we have, for every t \in [ti+1, Ti],

f \prime (gi(Ti) - )(t - ti) + yi(Ti) = f \prime (gi(Ti)+)(t - Ti) + yi(Ti).

By definition of Ti in (3.2), if x > f \prime (gi(Ti))(a - Ti) + yi(Ti), Sa(\rho 0)(x) only depends
on \{ St(\rho 0)(yi+1(t)), t \in [ti+1,\infty ]\} . If yi(a) \leqslant x \leqslant f \prime (gi(Ti))(a - Ti) + yi(Ti), since gi
is a constant function over [a, b) and ui(\rho ) \geqslant f \prime (\rho ) for every \rho \in [0, 1], no waves can
interact with the straight line passing through (a, yi(a)) and (Ti, yi(Ti)) and therefore
with the straight line passing through (a, yi(a)) and (a, f \prime (gi(Ti))(a - Ti)+yi(Ti)). We
conclude that Sa(\rho 0)(x) depends only on \{ St(\rho 0)(yi+1(t)), t \in [ti+1,+\infty )\} . Since, for
every \rho 0 \in \Gamma  - 1(\Gamma (\=\rho 0)) and for every t \in [ti+1,+\infty ), St(\rho 0)(yi+1(t)) = St(\=\rho 0)(yi+1(t)),
we have

Sa(\rho 0)(x) = Sa(\=\rho 0)(x).

A.6. Proof of Theorem 3.8. Consider the following PDE-ODE system:

(A.17)

\left\{       
\partial t\~\rho + \partial x(f(\~\rho )) = 0, (t, x) \in \BbbR + \times \BbbR ,
\~\rho (0, x) = \=\rho 0(x), x \in \BbbR ,
\.\~yi(t) = ui(\~\rho (t, \~yi(t)+))), t \in \BbbR +, i = 1, . . . ,M,
\~yi(0) = yi0, i = 1, . . . ,M,

where (yi0)i=1,...,M \in [0, L]M are the initial positions of the M autonomous vehicles.
We add a (M + 1)th autonomous vehicle defined as follows:

(A.18)

\biggl\{ 
\.\~yM+1(t) = uM+1(\~\rho (t, \~yM+1(t)+))), t \in \BbbR +,

\~yM+1(0) = yM+1
0

with yM+1
0 = y01 + L and uM+1 = u1. Since \rho is solution of (3.4) and \~\rho is solution of

(A.17), we have immediately the following Lemma.

D
ow

nl
oa

de
d 

11
/1

8/
21

 to
 1

29
.5

9.
12

2.
99

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1766 DELLE MONACHE, LIARD, PICCOLI, STERN, AND WORK

Lemma A.4. Let t \in \BbbR + and i \in \{ 1, . . . ,M\} , k \in \BbbN .
\bullet If kL \leqslant \~yi(t) < (k + 1)L and kL \leqslant \~yi+1(t) < (k + 1)L, we have \~yi(t) =
yi(t)+kL and \~yi+1(t) = yi+1(t)+kL. Moreover, for every x \in [\~yi(t), \~yi+1(t)]

\~\rho (t, x) = \rho (t, x - kL).

\bullet If kL \leqslant \~yi(t) < (k + 1)L and (k + 1)L \leqslant \~yi+1(t) < (k + 2)L, we have
\~yi(t) = yi(t) + kL and \~yi+1(t) = yi+1(t) + (k + 1)L. Moreover,

\~\rho (t, x) =

\biggl\{ 
\rho (t, x - kL) \forall x \in [\~yi(t), (k + 1)L],
\rho (t, x - (k + 1)L) \forall x \in [(k + 1)L, \~yi+1(t)].

For every i \in \{ 1, . . . ,M\} , we define \~Ti \in \BbbR \cup \{ +\infty \} as in (3.2) with

\varphi i(t) = [f \prime (\~\rho (t, \~yi(t) - ))(ti+1  - t) + \~yi(t), f
\prime (\~\rho (t, \~yi(t)+))(ti+1  - t) + \~yi(t)].

Since for every i \in \{ 0, . . . ,M\} yi+1
0  - yi0 \leqslant L and \~\rho 0 is a L-periodic function verifying

that \~\rho 0 = \=\rho 0 over [0, L], we have TV (\rho (\cdot , \~yi(\cdot )), [0, \~Ti]) \leqslant TV (\rho 0). Mimicking the
proofs of Theorems 3.3 and 3.5, we have, for every i \in \{ 1, . . . ,M\} ,

(A.19) \~Ti \leqslant 
yi+1
0  - yi0

ci

\biggl( 
1 + exp

\biggl( 
\alpha TV (\rho 0)

ci

\biggr) \biggr) 
,

and for every \rho 0 \in \Gamma  - 1(\Gamma (\~\rho 0)), \~S \~Ti
(\rho 0)(x) = \~S \~Ti

(\~\rho 0)(x), for every i \in \{ 1, . . . ,M\} ,
and for almost every x \in [\~yi( \~Ti), \~yi+1( \~Ti)] with (\~yi, \~yi+1) the solution of (A.17) and
(A.18). Here, \~St is the L1-Lipschitz semigroup defined by St(\rho 0) = \~\rho (t, \cdot ) s.t. \~\rho is
the solution of (A.17). Using that \~\rho is an L-periodic function such that \~\rho = \=\rho over
[0, L], Lemma A.4, and \~y1(t) - \~yM+1(t) = L for every t \in \BbbR +, we conclude the proof
of Theorem 3.8.
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