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ABSTRACT
In this paper we describe an experience report and field deploy-

ment of real-time filtering algorithms used with a robotic vehicle

to smooth emergent traffic waves. When smoothing these waves in

simulation, a common approach is to implement controllers that uti-

lize space gap, relative velocity and even acceleration from smooth

ground truth information, rather than from realistic data. As a re-

sult, many results may be limited in their impact when considering

the dynamics of the vehicle under control and the discretized na-

ture of the laser data as well as its periodic arrival. Our approach

discusses trade-offs in estimation accuracy to provide both distance

and velocity estimates, with ground-truth hardware-in-the-loop

tests with a robotic car. The contribution of the work enabled an

experiment with 21 vehicles, including the robotic car closing the

loop at up to 8.0 m/s with the filtered estimates, stressing the im-

portance of an algorithm that can deliver real-time results with

acceptable accuracy for the safety of the drivers in the experiment.
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1 INTRODUCTION
As Connected Autonomous Vehicles (CAVs) enter the marketplace

and traffic flow, controllers are being designed to implement myriad

behaviors. Since penetrations of up to 100% of the traffic flow are

not expected for some years, it is necessary for sensors to acquire

state data where ground-truths (or near enough) are unavailable.

A particular application we have studied is emergent traffic

waves, which occur naturally in human-driven traffic due to driver

dynamics composed with the dynamics of the physical systems

(vehicles) they are controlling. The work of Sugiyama et al. [25]

demonstrated these phantom traffic jams (also called jamitons)

using full-scale vehicles with drivers in dramatic fashion, wherein

a single-lane flow of 22 cars driving on a ring road exhibited traffic

waves although there were no infrastructure bottlenecks.

In [24] we were the first to experimentally show that it was

possible to dampen these traffic waves by controlling only one of

the vehicles in the flow. The work required significant experimental

innovation in order to overcome what were perceived as simple

engineering problems. During the execution and deployment of this

large-scale cyber-physical systems (CPS) experiment we considered

many trade-offs that we believe are of use to the community.

The real-time considerations of the work are significant: the

control algorithms depend on sensor data when determining the

velocity of the vehicle, and estimating the relative velocity of others.

As the technology for LiDAR and other sensors matures and prices

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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fall, algorithms to interpret these data in real-time will be used by

vehicles (or by infrastructure) in order to aid in the control. The

frequency at which reliable data are available, coupled with the real-

time constraints of the physical platform, constrains algorithms in

a non-intuitive way.

The principal inputs for the controller are the distance and rela-

tive velocity of the immediately preceding vehicle, with expected

use at velocities of up to 8.0 m/s (average driving speed in stop-and-

go traffic). As we will show in this paper, the estimation of relative

velocity at the high end of this range is susceptible to errors that

are on the order of decision points for the need for braking: given

the objective of traffic smoothing, we must design these controllers

and companion sensor filters in a way that does not exacerbate the

problem of unnecessary braking.

Contribution
This work describes the real-time design, analysis, and constraints

of the CPS controller and sensor used for the experiment [24] on

dissipation of emergent traffic waves. We describe how the error

qualities of high-rate distance sensors require filtering that is cog-

nizant of the controller in use. In short, the paper goes beyond

existing results in object-tracking using laser sensors due to the

complexity of the cyber-physical scenario: a full-scale passenger

vehicle moving at up to 8.0 m/s alongside other vehicles.

The results include derivation and trade-off discussions on how

to filter these data, depending on the frequency and dynamics of

the controller, plant, and sampling rate of sensors. The theoret-

ical results of these trade-offs are used to develop real-time im-

plementations of the filtering algorithms, which are informed by

the controller and experiment. Experimental results are given (in-

cluding initial experiments that determined these algorithms were

required) and comparison of the results to offline estimates of the

space gap (also referred to as a headway or range), and velocity of

each vehicle is compared to the real-time estimates. Discussion of

the upper bounds of the sensors and control inputs are provided,

which provide insights into when the controllers could be used

effectively with these algorithms.

The insights provided in the paper will be valuable to devel-

opers of CAV algorithms, networking models, and infrastructure

designers, and they provide an important context of an experiment

that required real-time sensing and control, which resulted in a

significant scientific and engineering result.

2 BACKGROUND
Our approach to the use of sensors is constrained due to the real-

time requirements of the application, and the potential for dan-

gerous outcomes if the algorithms fail to provide valid answers.

Note in particular that we depart from a traditional use of the laser

rangefinder in robotics to build an obstacle grid or similar naviga-

tion map: instead, the goal is to use it to close the control loop in

real-time with a companion controller.

Although a typical distance resolution of many distance scanners

is 0.1 m, such a resolution may be unsuitable for use in a cyber-

physical system’s controller if the controller’s dynamics are such

that the system is susceptible to noise, or that the software delays

would result in instability. In this section we examine how distance

sensors have been used in car-like robot applications, such as target

tracking, obstacle-avoidance, etc. in a real-time setting, with a goal

of understanding the context of the contribution of this work.

Real-time object tracking for stationary objects has been ex-

plored based on Kalman and particle filters, as well as through

object classification. The results in those works provide an answer

in real-time but with limitations for our intended purpose: (i) the

obstacles are moving, but not the laser sensor [2], (ii) the obstacles

are fairly uniform (persons) and typically occlude in a uniform way

[1], and (iii) the velocity of each detected object is utilized for disam-

biguation and trajectory tracking of that object, not as an input to

a controller [12, 17]. On the contrary, autonomous driving requires

temporal tracking because of continuous change of background

information and movement of sensors relative to the target.

During the DARPA urban challenge, several research teams in-

cluding Stanford [18] and MIT [15] developed object tracking mod-

els to utilize a number of LiDAR sensors for obstacle detection and

tracking of moving objects.

As described in [18] and [20], the Stanford team developed a gen-

eral purpose tracking algorithm based on geometric and dynamic

properties of a vehicle to be tracked. Recent improvements have

used a learning-based model to estimate the pose of the vehicles to

be tracked, though as is typical in machine learning these results

are dependent on the training dataset [6, 14, 26]. For the results

presented in this paper, we relax the need to estimate the pose of

the vehicle in front as such estimates generally inform high-level

driving models that switch between driving modes, rather than the

velocity controllers described in this work.

In our experiment, we applied a real-time controller called the

Followerstopper [4, 24], while driving on a ring road with a minor

offset to another car for safety. We define safety metrics and discuss

the measurement model. Using them, we formalize safety aspects of

vehicle-following which are used in developing an understanding

of the filter-design process and its effect on controller design. At

the end we demonstrate, using a very simple filter, how sensor

characteristics and filter-design process affect safety metrics.

3 FORMULATION
In-motion cyber-physical systems require a trade-off between delay

(introduced by computational elements) and the accuracy that those

computational elements can provide. [3, 11]. We assume that the

control of ourmoving cyber-physical system is affected by a delay of

δ seconds, due to delay from filtering, computation delay, actuation

delay, actuator, and plant dynamics, among others. Some of these

delays can be mitigated through design, while others are implicit

to the system. In addition, there are constraints from the overall

system design goals: to dampen traffic waves.

In this section, we first describe the model dynamics and the two-

vehicle scenario considered while designing the controller with the

two-fold goals of dissipating traffic waves as well as maintaining a

safe distance to the vehicle ahead.

3.1 Controller design and constraints
The Followerstopper controller is briefly reintroduced here for com-

pleteness and to provide context for the contribution of the real-time
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Figure 1: Configuration of the vehicles under consideration, where
the AV follows a leader vehicle under human control.

requirements of the CPS. A detailed examination of the design can

be found in [4, 24].

A typical scenario in mixed traffic where an AV follows a human-

driven vehicle referred to as the leader vehicle (alternatively re-

ferred to as the preceding vehicle or the target) is shown in Figure 1.

Let the AV be described by its state (xAV ,vAV ) where xAV is

the position of the AV on the path, and vAV is the velocity of the

vehicle along the path. Similarly, the leader vehicle is described

by its state (xlead ,vlead ) where xlead is the position of the leader

vehicle, and vlead is the velocity of the leader vehicle. The space

gap (distance between the front bumper of the follower vehicle and

the rear bumper of the leader vehicle) between two vehicles under

consideration is

x = xlead − xAV − L. (1)

Here L is the length of each vehicle, which we assume to be of the

same length. Similarly, the relative velocity of the follower AV with

respect to the leader is

Ûx = vlead −vAV . (2)

Through our controller design, wewould like to control the velocity

of the AV, vAV , through the control input u as shown in Figure 2.

The controller commands the AV’s desired velocity, based on the

space gap x , the leader vehicle velocity vlead , the AV velocity vAV ,
and a reference velocity r :

u = F (x ,vlead ,vAV , r ). (3)

The reference velocity is determined from a nominal controller

that sets r to achieve traffic wave smoothing, but which may not

consider safety requirements of the AV. For the work presented in

this paper, a user input is used to generate the reference velocity

r desired for wave smoothing. Clearly the control input to the AV

determined by F must prioritize safety constraints, and follow the

reference velocity only when it can do so safely.

The Followerstopper controller is designed to achieve the dual

goals of wave smoothing while maintaining a safe distance. It de-

fines F as a piecewise controller (having 4 modes) that provides

the control input u as a weighted average of the leader vehicle’s

velocity vlead and the reference velocity r based on the current

state of the AV, as determined from the x Ûx-phasespace diagram

(also known as a state-space diagram or phase-portrait, see [13,

Chapter 3], [8]) as shown in Figure 3.

We now explain how this multi-variate function F is chosen. In

doing so, with a slight abuse of notation, we use the symbols x
and vlead , vAV , and r to denote the arguments of this function.

Nominal
Controller

Reference, r

User input

Followerstopper Control Input, u
AV + sensors 

vAV
x 

Digital Filter 

vAV
x 

vlead

Figure 2: A schematic diagram of the Followerstopper controller and
other components used for AV’s velocity control. Note that some
outputs of the Digital Filter represent estimated signals.
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Figure 3: x Ûx -phasespace with quadratic bands that describe the Fol-
lowerstopper controller.

The reason for this notation is that, when used in practice, all of

the inputs may be functions of time, which induces the control

output u to be a function of time as well. Given parameters α j and
ωj , j = 1, 2, 3, three curves ξ j ( Ûx) are defined in the phase plane as

follows:

ξ j ( Ûx) = ωj +
1

2α j
( Ûx∗)2 for j = 1, 2, 3. (4)

where Ûx∗ = min( Ûx , 0) is the negative arm of the velocity difference,

i.e. the case of the AV falling behind ( Ûx > 0) is treated just like

the case of vAV = vlead . Note that the the mode separators in the

function F are chosen as parabolas in the x Ûx-phase plane. The

motivation for this choice is that, in the situation that the leader

vehicle drives at a constant velocity, a constant deceleration of the
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AV will result in it describing precisely such parabolas in the x Ûx-
phase plane. Through the choices of parameters α j , ωj , the curves

ξ j ( Ûx) in the phase plane, are defined by (4).

With the above discussion, and noting that ξ j = ξ j ( Ûx) in a mild

abuse of notation for brevity, the piecewise velocity controller is:

u =


0, if x ≤ ξ1

v
x−ξ1
ξ2−ξ1

, if ξ1 < x ≤ ξ2

v + (r −v)
x−ξ2
ξ3−ξ2

, if ξ2 < x ≤ ξ3

r , if ξ3 < x

(5)

where v = min(max(vlead , 0), r ), which is the leader vehicle’s ve-

locity (if positive) or the nominal velocity r , whichever is smaller.

We call attention to the fact that, when used in a real-time applica-

tion, all signals appearing in (5) become functions of time.

Some intuition regarding behavior in these modes will emerge

from brief discussion. The most straightforward is the final mode,

with ξ3 < x , where the control input to the AV is the reference

velocity.

Similarly, the first mode, with x ≤ ξ1 describes the case where
the AV is commanded u = 0. Recalling that the function ξ1 = ξ1( Ûx)
is defined by a maximum deceleration parameter (α1) which should

fully stop at least ω1 m behind the leader vehicle when executed,

and will obey the dynamics of the physical system in doing so.

Since frequent maximum deceleration would be unlikely to

dampen traffic waves, additional modes are defined which utilize

different deceleration parameters (e.g., α2 and α3) in Adaptation

Regions I and II, respectively. The controller thus will transition be-

tween modes as the distance and relative velocity cross the velocity-

dependent curves ξ j defined in the phase plane.

The values of ωj and α j are selected based on the desired behav-

ior; for the purpose of the experiment presented in this paper, the

chosen values were based on data collected from a pilot experiment

to observe human driving (with no vehicles under autonomous

control). There were no attempts made to optimize these values,

though this may be of interest for future research.

The values used of (ω3,α3) = (6.0m, 0.5m/s2) and the values

of (ω1,α1) = (4.5 m, 1.5 m/s2): this is when the controller fully

overrides the reference input to prevent collision, thereby stopping

with a maximum deceleration. (ω2,α2) is the average of the (ω1,α1)
and (ω3,α3) to provide a smoother transition whenever there is

requirement to switch modes.

The overall constraints of the experiment that motivated this

controller are: (i) the need to avoid frequent deceleration—as this

would potentially cause traffic waves for following vehicles; and

(ii) the need to follow a reference velocity as defined by the leader

vehicle, as a function of the velocity and relative distance of the

vehicles. The accuracy of estimating the distance between vehicles,

and the rate at which realistic sensors plus computing time can

perform those estimates, motivate the exploration of the problem

formation.

3.2 Problem formulation
In the context of an AV, one safety metric is the expected separation

distance, dmin :

dmin = θd (vAV ,vlead ,δ ,x), (6)

which is a function of the velocity of the vehicles (vlead , vAV ),
the system delay δ , and the current distance x that is the space

gap. [9, 27]. The system delay is the sum of all delays including delay

caused by the nominal controller, the Followerstopper, actuation

delay by the AV and delay introduced due to the filtering process,

plus any other delay due to some unknown cause. However, we

have the most control during design over the delay due the filtering

process, which will be clear in later sections.

Let ε be the maximum mean squared error of estimated velocity

of the leader vehicle that is acceptable for the traffic waves experi-

ment, which should be calculated based on the velocity distribution

V , at which traffic would be moving. One such velocity distribu-

tion, captured during a pilot experiment, is shown in Figure 4 and

represents speed variability in oscillatory traffic. The function θv
should map from velocity distributionV to velocity-estimate-error:

ε = θv (V) (7)

which we later quantify in terms of mean-squared-error (MSE).

0 50 100 150 200 250 300 350 400
0
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Figure 4: A representative velocity profile of a vehicle and its veloc-
ity distribution in oscillatory traffic.

Let filters fd and fv estimate the distance and velocity to the

leader vehicle, respectively, with sampling frequency Fs .

Problem statement
(i) Derive or design functions θv , θd
(ii) Design fd , fv to meet constraints for ε with a given filter

frequency

(iii) With given fd , fv , apply θd to compare whether the dmin
exceeds space gaps seen in the traffic flow experiment

(iv) Evaluate (iii) with various parameters, to explore impact on

sensors of other frequencies and accuracies

Problem (i) is solved in Sec. 4.2 and Sec. 4.3; (ii) is addressed in

Sec. 5.2; (iii) in Sec. 5.4; and (iv) in Sec. 6.1.
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4 APPROACH
A robust control law to follow a human-driven vehicle requires

estimation of the relative velocity of the two vehicles within an

acceptable signal to noise ratio. However, in realistic terrain and

within urban surroundings a laser sensor frequently returns data

with discontinuities. In such situations, it is desirable to devise an

algorithm so that the time derivative of distance does not present jit-

tery behavior due to discontinuities in the data (as described, fd ). In
this section, we detail our approach within underlying assumptions

of motion with respect to stop-and-go vehicle traffic.

For the controller in (5), which utilizes relative velocity as part

of its feedback law, noise in relative distance or velocity can be

amplified without proper real-time filtering. We use the traces

collected from the hardware in use to characterize the sensor noise

and develop an understanding of filter design technique useful for

accomplishing the goal of providing a smooth velocity estimate and

hence a stable control input to the AV for the vehicle following.

4.1 Measurement model
Let the sampling rate of the sensor be Fs , and vAV be the velocity

of an autonomous vehicle in the traffic flow which is sampled at a

rate FAV . The AV is equipped with a sensor (e.g. LiDAR, Camera,

Sonar, Radar, etc.) on the vehicle front, returning the relative dis-

tance between the AV and the target (e.g. a wall, a moving vehicle,

a pedestrian, etc.). We assume the velocity of the AV can be accu-

rately measured. We also assume that the target is not capable of

communicating with the AV; hence the target’s relative distance

is detected only by the sensor mounted on the AV. The distance

information is used in estimating the relative velocity of the target

and in turn its absolute velocity. Let Û̂x be the measured relative

velocity which is a noisy estimate of the true relative velocity Ûx .
Further, let the actual velocity of the target be vlead , and v̂lead be

the estimated velocity of the target, that is,

v̂lead = vAV + Û̂x (8)

Noise present in the sensor and methods used to estimate the

relative velocity results in noisy estimate v̂lead which is different

from ground truth vlead . As a result, we may see abrupt changes

such as short-term fluctuations and discrete jumps in the estimated

samples. We are required to use noise removal filters to get smooth

data for good control behavior. However, there is always a penalty

in terms of delay when using a digital filter. We assume that the

filtering algorithm introduces some delay δf . The filter delay δf is

crucial for designing the filter according to the latency constraints,

and therefore designing the control algorithm. The measurement

noise can be reduced by the virtue of a more complicated filter

at the expense of introducing larger delay (e.g. a Kalman Filter).

Considering that the digital filter used in the process operates in

time-domain, an estimated relative velocity will be obtained at

the same sampling rate of the sensor, i.e. Fs . Thus, the number of

samples that are delayed due to the filtering process is

N = δf Fs (9)

As the velocity of the AV is sampled at rate FAV , the estimated

velocity of the target is obtained using (8) at a rate of

Fv = max (Fs , FAV ). (10)

Note that since two quantities sampled at different frequencies

are being added, an estimate of the target will be available at the

maximum of the rate of two quantities.

As a result, the controller receives the estimated velocity of the

target delayed by
N
Fv seconds. If we introduce the fixed delay δr

that can be set during design to take into account friction, actuator

dynamics, controller update rate, etc., then the total delay will be

δ =
N

Fv
+ δr =

δf Fs

Fv
+ δr (11)

Now we have developed a measurement model, we are ready to

formalize a safety model for vehicle-following in a scenario where

the AV lacks ground truth about the target and must estimate the

state of the target.

4.2 Design of θv
The interface for ε = θv (V) includes as an input only the velocity

distribution, V . Thus the design of θv should be based on the

application in question, and an additional structure may be derived

from the controller, thus taking into account the dynamics of the

plant in (5). From that structure (visually depicted in Figure 3) small

perturbations in velocity could result in the controller leaving the

region of safety. For example, instantaneous errors of the relative

velocity of −2 m/s would result in braking for any distance less

than 10m, which could result in a hard braking event for following

vehicles. To see this in Figure 3, note that the intersection point

(x , Ûx) = (10m,−2m/s) is in the region of safety for the controller;

however, if that value were to suddenly be (10m,−4m/s) due to an
instantaneous error, then the vehicle would brake at the maximum

deceleration rate (see (10m,−4m/s) on the figure).

In futurework, wemay definemore sophisticatedmodels, though

here it is sufficient to examine the inverse relationship of the ex-

pectation E of the velocity distribution, and the frequency at which

updates may be made.

ε ∝ min

(
1

E(V)
,
| Ûvmin |

Fs

)
(12)

For large speeds, accuracy is necessary (the first argument in

(12)), though at any speed more accuracy is needed with the large

sampling frequency (the second argument in (12)), in order to pre-

vent burning out controllers. For the latter, this is tempered by the

ability of the system to actually stop, so at very low speeds and

low frequencies, an erroneous value can be corrected in the next

timestep, if | Ûvmin | is sufficiently large.

4.3 Design of θd
In the experiment, vehicles are expected to drive at the desired

speed, unless they must slow down for the vehicle in front; in this

case, the current velocity of each vehicle, the space gap, delays, and

possible deceleration rates of the vehicles are very important.

Consider the case with the AV traveling at a velocity vAV fol-

lowing a target driving at the speed vlead , separated by a space

gap x . We introduce a safety metric θd as mentioned in Sec. Sec. 3.2

referred to as the expected separation distance dmin . The expected

separation distance indicates if a collision is expected to occur based

on the leader velocity, the follower velocity, deceleration rates, and
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the system delay of the AV. The metric is computed as:

dmin = x + (vlead −vAV )

(
δf Fs

Fv
+ δr

)
+
1

2

(alead − aAV )

(
δf Fs

Fv
+ δr

)
2

,

(13)

with dmin > 0 indicating expected avoidance of collision. The

derivation is provided in the Appendix. Note that the parameters

alead and aAV control the degree of conservativeness of dmin . For

example, a stringent metric can be derived setting alead at an accel-

eration rate corresponding to emergency braking, while assuming

the acceleration rate of the AV is corresponds to the maximum

acceleration rate of the vehicle. A less conservative measure can

be designed by setting a modest deceleration rate of the leader and

assuming the follower maintains a constant speed during the delay.

Other measures (e.g., do not encroach on a minimum buffer behind

the leader vehicle) could easily be designed as well.

5 RESULTS
5.1 Sensor configuration and data acquisition
A typical laser rangefinder operates using the principle of the time

of laser light pulse. A pulsed laser beam is emitted and—if reflected—

the time between transmission and reception is proportional to the

distance between the laser and the object. We used a SICK LMS 291

laser rangefinder attached to the front bumper of the University

of Arizona’s CAT Vehicle, our autonomous vehicle (AV), for high-

frequency distance measurement of the lead vehicle. The unit was

configured in RS422 mode which enabled us to acquire data at 75Hz

at a resolution of 1
◦
(0.0175 radians), with distance estimates from

[0.1, 81] meters. The LiDAR unit was mounted in level with the

vehicle frame, just above the front bumper of the CAT Vehicle. The

device scans in a counterclockwise motion by sending laser pulses

and measuring the time difference of a return of that pulse. The first

angle scanned is at − π
2
+ π

360
and the sensor measures a total of 180

points until it reaches the angle
π
2
− π

360
. The resulting semicircular

scan is an array of values that represent the distance of the nearest

object at that angle, or the value 81.0m if no return is received. The

entire scan is stamped with the same time, which is obtained from

the ROS master node [5, 21].

5.2 Sensor characterization, and design of fd , fv
We begin with a brief description of how data are acquired for error

characterizations of the sensor in use. The AV is stationed such

that the sensor is approximately 17.9 m away from a stationary

target. The vehicle is then driven toward, and then away from, a

stationary target in order to calibrate filtering algorithms used to

determine distance and velocity of the target in the front. Use of

a stationary target ensures ground truth velocity of the target to

be known (namely, 0m/s). We point out that characterizing sensor

noise with a moving-target is significantly harder without sharing

ground truth velocity of the target (in the absence of inter-vehicle

communication).

To formalize the characterization, let µx be the expected value of

the distance andσ 2

x be the sample variance of the distancemeasured.

For nearly 80 s when the AV, sensor and the target were stationary,

we collected sample data to characterize stochastic noise. The mean

of the signal during this period was found to be µx = 17.91288m
with standard deviation of σx = 0.01439m.

Assuming the expected value of the signal during this period

as the true value, we calculated error in the distance estimation

shown as a histogram in Figure 5. A portion of the raw sensor data

is shown in the Appendix in Figure 13.

Consider estimation of velocity through a first order finite dif-

ference method

Ûxk = (xk − xk−1)Fs (14)

where k denotes k-th sample, provides µ Ûx = 0.00084268m/s and
σ Ûx = 1.6847 m/s of the stationary object, at Fs = 75 Hz. It is
common to experience increased noise in this approach as the

differentiation acts as a high pass filter. As a result, low frequency

motion data in the passband is attenuated while stochastic noise

such as white noise in the higher frequencies is amplified [19]. This

results in lower signal-to-noise ratio (SNR). The corresponding

histogram can be seen in Figure 6. The mean squared error (MSE)

(or sample varianceσ 2

Ûx )
1
obtained from this method is 2.8377 (m/s)2.

As shown in the Appendix, Figure 13 shows short term fluctuation

in the distance data due to sensor noise, which will typically result

in significant variance in the velocity estimation.
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Figure 5: Histograms for errors in distance with expected value of
the signal as true value.

As the laser sensor moves, the velocities may exhibit additional

vibrations due to the dynamics of the moving vehicle, the detection

of different features of the object in non-flat terrain, or other various

reasons. An additional concern is discrete jumps in distance, based

on detecting features of the lead vehicle that are on the order of

tens of centimeters apart. For example, the rear bumper at time tk
and then at time tk+1 detecting the rear tire. Such a discrete jump of

a few tens of cm in a single time-step could result in instantaneous

velocity estimates of up to 20m/s—such an estimate could result

in unnecessary braking that might cause damage or serious injury.

As an example, consider the velocity estimates shown in Figure 7,

which exhibits chattering of the velocity at 123 s and 132 s . The
presence of these high-frequency signals could drive the controller

1
Statistically speaking, MSE and sample variance σ 2

are similar. See [7] for more

details.
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Figure 6: Histograms for errors in the velocity estimate from (14)

when target and sensor are stationary. MSE of relative velocity is
2.8377 (m/s)2

unstable or cause riding discomfort. Such jumps must be detected,

but unnecessary delay in detecting (or resuming filtering) could

have detrimental effects on the ability of the controller to dampen

traffic waves.
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Figure 7: Estimated relative velocity using (8) and (14) exhibits chat-
tering of velocity at times 123 s and 132 s , where the sensor returns
discontinuous data points due to non-flat terrain. Note that we are
characterizing error and noise with a stationary target, hence we
expect signals to be close to zero.

This leads to the need to filter the estimated velocity before it can

be used for any control algorithm. Real-time considerations require

a fixed horizon for the filter, with a width for the filter based on the

system response time. Thus leaving some of the filter parameters

as variables, the structure of the filter is to be designed in such a

way that control loop used in the vehicle control algorithm remain

faster than the rate of filtered signal.

For noise smoothing operations, we are interested in a causal

filter with real-time properties. There are myriad objectives one can

aim for while designing a filter such asmaximizing SNR,minimizing

signal distortion or minimizing filter delay. For our purpose, we

were interested in a filter to minimize delay while maintaining the

necessary accuracy ε which we quantify in terms of σ 2

Ûx . There are

two main types of digital filter we consider: finite impulse response
(FIR) filters and infinite impulse response (IIR) filter. For ease of

design and intuitive realization we used a moving average filter,

which is an FIR filter. Moving average filters have low-pass filter

properties and offer constant group delay because of their linear

phase. A moving average filter estimate of Ûx is

Û̂xk =
k∑

m=k−N

Ûxm − Ûxm−1

N
, 2 < N < k (15)

We applied a moving average filter to the velocity estimation

obtained from (14). To determine the order of the moving average

filter we utilized residual analysis and calculated the MSE of the

filtered data by varying the window size (i.e. the order for the

moving average filter), as shown in Figure 8. MSE is ≈ 0.01(m/s)2

for the window size of 10 or greater: however, a larger window size

comes with the price of larger delay and risk of oversmoothing.

Note that there is negligible improvement in MSE with window

size larger than 20.
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Figure 8: We see that MSE approaches zero: 0.013623(m/s)2 for win-
dow size of 10 and 0.003391(m/s)2 for window size of 20. However
higher order introduces a larger delay.

Suppose we select a window size of 20, introducing the delay

of N = 20/2 = 10 samples since delay introduced due to moving

average filter is half its window size. As discussed in Sec. 5.1, the

sampling rate of our sensor is Fs = 75 Hz, hence the filter causes
the delay of δf = 10/75 = 0.133 s . We can further examine the

performance of the filter when the AV is in motion. Figure 9 com-

pares the filter in (15) with the first order approach of (14). The top

graph is the residual of the relative velocity estimate calculated as

MSE from (14); the lower graph is the residual of filtered velocity

using (15) with N = 20. As the target remains stationary during

this period and the AV with sensor mounted on it moves relative to

the target, the relative velocity of the target with respect to the AV

is equal to but opposite in sign of the AV velocity. In this way we

are able to calculate MSE by considering the fact that negative of

the AV velocity is the true value of the stationary target’s relative

velocity. The MSE for unfiltered relative velocity of the target dur-

ing motion was 2.704824 (m/s)2; after filtering it was reduced to

0.0087039 (m/s)2, which is the same order as seen while stationary.
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Hence we see that a better filter design provides a more reliable

estimate of the relative velocity.
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Figure 9: We observe that filtered relative velocity of the target
matches fairly well with the AV’s velocity. Notice the y-scale of
lower plot.

5.3 Simulation of filter designs
We performed a simulation of (13) described in Sec. 4.3 using MAT-

LAB and the Robotic System Toolbox. Since we can only estimate

the speed of the target, vlead in (13) will be replaced by an estimate

v̂lead . We generated a synthetic dataset for the velocity profile of

the AV and distance estimation of the target based on an empirical

distribution of realistic datasets gathered using the CAT Vehicle.

We performed simulations for (14), and (15) with both N = 5 and

N = 20, and for each of these we checked whether dmin > 0. Note

that due to the noisy estimate of the velocity of the leader vehicle,

dmin violated the constraint of dmin > 0 which could result in a

collision. The result is summarized in Figure 10.

Although Sec. 4.3 formalizes an expected separation distance

metric for autonomous vehicle operation, we would still require

a supervisory controller in addition to the proper filter design

to provide safe behavior in autonomous operation. Nevertheless,

this provides a suitable framework for designing a supervisory

controller for enforcing safety.

5.4 Application of filtering in traffic wave
dissipation

From the analysis, we knew to choose a sensor with relatively fast

sampling rate to return the estimated results to the velocity con-

troller for the dissipation of traffic-waves. Analysis of signal traces

obtained from the ring road experiment proves our hypothesis that

a sensor with faster sampling provides smoother estimation with

relatively little lag or delay. To validate the overall experimental
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Figure 10: Simulation study of the effect of filter design using equa-
tions (13), (14) and (15), with acceleration values alead , aAV repre-
senting potential reactions during steady-state driving. Somedesign
choices provide poor ε and lead to violation of the expected separa-
tion distance, i.e. dmin < 0.

results, we placed a 360
◦
camera at the center of the ring; in addi-

tion, there was a LiDAR mounted on the front bumper of the AV.

The sampling rate of 360
◦
camera is 30 Hz; Had we used such a

camera for vehicle space gap and relative velocity estimation, the

AV would not have been able to close the gap on time, resulting in

either a collision or unexpectedly large space gap.

The application of a moving average filter from (14) with N = 20,

using information from camera data, as well as from LiDAR data

obtained from the experiment, is shown in Figure 11. It should be

noted that the shapes of the signal obtained from two different

sensors differ in the amplitude of peaks and amount of noise. This

is attributed to the varying placement of sensors and their charac-

teristics but the overall trend is similar. The camera introduces a

delay of δf =
10

30
s = 0.333 s , whereas LiDAR introduces a delay of

δf =
10

75
s = 0.133 s . Without ground truth data, we are unable to

validate ε , but our empirical result, in this case, is representative

of the safety framework discussed earlier. However, the velocity

controller discussed in Sec. 3.1 satisfied the safety metric when

driven autonomously during the ring road experiment as shown in

Figure 12.

6 CONCLUSION
In this paper, we presented a real-time distance and velocity esti-

mation method for following a leader vehicle in urban stop-and-go

traffic, for the purpose of dampening traffic waves. We validated

estimation techniques according to safety constraints, which were
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Figure 11: Use of moving average filter of order N = 20 for sensors
with different frequency: Use of slower sensor (camera) produces
data with low SNR. Results show poor smoothing in camera data
running at 30Hz. The camera introduces more delay during the fil-
tering processes as well, as we observe that the velocity curve for
filtered camera data is time-shifted to the right with respect to the
one obtained from LiDAR. For clarity, we have only compared two
sensors for only window size i.e. N = 20, but comparative results
are similar for N = 5.

0 100 200 300 400 500
-30

-20

-10

0

10

20

30

40

50

60

Figure 12: Ring road experiment results: dmin calculated using (13)

and (15). During the period of autonomous control, we see no viola-
tions with respect to dmin .

jointly considered with accuracy and real-time metrics for the con-

troller in use. As a result, our method gives insights into the re-

quired frequency of sensors in use, in order to operate at velocities

at which stop-and-go traffic is expected (in this case, 8m/s). The
work gives a means by which designers can consider how smooth

the estimation of the leader vehicle’s velocity must be, as a function

of the tolerance for error in velocity estimation that is driven by the

vehicle controller. We emphasize that the sensor characterization

discussed here is in the domain of stop-and-go traffic, but a similar

kind of approach may be taken for high-speed scenarios.

In our discussion, we find that output rate of measurement de-

vices, desired accuracy, and choices of sensors are factors that

should be given consideration by AV application designers and en-

gineers when considering how vehicles may be used to implement

low-level control that could positively impact the larger traffic sys-

tem, through control of vehicles in the flow. This may ensure a high

degree of safety without sacrificing efficiency with conservative

design choices, such as driving large safe distances. Our discussion

here may lead to developing a closed-form mathematical model

establishing a relationship among safety metrics, sensor frequency,

and desired accuracy, thus enabling more inexpensive sensors (such

as cameras) to be used, rather than laser scanners or radars, for

such control.

6.1 Future work with other sensors and speeds
The problem may be extended to other sensing frequencies and

modalities, though there are limitations. As an example, our vehicle-

following solution would differ in the context of new radar tech-

nology. With FMCW radar [10, 16, 23], it is possible to directly

measure the distance and velocity of the target simultaneously us-

ing the Doppler effect, so using distance data to estimate velocity is

not required. However, filtering of the velocity might be required

based on measurement noise and interference caused by other radio

services (24 GHz) or due to signal attenuation (77 GHz) [23]. For
fc = 24 GHz FMCW Radar, if chirp frequency is fp = 5 KHz (i.e.
period 0.0002 s), then the maximum unambiguous velocity of the

target is given by
2

vmax =
(3e8)fp

4fc
=

(3e8)(5e3)

(4)(24e9)
= 15.625m/s (16)

Hence, we see that the design of velocity control is affected by

the choice of sensors in use. As an example, Bosch LRR3 77 GHz
Radar offers accuracy of 0.1m for distance estimation and 0.12m/s
for velocity estimation at the sampling rate of 12.5 Hz3.

With improved accuracy, but lower frequency, we expect that

a similar kind of digital filter discussed in this paper may have a

similar expected separation distance. The situation may worsen if

we desire lower MSE for the given application.

With other perception units such as a stereocamera (10 − 15 Hz
operation) and the Velodyne 3D LiDAR (10 − 20 Hz operation),

the need to filter results will further delay action, especially if the

sensor accuracy is similar to that of a line-scanning laser such as

2
Interested readers may refer to ‘Fundamentals of Radar Signal Processing’[22] for

more details.

3
https://www.bosch-engineering.jp/media/jp/pdfs_3/einsatzgebiete_4/

produktdatenblaetter_2/120903_LRR3_EN_V05_final.pdf

https://www.bosch-engineering.jp/media/jp/pdfs_3/einsatzgebiete_4/produktdatenblaetter_2/120903_LRR3_EN_V05_final.pdf
https://www.bosch-engineering.jp/media/jp/pdfs_3/einsatzgebiete_4/produktdatenblaetter_2/120903_LRR3_EN_V05_final.pdf
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that considered in this work. Finally we note that in the experiments

presented here, the leader vehicle is always observed in the range

of the sensor. At higher speeds and at a larger space gap, the limited

range of the sensor will also be an important design concern.
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A APPENDIX
A.1 Derivation of dmin

Here we derive the expected separation distance dmin indicating

if a collision is expected to occur between the leader vehicle and

the AV during the time delay:

dmin = x + (vlead −vAV )

(
δf Fs

Fv
+ δr

)
+
1

2

(alead − aAV )

(
δf Fs

Fv
+ δr

)
2

(17)

recalling x is the current distance between the AV and the leader

vehicle (i.e., the space gap), and alead and aAV are assumed accel-

eration rates of the leader vehicle and the AV respectively during

over the period δ . Note dmin > 0 indicates expected avoidance of

collision.

Proof. In δ seconds, the leader vehicle travels

dlead = vlead

(
δf Fs

Fv
+ δr

)
+
1

2

alead

(
δf Fs

Fv
+ δr

)
2

, (18)

assuming it is initially traveling at vlead and is accelerating at a

rate alead over the time interval.

The distance moved by the AV over the same time interval δ
seconds, which is currently traveling at vlead and assuming it

follows a constant acceleration alead is

dAV = vAV

(
δf Fs

Fv
+ δr

)
+
1

2

aAV

(
δf Fs

Fv
+ δr

)
2

. (19)

Using dmin = x + dlead − dAV , we can arrive at (17).

□

A.2 Example signal traces for noisy sensor data
Figure 13 visualizes how the laser sensor is returning data for a

stationary target approximately 17.9m away from the sensor, for a

period of approximately 10 s .

https://doi.org/10.1109/CDC.2018.8619700
https://doi.org/10.1016/j.procs.2017.10.010
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Figure 13: Signal traces for 10 s when target and sensor are station-
ary. The trace shows presence of short term fluctuation within a
longer trend.
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