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Abstract

A major factor in railroad operational efficiency and punctuality is
the quality of train planning and dispatching. Schedules or dispatching
plans may also not be actualized for a variety of reasons. This work pro-
poses a methodological tool set, called the dispatch analysis problem, that
can analyze recent, empirical train dispatching data against an optimal
dispatching plan. A multitude of questions can be answered using the
dispatch analysis methods and we address three: 1) At what times did
dispatching actions reduce the optimality of future replanning? 2) What
corrective actions could have mitigated the negative impacts of past dis-
patching actions? 3) Which trains introduced secondary effects to other
train plans? We demonstrate the application of the dispatch analysis
methods to these questions using illustrative case studies from a North
American freight railroad and find: specific periods of time can be isolated
that demonstrate a significant deterioration in replanning ability; small
modifications to past actions are identified that could improve replanning
outcomes; certain trains can exhibit small delays that lead to large sec-
ondary consequences for neighboring trains. The results of the case study
demonstrate the types of actionable findings on real railroad data that are
possible with the dispatch analysis methods.

1 Introduction

1.1 Motivation

The challenges of rail network congestion and efficiency motivate the need to
answer critical questions about how trains are dispatched and how dispatch-
ing decisions evolve the railroad state through time. This analysis on railroads
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during operation is made possible by increasing availability of railroad data.
The trends toward better automation and forecasting are continuing, but de-
lays and deviations from the operating plan will persist due to realities that
include weather, mechanical failures, and train heterogeneity. There remains
the need to improve schedules and dispatching to reduce sources of delay and
the variability they cause. Particularly in single-track territories, maintaining a
schedule or operating plan during dispatching is difficult with capacity pressure
on the network.

Many prior works have addressed specific questions about railroad oper-
ational practices such as propagation of train delay, impact of disturbances,
robust scheduling, and replanning in the presence of delays and disturbances,
to name a few (Hansen, Goverde and van der Meer, 2010; Milinković, Marković,
Vesković, Ivić and Pavlović, 2013; Lusby, Larsen and Bull, 2018; Fang, Yang
and Yao, 2015; Boroun, Ramezani, Vasheghani Farahani, Hassannayebi, Abol-
maali and Shakibayifar, 2020). Overall, optimization is most commonly used in
deriving a train schedule, deriving a detailed train movement plan, and during
online replanning.

Some analyses of rail dispatching can be performed using micro-simulation
(Dick and Mussanov, 2016; Mussanov, Nishio and Dick, 2017). A simulation en-
vironment can emulate dispatching and train movements given a network state
and schedule, even incorporating random delay and robustness in some cases.
Simulation, by comparison to optimization, is used more in the analytical sense
by spending less computational time on schedule and dispatching refinement
and more computational time on detailed train dynamics, yard operations, and
track conditions. Some of the limitations or challenges with simulation-based
analysis are optimality conditions, scenario exploration, and cost quantifica-
tion. Most simulation environments do not run a routine that guarantees global
optimization and, therefore, can not compare to an optimal baseline and the
minimum cost associated with the optimal scenario.

The aim of our work is to provide optimization-based methods for analytics.
Since optimization is key to scheduling and dispatching before and during the
train’s run, it is a natural means by which to evaluate post-facto the empirical
train movements in order to determine the causes and possible remedies of delays
and operational constraints. But to date it has not been used as such.

Deploying tools to analyze specific dispatching and scheduling practices has
the potential to reveal more detailed findings. Certain periods of time, such as
particularly problematic dispatching scenarios or instances when operations ran
better than normal, are useful to analyze in detail. What went right or what
went wrong can be revealed and this insight can inform future strategies.

Consider the following examples that illustrate the possible impact of a small
train schedule deviation. The difference between the train interactions is only
in the length of the trains. In Figure 1, two short trains traveling in opposite
directions are scheduled to meet on the middle siding. A small delay (red
trajectory segment) for train 2 forces replanning of this meet event, which can
instead occur on an alternate siding and mitigate the impact of the disruption
to train 1. The space-time trajectories of the trains are represented by the blue
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Figure 1: Minor delay, no secondary impact. Space-time plot of a hypo-
thetical train meet event, with original plan shown on the left and the resulting
train trajectories on the right. A small delay for train 2, shown by the red
trajectory section, necessitates replanning. The two trains are able to replan
their meet location with low impact to overall runtime.

Figure 2: Minor delay, plus impact on other train. Space-time plot of
a meet event similar to Figure 1, but with longer trains that may not use the
middle siding. The original plan is shown on the left and the resulting train
trajectories on the right. An initial delay for either train results in a delay
for the other train, because the meet event cannot be replanned to the middle
siding.

lines and points and the siding tracks are shown by the grey shaded areas. The
same interaction, if the length of the trains prohibits them from using the middle
siding, is shown in Figure 2. In this case, a small delay for either train would
result in a delay for the other because the meet event can not be replanned for
the middle siding.

1.2 Problem statement

In this article, we introduce an optimization methodology that performs anal-
ysis on empirical dispatching data. We use the term dispatching to mean the
direction and supervision of real-time train movements and interactions. Real-
time dispatching is commonly based on a pre-conceived train plan or schedule,
which in many cases is generated in whole or part from optimization. We re-
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fer to optimal train planning or scheduling as the pre-dispatch creation of a
time-space train operating plan. The methods in our work analyze post-facto
empirical train operations (how the trains actually ran) in the context of the
original schedule, be that a schedule generated by an optimization model or a
custom schedule used for a given period.

The methods we develop allow one to analyze the decisions that occurred
in practice and evaluate how consequential these decisions were. Small train
delays and sub-optimal decisions on the railroad are virtually inevitable, and
this methodology solves a set of problems that reveal these actions and their
effects on the short-term dispatch plan as a whole. We refer to this method as
the dispatch analysis problem because it can be used to answer a broad set of
empirical dispatch analysis questions. In this work we define and address three
such problems.
Problem 1: impact of dispatch decisions.

The first question we answer is the following: What is the overall dispatching
cost, given the current network state? What events occurred in the evolution of
the network state that diminished the ability to continue running the optimal
dispatch plan? And how costly is the current network state in terms of its impact
on the future best dispatching performance, assuming optimal replanning?

To answer this question, we solve an optimal replanning problem across a
period of dispatch time. The beginning of the period is progressed according
to the empirical data and we optimally replan for the remainder of the period.
The difference in performance between optimal replanning after some empiri-
cal decisions (i.e., trains have moved beyond the initial network state) versus
optimal planning from the beginning is referred to as the empirical optimality
gap.
Problem 2: alterations to dispatch decisions.

Given a negative effect that the current (sub-optimal) network state has had
on the ability to replan, which specific alterations could have been made to the
network state in order to reduce past and future runtime and by what amount?

In light of the first question, in the case that costly decisions have already
been made, it is useful to know whether small changes to decisions in the past
could have significantly reduced any negative impacts on core performance cri-
teria. For example, a suboptimal meet location could have not just immediate
delay for one of the trains, but also impacts on future meet events that are
delayed in turn.
Problem 3: impact of individual trains.

The third addresses specific trains in a dispatch: Which trains, in partic-
ular, have the largest impact on the ability to run to schedule? And to what
degree were these effects caused by the train’s own performance or caused by
its secondary impact on other trains?

Train volume on many network sections fluctuates over the course of a day
or week. As such, trains running during less congested periods could experience
large delays, but have very little impact on other trains. Conversely, a train in
highly congested periods, or a train with which many others interact, can have
a large impact on overall dispatch performance even if its own deviation from
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an optimal dispatch plan is small.

1.3 Contributions

The three application questions and key findings from the analysis are: 1) De-
termine immediate future impact of dispatch decisions that have been made; a
temporal analysis shows the periods during which empirical optimality gap grew
most substantially, degrading potential performance. 2) Find possible remedies
to past decisions that would be particularly impactful; during certain periods,
a short list of changes of small magnitude to empirical data was found to have
a magnifying effect on potential future performance. 3) Assess the impact that
individual trains had on other trains and the dispatch plan as a whole; certain
trains exhibit unique behavior in terms of propagation of their own delay onto
others and their effects on dispatch decision making.

We are ultimately interested in a variety of dispatch analysis questions. With
this methodology, we show that each of these three problems can be posed as
a data-constrained optimal dispatch problem and each is a sub-problem of the
methodology’s general form. Importantly, this methodology (and the three sub-
problems) are in the same class of problem as the optimal dispatch problem.
In most cases, the dispatch analysis methods could follow directly from the
constraint set used in an optimal dispatch model. This dispatch analysis prob-
lem methodology delivers the tools to critically evaluate empirical dispatching
decision making and performance questions.

The remainder of this article is organized as follows. Section 2 discusses
existing literature related to this work. The formulation of the dispatch anal-
ysis methodology is explained in Section 3. Problem 1, the impact of dispatch
decisions, is introduced in Section 4.1; Problem 2, alterations to dispatch de-
cisions, is introduced in Section 4.2; Problem 3, impact of individual trains, is
introduced in Section 4.3. Section 5 discusses data used in the case studies for
each problem. Sections 6, 7, and 8 present and discuss results for the three
problems. Finally, Section 9 concludes the article and discusses approaches to
future work on the topic.

2 Literature review

In this section we discuss a variety of works related to rail dispatching from
both passenger and freight rail. Specifically, we address scheduling, replanning
schedules in the presence of deviations, and train delay dynamics.

2.1 Scheduling and replanning

Unexpected delays, to say nothing of the many potential sources of delay, are
inevitable. The ability to limit the size and impact of these delays maintains
performance of the railroad and reduces their associated cost. Delays costs the
railroads and their customers money and reduces the competitiveness of shipping
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(and transporting passengers) by rail compared to other modes (Lovett, Dick
and Barkan, 2015).

Schedules can be made somewhat resilient to small, unexpected delays by
designing them to absorb these events for certain trains without necessitating a
change to other trains (Salido, Barber and Ingolotti, 2008). If railroads endeavor
to adhere to a schedule, it is also desireable for such a schedule to be realistic
and repeatable under small, inevitable deviations (Hallowell and Harker, 1998).
A survey of such work can be found in Lusby et al. (2018).

Disruption management literature is well-summarized by Fang et al. (2015)
and is generally most relevant at the real-time level (Narayanaswami and Ran-
garaj, 2011). Rescheduling or replanning is a process by which the schedule is
modified during the relevant period of dispatching (and perhaps immediately
before a train’s route begins) because of deviations from the expected conditions
on which the schedule relies. Corman, Quaglietta and Goverde (2018) evalu-
ate various rescheduling approaches in an automated control context for their
ability to maintain rail traffic that is resilient to delays. Fast algorithms are re-
quired if computer aided dispatching and rescheduling is to be useful; Törnquist
(2007) develops a heuristic approach for use in replanning under disturbances.
Rescheduling can occur with various objectives and these are assessed on how
well they meet performance measures. Minimizing total final delay tends to
impose delay on fewer trains and a short planning horizon was shown to be
sufficient for longer-term results. Shakibayifar, Sheikholeslami, Corman and
Hassannayebi (2020) develop a disruption rescheduling approach using a basic
scheduling model as input and solve using a two-stage heuristic method. An
alternative to heuristic methods is an exact decomposition, which is presented
in (Lamorgese and Mannino, 2015), and in (Luan, De Schutter, Meng and Cor-
man, 2020) for real-time management of large-scale networks.

Large disruptions can easily make the timetable infeasible, even with some
small adjustment. Corman and D’ariano (2012) construct alternative graphs to
serve as decision support in cases of large disruptions and estimate performance
metrics of various alternatives. Gestrelius, Aronsson, Forsgren and Dahlberg
(2012) use optimization to develop schedules that proactively consider schedule
alternatives should trains experience delay and require replanning. Pellegrini,
Marlière and Rodriguez (2016) perform experiments quantifying the differences
in replanning using optimization algorithms and the actual manner in which
professional dispatchers handle disruption scenarios; they find potential gains
for implementing optimal replanning over current practice.

Railroad operating philosophies differ in North American freight with respect
to schedule flexibility, the allowance for trains to depart or modify their depar-
ture time based on their, status as opposed to a strict, pre-conceived schedule.
High schedule flexibility generally makes it more difficult for railroads to estab-
lish and run an optimal meet-pass plan. In order to allow railroads to operate
in real time with greater schedule flexibility, (Sehitoglu, Mussanov and Dick,
2018) explore the viability of compensating for this effect with greater allowable
operating speed, which allows some delays to be mitigated and maintain certain
more beneficial schedules.
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2.2 Train delay dynamics

As mentioned earlier, delays are inevitable and costly for railroads. The effects of
a delay or disruption extend beyond the direct cost incurred by the event because
they can influence other trains. This interdependence is generally referred to as
delay/disturbance propagation, secondary delay, or knock-on delay. Knock-on
delay occurs when a schedule deviation in one train has a delaying effect on
another train. Isolation and prediction of knock-on delays is difficult because
of multiple factors including primary delay magnitude and location, multiple
sources of primary delay, timetable of trains, and infrastructure configuration.
The time dynamics of delays are complex: a delay at one point in time may
not have its impacts felt until considerably later and the effects may be felt
amongst multiple other trains. Our dispatch analysis work addresses some of
these points.

Three common methods in literature for determining delays are analytical
methods, simulation, and empirical statistics (Milinković et al., 2013).

Daamen, Goverde and Hansen (2009) identify knock-on delays using continually-
updated blocking time graphs to determine train conflicts, where the logical and
temporal interactions are based in colored Petri nets. Milinković et al. (2013)
construct fuzzy Petri nets to isolate train delays using historical data or railroad
expertise, when data is not available. Hansen et al. (2010) use a timed event
graph, informed by historical data, to model delay propagation and predict ar-
rival times. Lovett, Dick and Barkan (2017) analytically quantify the cascading
effects and operational costs of slow orders on the railroad, which introduce
disturbances to schedules.

Carey and Kwieciński (1994) model relationship between scheduled train
headway and knock-on delay using stochastic simulation. Murali, Dessouky,
Ordóñez and Palmer (2010) predict delays on aggregated sections of network
using results of simulation by Lu, Dessouky and Leachman (2004), which allows
the assessment of scheduling across large networks. Hwang and Liu (2009) uses
micro-simulation for modeling interactions between trains and measuring de-
lay. Disturbances are introduced to the simulation model of existing scheduled
timetable and effects in terms of track occupancy and arrival at stations are
measured. They assume that some amount of schedule recovery is available to
trains. Quaglietta, Corman and Goverde (2013) evaluate schedule stability un-
der a stochastic environment using a dispatching tool and rail simulation, find-
ing that propagating disturbances result in unstable rescheduling plans. Diaz de
Rivera, Dick and Evans (2020) found that moving blocks and train fleets can
reduce delay caused by train meets on single track corridors.

The manner in which a railroad is constructed and operated influences its
ability to handle delay events. Mussanov et al. (2017) look at the impacts
of schedule flexibility on rail line performance and find that introducing rigid
scheduling of trains does little to affect overall performance until a large por-
tion of operations are run in this manner. However, schedule flexibility imposes
additional infrastructure requirements to maintain the same level of service com-
pared to more rigidly operated schedules (Dick and Mussanov, 2016). Dingler,
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Koenig, Sogin and Barkan (2010) used Rail Traffic Controller (RTC) to simulate
traffic scenarios and found, as one delay effect, that opposing direction traffic
causing meet events had a much larger effect on delay compared with same
direction traffic causing reduced speeds. Gorman (2009) used an econometric
model to determine causes of delay and the marginal delay impact of adding
trains; results showed that train interactions – meets, passes, and overtakes –
contributed most to delay. Yuan and Hansen (2007) analyze the relationship
between capacity utilization and the sensitivity of the schedule to disturbances
and find that schedule buffer time decrease is exponentially related to knock-on
delay.

3 Methodology

In this section, we explain the general form of the dispatch analysis problem
mathematical model for single-track rail lines with passing sidings. It is derived
from the general form of the optimal dispatching problem, which is discussed
first. We use a specific dispatch formulation for illustration on empirical data in
later sections, but emphasize the strategy could be applicable to other dispatch
formulations. Assumptions made for both of these models are also discussed.

3.1 Preliminaries: optimal dispatch problem

Here we review the optimal dispatch problem and the constraints representing
physical and legal operating rules, which are common to optimal dispatching
as well as our dispatch analysis work. The model detailed here is a form of
Petersen, Taylor and Martland (1986), detailed completely in Barbour, Samal,
Kuppa, Dubey and Work (2018). We enumerate some of the important details to
illustrate the complexity of the dispatching rules. However, we would emphasize
that the dispatch analysis methods are easily extensible beyond the specific
optimal dispatch problem discussed here and could, in principle, be used with
another optimization-based dispatching formulation. Additionally, the measures
of train and network performance (e.g., the objective function) used here could
be made specific to a given rail operator with additional knowledge about their
dispatching practices.

In this work, we consider the time values at which trains passed fixed loca-
tions on the network. These fixed locations are called OS-points and delineate
the endpoints of track segments. In this manner, we work with the times at
which each train reaches the end of each segment of track. Track segments be-
long to the ordered set M , where M : 0, 1, 2, 3, ... and is indexed by m ∈ M .
Each section of the network has trains running in two directions: directions 1
and 2. Trains in direction 1 are the set I, indexed by i ∈ I, and trains in direc-
tion 2 are the set J , indexed j ∈ J . We therefore refer to each timing value, the
time at which a train i ∈ I completed track segment m ∈M , as xi,m. Likewise,
for trains j ∈ J , we have xj,m. Passing sidings are track segments belonging to
the set S ⊂ M and indexed by s ∈ S. This formulation deals only with two
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directions along a single-route network segment (e.g., a rail subdivision) and
cannot deal with network topologies that contain cycles or alternative routes.

It is worth noting that when referring to the times at which a train i ∈
I in direction 1 and a train j ∈ J cross the same track segment m ∈ M ,
these times are actually referring to the two separate endpoints of that track
segment. Because they operate in opposite directions, the completion points of
the segment are at opposite ends. Additionally, note that not all trains operate
across every track segment. When relevant, we denote Mi as the subset of track
segments on which train i ∈ I has timing values, where Mi ⊆ M ; this is the
same for trains j ∈ J , where Mj ⊆M .

The collection of time values at OS-points for a train is referred to a train’s
trajectory. Symbolically, we denote the trajectory for train i ∈ I as xi,m∀m ∈
Mi; likewise for train j ∈ J : xj,m∀m ∈ Mj . These trajectories for each train
in a dispatch problem are assembled into the vector of decision variables, which
we denote x.

Recall that an optimal dispatch problem finds the train trajectories that
minimize some measure of dispatching cost. It may be posed in the general
form:

minimize:
x,z

f(x, z)

subject to: A1x+A2z ≤ b,
(1)

where the decision variables are x ∈ Rp+ and z ∈ Zq. In a common formula-
tion Petersen et al. (1986) and in this work, the decision variables x encode
times at which trains reach various points on the network, while the integer de-
cision variables z encode dispatching logic that indicates if and where meets and
overtakes occur on the network and track assignment for trains. The function
f quantifies some measure of dispatching cost, which is to be minimized. The
physical and operational constraints, such as the permissible locations of meet
and overtake events, headway constraints, and train travel times, are encoded
in the inequality constraints A1x + A2z ≤ b and assumed to be mixed integer
linear.

There are many constraints required for a functioning optimal dispatch
model, by which we mean the model produces logically and operationally feasi-
ble train trajectories (additional operational rules and practices could be consid-
ered). A full discussion of the constraints for this particular model formulation
can be found in Barbour et al. (2018). The subset discussed here, briefly, are
for convenience and illustration of the problem complexity.

The most fundamental constraint defines the minimum runtime of each train
on its assigned segments, shown for a train i ∈ I:

xi,m ≥ xi,m−1 + Ti,m (2)

The difference in segment endpoint arrival times must be greater than or equal
to the minimum possible main line runtime for the train on that segment, given
by Ti,m. This applies for each segment that train i crosses: m ∈Mi.
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For pairs of opposing-direction trains i ∈ I and j ∈ J , we state that one
must never enter a track segment before the other has cleared the segment, plus
a safety clearance headway time Hi,j :

IF πi,j,m = 1, THEN xi,m +Hi,j ≤ xj,m+1, ELSE xj,m +Hi,j ≤ xi,m−1. (3)

By defining this constraint for all single-track segments m ∈ (M \ S) that they
share, we ensure that their trajectories may only cross in time and space on
siding track segments. The train’s timing point to which the safety headway is
applied is determined based on which train crossed the segment first; the binary
variable πi,j,m = 1 if train i crossed single-track segment m ∈ (M \S) first. Note
that the conditional logic is abbreviated here in IF/THEN/ELSE notation for
clarity, whereas in programming the logic is encoded in mixed integer linear
constraints.

Meet events occurring between opposing-direction trains i and j on siding
track s ∈ S are denoted by the binary variable µi,j,s. For each of these events
that occurs (µi,j,s = 1), we force one of the trains to take the siding track, as
opposed to staying on the main line. The binary variable σi,s = 1 indicates that
train i took siding track s, and likewise for train j. Therefore the sum of these
variables during a meet event must equal one:

IF µi,j,s = 1, THEN σi,s + σj,s = 1. (4)

In cases where a train i ∈ I took a siding s ∈ S because of a meet or pass
event, indicated by the binary variable σi,s = 1, its runtime across the segment
m ∈ M is subject to a different minimum, Ui,s, which is greater than or equal
to the main line runtime Ti,m. This constraint is written as:

IF σi,s = 1, THEN xi,s ≥ xi,s−1 + Ui,s. (5)

The complete list of constraints, parameters, and variables for both direc-
tions of trains are enumerated in detail in Barbour et al. (2018). The additional
constraints refer to overtake events (trains traveling in the same direction),
overtake siding assignment, and simultaneous meet/overtake events. For a dis-
patching window of 24 hours on 190-mile (305 km) section of track containing
37 segments, the problem formulation generates approximately 5,000 variables
and 20,000 constraints. We solve all problems in this work to global optimality
using CPLEX 12.8. For this 24-hour problem size, solve time on a 16-core CPU
is on the order of 10 minutes. A longer time horizon problem is possible to
solve, but solve time increases super-linearly.

3.2 Dispatch analysis problem general form

The overall concept behind dispatch analysis is that it performs optimization of a
modified optimal dispatch problem, in the presence of some empirical/historical
data from the actual railroad operations. We see in the optimal dispatch prob-
lem from (1) that it finds train trajectories, the time at which each train reaches
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the end of each track segment, which are denoted x. In the cases where the opti-
mal dispatch problem corresponds to a real scenario that occurred in historical
data, each of these optimization variables also has a corresponding empirical
value from the historical data. The decision variable xi,m has a corresponding
value that is the true time at which train i ∈ I reached the end of track segment
m ∈Mi; this empirical value we refer to as x̃i,m.

We delineate a finite time horizon and finite track area over which to solve
the dispatch analysis problem and refer to this as a dispatch scenario. The time
bounds for the dispatch scenario are denoted tmin and tmax, where each are real
clock times, and the track area is defined in the set M for all tracks and subset S
for passing siding tracks. Let X̃ be a set of all empirical timing points x̃i,m and
x̃j,m for all trains with values in the interval [tmin, tmax]. Therefore, let X be the
set of decision variables in an optimal dispatch problem corresponding to these
empirical values in X̃. This defines decision variables corresponding to each
train and each timing point that is observed in the empirical data. Likewise,
let Z and Z̃ be the integer decision variables and their corresponding empirical
values, respectively, for the dispatch scenario.

Both of the sets of decision variables, X and Z, are rewritten in their vector
form as x and z by ordering variables according to train and track segment.

One can analyze empirical dispatching data in the context of optimal dis-
patching with added use of the function g(x− x̃, z− z̃) to match empirical data
with decision variables.

We can write the most generic form of the dispatch analysis optimization
problem to minimize an objective function that is the combination of dispatching
cost, f(x, z) and deviation of dispatched train trajectories from empirical data,
g(x− x̃, z− z̃). The value λ determines the tradeoff between f and g and allows
either function to be disregarded by setting λ = 0 or λ = 1. Both f and g may
also be active constraints in the dispatch analysis problem, which requires the
solution to meet a dispatching cost limit or a maximum deviation from empirical
data, respectively. The constraint limits may be selectively activated by setting
the values α and β to be finite. This general form may be written:

minimize:
x,z

λf(x, z) + (1− λ)g(x− x̃, z − z̃)

subject to: A1x+A2z ≤ b
f(x, z) ≤ α
g(x− x̃, z − z̃) ≤ β.

(6)

The potential constraints on f and g, depending on the values for α and β, are
in addition to the feasibility constraints for the trajectory values and integer
variables: A1x+A2z ≤ b. Note that the form of (6) is somewhat non-standard,
but is intended to reflect the similarities in form between the specific dispatch
analysis problems described later.
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3.3 Dispatch analysis at a point in time

In the process of dispatch analysis, we are often looking at decisions that have
already been made in the context of schedule replanning options and cost for
the future. Formulating these questions requires the separation of subsets of
decision variables and empirical data based on their relationship to a specific
moment in time. We introduce a time parameter τ , which is a clock time within
the interval [tmin, tmax]. The parameter is used to emulate the delineation of a
portion of data which has already occurred (before τ) and a portion that has
yet to occur (after τ). Note that τ can also be set to equal tmin or tmax. All time
variables used in a problem realization are all minimum-regularized according to
the lower bound of the dispatch scenario, tmin. All timing points are measured
as their difference to tmin, in seconds, and are therefore greater than or equal
to zero.

Let X̃τ− denote the subset of X̃, the empirical data, that occurred at or
before time τ (i.e., on the interval [tmin, τ ]); and let X̃τ+ be the subset of X̃
that occurred after time τ (i.e., on the interval (τ, tmax]). The separation of
the decision variables, X, is based on the time value of each corresponding
empirical point. A decision variable xi,m or xj,m is contained in Xτ− ⊆ X if its
corresponding empirical value, x̃i,m or x̃j,m has a value less than or equal to τ

(i.e., x̃i,m ∈ X̃τ− or x̃j,m ∈ X̃τ−). Likewise, a decision variable is contained in

Xτ+ ⊆ X if its corresponding empirical value is greater than τ (i.e., x̃i,m ∈ X̃τ+

or x̃j,m ∈ X̃τ+). This separation based on τ is performed based on the empirical

data, X̃, because it has known time values.
The separation of the set of integer variables, Z, corresponds to sets Xτ−

and Xτ+. Additionally, we define a division of the sets of trains, I and J ,
based on τ . Trains that have any portion of their empirical trajectory (i.e.,
any variable x̃i,m or x̃j,m), included in the set X̃τ− are in sets Iτ− and Jτ−.
Likewise, trains that have any portion of their empirical trajectory in the set
X̃τ+ are in sets Iτ+ and Jτ+. It is possible for trains to be included in both sets
τ− and τ+, respective of their direction. This notation or empirical data and
decision variables that will be used in subsequent explanations is summarized
in Table 1.

The general form of the dispatch analysis problem described in (6) can be
refined to consider only values in X̃τ− or X̃τ−. When this separation of values
is used in functions f and g, we denote those functions fτ−, fτ+, gτ−, and gτ+.
The interpretation of each function is then:

• fτ−(xτ−, zτ−): dispatch performance metric evaluated on decision vari-
ables in xτ− and zτ−, at or before time τ .

• fτ+(xτ+, zτ+): dispatch performance metric evaluated on decision vari-
ables in xτ+ and zτ+, after time τ .

• gτ−(xτ− − x̃τ−, zτ− − z̃τ−): function quantifying the difference between
empirical data, x̃τ− and z̃τ−, and corresponding decision variables, xτ−
and zτ−, at or before time τ .
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Quantity Description

x̃i,m, x̃j,m Empirical values for the actual time at which train i ∈ I or
j ∈ J completed track segment m ∈M .

xi,m, xj,m Individual optimization decision variables for the time at
which a train, i ∈ I or j ∈ J , completed track segment
m ∈M .

tmin, tmax Lower and upper time bound of dispatch interval, respec-
tively.

τ Time value in interval [tmin, tmax] that delineates a point at
which a specific analysis occurs.

X̃ Set of all empirical timing points that fall within the interval
[tmin, tmax].

Z̃ Set of integer values corresponding to X̃.

X, Z Sets of all optimization decision variables corresponding to
the empirical values X̃ and Z̃, respectively, for the interval
[tmin, tmax].

X̃τ−, Z̃τ− Subsets of X̃ and Z̃ where values of x̃i,m or x̃j,m are on the
interval [tmin, τ ].

X̃τ+, Z̃τ+ Subsets of X̃ and Z̃ where values of x̃i,m or x̃j,m are on the
interval (τ, tmax].

Xτ−, Zτ−,
Xτ+, Zτ+

Subsets of X and Z corresponding to values in X̃τ−, Z̃τ−,
X̃τ+ and Z̃τ+, respectively.

xτ−, zτ− Ordered vectors of decision variable sets Xτ− and Zτ− for
each train and for each track segment.

xτ+, zτ+ Ordered vectors of decision variable sets Xτ+ and Zτ+.

x̃τ−, z̃τ−,
x̃τ+, z̃τ+

Ordered vectors of empirical value sets X̃τ−, Z̃τ−, X̃τ+ and
Z̃τ+, respectively.

Iτ−, Jτ− Subsets of trains I and J , which contain trains that have
any portion of their empirical trajectory in the set X̃τ− (i.e.,
before or at time τ).

Iτ+, Jτ+ Subsets of trains I and J , which contain trains that have
any portion of their empirical trajectory in the set X̃τ+ (i.e.,
after time τ).

Table 1: Summary of general notation for optimization variable sets and empir-
ical data.
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• gτ+(xτ+ − x̃τ+, zτ+ − z̃τ+): function quantifying the difference between
empirical data, x̃τ− and z̃τ−, and corresponding decision variables, xτ+
and zτ+, after τ .

When functions fτ−, fτ+, gτ−, and gτ+ are used in binding constraints (as
in (6)), the limit values α and β corresponding to f and g will be denoted ατ−,
ατ+, βτ−, and βτ+, respectively. They are thus interpreted as the upper limit
values on each of these functions – the required dispatch performance and the
allowable difference between decision variables and empirical data, before or
after time τ .

3.4 Assumptions and limitations

We briefly summarize key assumptions that are made in the dispatch analysis
methodology and comment on their importance, as well as the limitations of
these methods.

First and foremost, the methods rely on a pre-existing optimization-based
scheduling model that produces realistic train plans. We present one such model
in this article with some assumptions and simplifications, which we document
below, but other models must be used on other network topologies (e.g., dou-
ble/triple track) or operating paradigms (e.g., passenger rail). The analysis
produced is dependent on the model that is used and can capture only the de-
tail with which the underlying optimization model is constructed, so some delays
may be explainable by other necessary operations activities on the railroad (e.g.,
set out of rail cars on auxiliary tracks).

The true root cause of a delay – be that a dispatch decision, mechanical
failure, train power limitation, etc. – is not directly produced by the analysis,
but rather it is a strong indicator that requires interpretation of the results.

The dispatch analysis methodology considers data at the track segment level.
Therefore, the feasibility of a train trajectory is only determined in timing at
ends of the segment and minimum train-specific free run times, and not by
train performance capabilities in the middle of the segment. This assumption
is critical to the particular optimization model presented here, but the methods
can be generalized to other higher-fidelity data streams by modifying the model.
We must also assume that atypical train movements, such as reversing, did not
and can not occur. This is a simplifying assumption made to reduce model
complexity, and it is reasonable given the rarity of these movements.

A fundamental assumption with respect to train schedules is that trains were
intended to depart at the time where they registered their first OS-point. This
is related to a larger point about dependency: there are events outside of the
dispatch window, both temporally and spatially, that impacted the trajectories
of trains inside the window. In this work we assume that no information past
the spatial boundary of the dispatch scenario is known. A train entering the
boundary is assumed be pre-determined at that exact time when it enters, even
though it is dependent on other trains within/exiting the area. Events at the
beginning or end of a dispatch window should be further analyzed by shifting
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the window in the relevant direction to capture more spatial and/or temporal
context. Given that an optimal dispatching problem across multiple days is
computationally difficult, some care must be taken with the dispatch window.

Finally, we use in this work a measure of optimality based solely on train
runtime. For the sake of generality and simplicity in this work, we choose
this basic measure. Many other formulations could be chosen in practice that
better capture the operational strategy of a given railroad, particularly if such a
function was known to be the basis of scheduling and dispatching decisions. For
example, priority weighted runtime is a frequent aspect of decision making; this
requires, though, the known priority mapping to be informative and valuable.

4 Formulations of specific dispatch analyses

In this section we instantiate specific forms of the dispatch analysis problem to
solve the three problems identified in this work. Each follows from the general
form given in (6).

4.1 Problem 1: impact of dispatch decisions

The first application of the dispatch analysis problem is to quantify the impact
of the current network state on the ability of the schedule to continue to run at
or near optimality. As events happen on the network and trains deviate from the
original optimal schedule, the plan must be re-optimized to take into account
deviations.

We allow the network to evolve up to time τ , and then replanning is initiated
based on the positions of trains at this time. This combination gives us the best
possible dispatch achievable given the decisions that have already been made,
assuming we make optimal decisions moving forward. It is therefore a lower
limit on future dispatching cost.

The best possible scenario as time progresses is for trains to maintain the
optimal schedule. If deviations do occur, it is the best case that they do not
impact the future schedule or other trains. That is, if it is possible that a train
deviates from its optimal schedule, but does so in a manner that does not re-
duce its ability to catch back up at a later point (i.e., the optimal schedule
is non-unique). Deviations that do impact the future schedule will result in a
replanned future schedule that has a larger objective value than the original,
optimal schedule (e.g., by delaying other trains). That is, adding additional
constraints to the optimal dispatch problem in the form of fixing decision vari-
ables to empirical data, can only serve to increase a minimized objective value
(assuming the optimal schedule is unique). As time progresses and the sched-
ule is fixed further to the empirical data, the objective value of the replanned
schedule will converge on the objective value of the wholly empirical data (i.e.,
when τ reaches the end of the data window [tmin, tmax]). The specific steps in
this analysis are as follows:
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1. For a time window [tmin, tmax], solve the pure optimal dispatch problem (1)
given only the departure location (i.e., starting at the network boundary or
at any network segment therein) and corresponding departure time (within
[tmin, tmax]) of each train and no other empirical data. This establishes
the baseline dispatch where we refer to the total runtime of all trains as
r0.

2. Assemble the empirical trajectories of all trains within the interval [tmin, τ ],
which is x̃τ−.

3. Fix the decision variables xτ− to their empirical values, x̃τ− using a con-
straint on the function g(xτ− − x̃τ−, zτ− − z̃τ−).

4. Solve an optimal dispatch problem for the remainder of the time win-
dow (minimize fτ+(xτ+, zτ+) with the added constraints on gτ−. This
formulation is given below in (7).

5. The new objective value is the best dispatch achievable given the decisions
made up to τ . The total runtime of all trains for this problem is denoted
rτ , where rτ ≥ r0, and the increase in runtime is denoted ∆ = rτ − r0.

In this formulation we wish to find the best dispatch plan, while before time
τ holding the difference between each empirical data point and corresponding
timing variable, gτ−(xτ− − x̃τ−, zτ− − z̃τ−), to zero. This fits into the general
dispatch analysis formulation as:

minimize:
x,z

f(x, z)

subject to: A1x+A2z ≤ b
gτ−(xτ− − x̃τ−, zτ− − z̃τ−) = 0.

(7)

In this problem, we take the objective function f , quantifying the dispatch
performance, to be the sum of the runtime of all trains. The distribution of any
delay on the route is not of concern, so long as the train reaches its destination
at the earliest possible time. The specific form of f is therefore:

f(x, z) =
∑
i∈I

xi,qi +
∑
j∈J

xj,qj , (8)

where qi and qj are the final track segments of the trajectories for trains i ∈ I
and j ∈ J , respectively. This means that xi,qi and xj,qj denote the completion
time of the final track segment for trains i and j.

In order to hold the value of each timing variable in xτ− to its empirical
value in x̃τ−, we impose the L1 norm on the difference between decision the
variables and constraint the value of gτ− to be zero:

gτ−(xτ− − x̃τ−, zτ− − z̃τ−) = ||xτ− − x̃τ−||1 = 0, (9)

where || · ||1 is the L1 norm defined as the absolute difference between timing
points, in seconds.
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4.2 Problem 2: alterations to dispatch decisions

We presented in Section 4.1 a method to study the impact of empirical decision
making on the baseline optimal dispatch plan. This reveals the temporal manner
in which deviations from the baseline plan impacted total train runtime. We
are now interested in isolating more specific instances of empirical performance
that could have been changed in order to improve future dispatch performance.
At a given time τ , where the empirical data before τ , x̃τ−, has introduced ∆
minutes of additional runtime to the dispatch in excess of the baseline optimal
dispatch, we find the minimal changes to the empirical data in x̃τ− that could
be made which would decrease ∆ to a desired level.

Alterations to the empirical data are measured in absolute minutes of a
train’s segment runtime (i.e., adding or subtracting runtime). An alteration to
one segment runtime for a train affects all of the subsequent timing points for
that train. Altered segment runtimes must still obey constraints, but no other
limits on train performance are placed beyond the existing constraint set.

The steps to address this problem are as follows:

1. For a time window [tmin, tmax], solve the optimal dispatch problem(1) given
only the initial condition of each train. This establishes the baseline
dispatch where we refer to the total runtime of all trains as r0.

2. Assemble the empirical trajectories of all trains within the interval [tmin, τ ]:
x̃τ−.

3. Fix the decision variables xτ− to their empirical values, x̃τ− and dispatch
optimally for the remainder of the time period, as described in Problem
1 by equation (7). This represents the best dispatch achievable given the
decisions made up to τ . The total runtime of all trains for this problem
is denoted rτ , where rτ ≥ r0.

4. Calculate ∆ = rτ − r0, the runtime in excess of the baseline dispatch
that was added because of the empirical decisions up to τ . Determine a
reduced value of ∆, which is to be achieved by modifying the empirical
data; we denote this value ∆′ and calculate the desired total runtime as
r′ = r0 + ∆′.

5. Impose a constraint on the total runtime, represented by f(x, z), which
must be less than or equal to r′.

6. Solve the empirical improvement optimization problem, which minimizes
the alteration to the empirical data before τ , x̃τ−, while achieving a total
runtime of all trains less than or equal to r′. This problem is given below
in (10).

This problem minimizes the alteration to the empirical data, gτ−(xτ− −
x̃τ−, zτ− − z̃τ−), before τ that is required to reduce the objective value of the
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replanned dispatch, f(x, z), at τ to a desired level:

minimize:
x,z

gτ−(xτ− − x̃τ−, zτ− − z̃τ−)

subject to: A1x+A2z ≤ b
f(x, z) ≤ r′,

(10)

where r′ is the value of runtime of all trains that is to be achieved by alteration
of empirical data; it is described above in step 4.

We again define f(x, z), the performance function for dispatched trajectories
that is constrained to reduce the lower bound of the replanned dispatch, to be
the total runtime of all trains:

f(x, z) =
∑
i∈I

xi,qi +
∑
j∈J

xj,qj , (11)

where qi and qj are the final track segments of the trajectories for trains i ∈ I
and j ∈ J , respectively, and xi,qi and xj,qj denote the completion time of the
final track segment for trains i and j.

We define the objective function gτ−, the alteration to empirical trajectories
before τ , as:

gτ−(xτ− − x̃τ−, zτ− − z̃τ−) =
∑
i∈Iτ−

qi∑
n=pi+1

|(xi,n − xi,n−1)− (x̃i,n − x̃i,n−1)|

+
∑
j∈Jτ−

qi∑
n=pj−1

|(xj,n − xj,n+1)− (x̃j,n − x̃j,n+1)|,

(12)
where Iτ− and Jτ− are the subsets of I and J for which some portion of the
trajectory of i ∈ I or j ∈ J are included in Xτ−; pi and pj are the first track
segments in the trajectories of i and j that are included in Xτ−; qi and qj
are the final track segments in the trajectories of i and j that are included
in xτ−. This function computes the summation of the differences in segment
runtimes between the decision variables xτ− and their empirical values x̃τ−. The
differences in segment runtimes are used (as opposed to the difference in timing
points) because any alteration applied to the difference between these values
will affect each successive timing point in the trajectory, effectively shifting
the remainder of the train’s trajectory in time. This is analogous to altering
a train’s empirical trajectory so that it would have run faster on a particular
track segment, and thus arrived at successive OS-points sooner.

4.3 Problem 3: impact of individual trains on dispatch
plan

Quantifying the impact of empirical decisions run up to a given time, described
in Problem 1 in Section 4.1, provided information on a temporal basis. It can
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also be informative to assess the empirical data with respect to specific trains.
Beyond the impact of runtime incurred by a train itself, what impact did that
train have on others in the dispatch plan?

In this problem, we find not the alterations to a train’s trajectory, but instead
the impact that fixing such train’s trajectory has on the rest of the schedule.
Small deviations of a primary train’s trajectory from the optimal schedule have
the potential to secondarily impact other trains significantly if the primary train
was tightly integrated, indicating that the schedule is very sensitive to that train.
Conversely, a train may have very little secondary effect on the schedule, even
if it experiences large deviations from its optimal trajectory.

This problem is similar to the quantification of knock-on delay, but more
precisely, it measures, relative to the optimal schedule, the secondary changes
to other train schedules that are necessitated by a primary train’s deviation
from its trajectory in the optimal schedule. The steps to evaluating a specific
train, denoted w, in this application are as follows:

1. For a time window [tmin, tmax], solve the optimal dispatch problem (1)
given only the departure location and departure time of each train. This
establishes the baseline dispatch, where we refer to the total runtime of
all trains as r0.

2. Let the runtime of train w in the baseline dispatch be γw.

3. Assemble the empirical trajectory of train w from all empirical data, X̃,
on the interval [tmin, tmax]. Let the empirical runtime of train w be γ′w.

4. Fix the decision variables xw,m to their empirical values x̃w,m for all tracks
segments in the trajectory of train w, by constraining g(xw− x̃w, zw− z̃w).

5. Solve an optimal dispatch problem for, effectively, all trains except w by
minimizing f(x, z). This represents the best dispatch achievable given
fixed trajectory of train w. This formulation is given below in (13).

(a) The total runtime of all trains with train w fixed is denoted rw, where
rw ≥ r0.

(b) The difference between the empirical runtime of train w and its base-
line dispatch value, γ′w − γ, is the primary added runtime for this
train.

(c) The difference between the runtime with train w fixed and the base-
line runtime, for all trains except w, is the secondary added run-
time. This can be calculated by subtracting the runtime difference
for w (primary added runtime) from the overall runtime difference:
(rw − r0)− (γ′w − γw).

In this problem, we wish to find the best dispatch of all trains, f(x, z), but
with the variables for train w fixed to their empirical values by holding function
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g(xw − x̃w, zw − z̃w) equal to zero:

minimize:
x,z

f(x, z)

subject to: A1x+A2z ≤ b
g(xw − x̃w, zw − z̃w) = 0,

(13)

where w is a specific train in the dataset that is being assessed, xw and zw are
the decision variables for train w, and x̃w and z̃w are the empirical values for
train w.

We again define f(x, z), the objective value for dispatched trajectories, to
be the total runtime of all trains:

f(x, z) =
∑
i∈I

xi,qi +
∑
j∈J

xj,qj , (14)

where qi and qj are the final track segments of the trajectories for trains i ∈ I
and j ∈ J , respectively, and xi,qi and xj,qj denote the completion time of the
final track segment for trains i and j. Note that minimizing (14) is an equivalent
optimization to minimizing the runtime of all trains excluding train w when the
trajectory for w is fixed, but all trains are included in f(x, z) for simplicity. This
just requires a post-solve separation of runtime by train from the value of f .

In order to fix the empirical trajectory of train w, we impose for function
g an L1 norm on the difference between empirical and solved trajectory timing
values of train w, and constrain the value of g to be zero:

g(xw − x̃w, zw − z̃w) = ||xw − x̃w||1 = 0, (15)

where || · ||1 is the L1 norm defined as the absolute difference between timing
points, in seconds, xw refers to the trajectory timing variables for train w, and
x̃w refers to its empirical trajectory timing values.

5 Case study data preparation

We now present a description of freight rail dispatch data that is used as a case
study to answer the three dispatch analysis questions in this work.

The historical dispatch dataset is collected from a rail network section of a
U.S. Class-I railroad, between two major cities. The network section is single
track with 17 passing sidings of various lengths and a total of 37 track segments.
It is approximately 190 miles (305 km) in length and has a consistently high
volume-to-capacity ratio. The specifics of the corridor and its operating rail-
road are not discussed for data confidentiality. Note, again, that the methods
presented in this article are not specific to a railroad and the results are meant
only to be illustrative of the methods’ usefulness.

Case study analyses are given for various ranges of data. A single window of
dispatching data for discussion of each of the three dispatch analysis problems
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is taken from nine hours of data during the week of January 4, 2016. Aggre-
gated analysis for problems 1 and 3 are performed across multiple windows of
dispatching data from January 1, 2016, to January 31, 2016. All dispatch data
is reconciled according to the process developed and discussed in Barbour et al.
(2018) in order to remove any small errors or omissions and ensure feasibility
prior to use in the dispatch analysis problem.

Values are derived via historical data mining for the following optimization
parameters: directional minimum main line track runtime (Ti,m and Tj,m), di-
rectional minimum siding track runtime (Ui,s and Uj,s), clearance headway for
meet events specific to each end of each siding (Hm,i,j), and follow headway for
same direction trains specific to each direction and each track segment (Hm,i1,i2

and Hm,j1,j2). These values, as formulated, allow differentiation on a per-train
basis. In this work, we assume all trains have the same value for each track
segment; but in practice, rail operators can define these values with differen-
tiation based on train dynamics. The use of identical values for all trains can
lead to overestimating performance in some cases, so higher-confidence values
are desireable to more accurately identify a feasible trajectory for each train.

Runtime distributions for each track segment in each direction were mined
from two years of historical data: January 2014 through December 2015. The
minimum main line free run traversal time of each track segment in each direc-
tion, Ti,m and Tj,m (as in constraint (2)), was taken to be the 90th percentile
lowest observed value for each direction. This choice was made based on inspec-
tion of runtime distributions. Historical timing at OS-points in the dataset is
given to the nearest minute, which results in unreasonably low runtime value on
short track segments if the pure minimum value is used (e.g., 1 minute on a 1.5-
mile track segment, implying 90mph travel speed). Applying the 90th percentile
rule mitigates this rounding effect without requiring deviation of a significant
number of trains (or a large magnitude of deviation) when data reconciliation
is performed, due to their lower runtime values on segments.

In order to ascertain siding track traversal times, the runtime values for trains
during meet events were isolated. Within each meet event, the main line runtime
was assumed to be the lower of the two values and the siding runtime was assume
to be the higher of the two, separated by direction. Figure 3 shows these lower
and higher runtime value distributions for direction 1 trains taken from meet
events, across a subset of sidings on the network section. Three plots, grouped
by color for each siding, show the set of lower runtime values (left), the set of
higher runtime values (right), and the comparison set of all observed runtimes
(middle) regardless of whether a meet occurred. Each violin plot is similar to
a histogram, with the widest area indicating a higher frequency of values than
the thinner tails. The median value is marked with the solid colored dash and
one standard deviation to each side is shown by the dotted line segments. The
scale for exact runtime values is not given for data confidentiality, but clear
distinction in the lower/higher runtime values for meet events can be seen for
each siding.

The 90th percentile lowest runtime value is taken from the set of higher
runtimes for each direction to be the minimum siding runtime for the optimiza-
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Figure 3: Distribution of runtimes on select sidings during meet events. Run-
times are normalized by the minimum and maximum values from all sidings.
For each siding, grouped by color, the left violin plot is the distribution of run-
times for the faster of the two trains in the meet event and the right plot is the
distribution of runtimes for the slower of the two trains. The middle plot in
each group, outlined in black, is the distribution of all trains on the siding, not
just those in meet events.

tion parameters Ui,s and Uj,s (direction 1 and direction 2, respectively). As a
reminder, these values are used in siding runtime constraints, as in equation (5).

Headway values for trains in opposing directions, relevant for meet event
clearance time, is similarly taken from the set of meet events observed to occur
at each siding. Each endpoint of the siding track is considered separately by
computing the difference in arrival time at this point by the two opposing-
direction trains. The 80th percentile value is taken as the headway value in
order to reduce rounding effects that result in very small headway values at
certain sidings.

For same-direction headway, we consider all trains in the two-year mined
dataset at the end of each track segment, independently. These trains are sorted
by their arrival time at the end of the track segment and the different between
each successive pair of trains is computed. Those with separation times of less
than 30 minutes are assumed to be roughly following each other, and from this
filtered set of separation times we take the 95th percentile minimum value as
the minimum follow headway.

6 Results, Problem 1: impact of dispatch deci-
sions

The analysis question we set out to answer in problem 1 is how to quantify
the cost of past dispatch decisions on replanning in the future. As discussed
in Section 4.1, we fix a set of empirical dispatching data on the time interval
[tmin, τ ] and then, considering the true locations of trains at time τ , optimally
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replan into the future, (τ, tmax]. The objective function used for dispatching is
the minimization of overall train runtime. The interpretation of an objective
function value at time τ is the lower bound on total train runtime if optimal
decisions are made from τ forward. We first show results on applying this
analysis to a single dispatch window, and then expand the analysis to cover two
weeks of dispatching.

Consider the time-space diagram in Figure 4, which we refer to as a stringline
(also known in other works as a time distance plot). Siding tracks, where trains
may meet and pass each other, are shaded grey, with all other single track
segments in white. The train’s speed profile is assumed to be linear between
timing points. It should be noted that in cases where a train stops on a siding
track, the linear depiction of the train’s speed profile does not visually show a
stoppage. This diagram shows a portion of the optimal dispatch plan in green
alongside the empirical dispatch data for this time interval, in blue. Many of
the empirical trajectories can be seen diverging from their optimal trajectories.
When we fix empirical data up to a time τ , we then assume that trains are
at their empirical locations at this time and must be dispatched from there.
Because many of the empirical trajectories diverge, significant replanning must
be performed in order to make a new optimal plan.

Figure 5 shows the replanning process at time τ = 300, which is marked
on the stringline diagram by the dashed blue line. Empirical trajectories (dark
blue) are run up to their last observed timing point before τ = 300, which is
why some stop short of the dashed blue demarcation. At this point, they have
diverged significantly from what could have been their optimal trajectories up
to this point, shown in green. After τ = 300, replanning must be performed to
develop the new plan; these replanned trajectories are shown in red. The total
runtime of the empirical trajectories (blue) plus the replanned trajectories (red)
make up the total train runtime for this replanned dispatch at time τ = 300.

Each time more empirical data is introduced into the optimal dispatch prob-
lem the value of the objective function (total train runtime) must either remain
the same (if optimal decisions were made) or increase (if any sub-optimal deci-
sions were made). The empirical data adds not only its own sub-optimality with
respect to the baseline optimal dispatch plan (i.e., in the form of train delay or
alterations to the optimal plan), but it also has the potential secondary effect
of requiring a change to the future of the optimal plan. The replanned future
is optimal given the constraints, but introduces cost because of the sub-optimal
positions of trains at the replanning point. The separation of these primary and
secondary effects is not addressed in this work.

6.1 Analysis on a single dispatch period

We simulate the effect of dispatching moving forward in time by gradually in-
creasing the τ parameter in 30-minute increments across a 9-hour dispatch time
window, from 0 minutes to 540 minutes. The dispatch time window is described
in Section 5. Indeed, increasing the τ parameter increases the overall objective
function value as can be seen in Figure 6a. The green line shows the lower
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Figure 4: Stringline diagram of optimal baseline dispatch plan (shown in green)
versus empirical dispatch (dark blue).

Figure 5: Stringline diagram for the same dispatch scenario as Figure 4, with
dispatch replanning at τ = 300. Empirical data is shown by the dark blue tra-
jectories up to time τ = 300 (marked by the dashed blue line). The trajectories
of trains under the baseline (optimal) plan are shown by the green trajectories,
for comparison of the empirical versus optimal locations of the trains at time
τ . The replanned trajectories moving forward from the empirical locations at
τ = 300 are in red. The sections of empirical (blue) plus the replanned (red)
trajectories constitute the total runtime value that is evaluated in this section.
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bound objective value (total train runtime), considering the empirical data and
the replanned future. As previously mentioned for Figure 5, the total runtime
of empirical trajectories (blue) plus the replanned future (red) constitute this
total runtime lower bound at a specific τ value (a point on the green curve
in Figure 6a). At τ = 0, no dispatching decisions have yet occurred that will
introduce sub-optimality; therefore, no cost is incurred by replanning and the
dispatch is effectively the baseline plan. This baseline runtime is marked by
the light blue dashed line in Figure 6a. At τ = 540, the end of the dispatch
window, all empirical dispatch decisions have occurred and no replanning is
performed; therefore, the cost of replanning will be the empirical total runtime.
This runtime is marked by the grey dashed line.

At the point τ = 300 in Figure 6a, the plan for which we visualized in
Figure 5, the lower bound runtime now has a value of r300 = 3178 minutes,
compared with the optimal value of r0 = 2549 minutes. However, the increase in
lower bound runtime from the previous point, τ = 270, is modest: r300− r270 =
72 minutes. Compare this to the increase in lower bound from τ = 120 to
τ = 150 or the increase from τ = 390 to τ = 420, which are much more severe:
r150 − r120 = 164 minutes and r420 − r390 = 286 minutes. This indicates that
decisions made on these time intervals, [120, 150] and [390, 420], were much more
costly to the dispatch plan. Indeed, Figure 6b shows the amount of increase in
the lower bound runtime over each successive step of τ ; the latter intervals
mentioned experience the largest increases in lower bound runtime over this
dispatch window. Again, the separation of whether this was due to primary
or secondary effects is a separate question, but it indicates where, temporally,
runtime is being introduced in excess of what is possible in the optimal case.

6.2 Results across multiple periods

The trend in how the lower bound runtime increases across each particular
window of dispatch data is expected to differ. The trend will be affected not only
by the dispatching decisions but also by the distribution and volume of trains
present on the network segment. Figure 7 shows the accumulation patterns of
runtime across two weeks of data in 9-hour windows shifted by 3 hours (thereby
overlapping by 6 hours for successive windows). For comparison purposes, the
replanned lower bound values were min-max normalized to [0, 1] using the
baseline and empirical runtime values. As is to be expected, there is fairly wide
variation in how each accumulates delay within the 9 hours. The mean trend is
shown with the black dashed line.

Two particular 9-hour dispatch time windows from different days are high-
lighted in purple, labeled “morning A” and “morning B”. These two are high-
lighted because they demonstrate very opposing trends in how their lower bound
runtimes evolved. By τ = 90 minutes, the lower bound runtime on “morning
A” has already increased 50% of the way from its baseline to empirical values;
in contrast, “morning B” has reached only around 2%. The large increases
for “morning B” occur between τ = 300 and τ = 540, where its lower bound
runtime increases around 90% of its baseline-empirical range.
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Figure 6: (a) Lower bound on train runtime (green curve), rτ , at time τ , when
empirical decisions are run from tmin to τ and the optimally-replanned dispatch
is executed from τ to tmax. As additional empirical decisions are taken into
account, the lower bound runtime increases from the baseline optimal value
(r0 = 2549 minutes) when τ = 0 to the empirical value (4170 minutes) after
τ = 540. The number of trains running during this period is shown by the red
curve. (b) Increase in lower bound runtime caused by each timestep of τ . Larger
bars indicate larger increases in the lower bound and, thus, a costly change in
the network state over the respective time interval.

Figure 7: Accumulation of additional runtime due to replanning, shown for 90
windows of data, each of length 9 hours and overlapping by 6 hours. Each
runtime value was min-max (baseline-empirical) normalized to [0, 1] for consis-
tency. Different temporal patterns in the accumulation of delay can be seen in
the green curves and the mean is shown by the black dashed line. Two dispatch
windows, “morning A” and “morning B” are highlighted to demonstrate the
vastly different patterns that occur.
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Figure 8: Representation of reducing lower bound runtime under replanning
from its initial value of rτ to a lower value r′.

7 Results, Problem 2: alterations to dispatch
decisions

The analysis question at hand in problem 2 is: which alterations could have
been made to the current network state in order to reduce the lower bound
runtime under future replanning? Given that an amount of time has elapsed and
empirical decisions have been made up to time τ that increase the lower bound
runtime by ∆ = rτ − r0, what could have been done differently that would have
reduced ∆? Figure 8 shows, graphically, the effect of reducing runtime under
replanning from rτ to a lower value, denoted r′, achieved by altering the network
state at τ while replanning into the future. We first address this question at
a specific value of τ and then show results for other values of τ in the same
dispatch window.

The alteration of empirical decisions to reduce the overall runtime value
from the replanned dispatch lower bound presents two bounding cases: 1) if no
reduction in the lower bound runtime, rτ , is desired, then no alteration of the
empirical decisions is required; 2) if a reduction in the objective value back to its
baseline optimal value, r0, is desired, then the empirical data must be changed
all the way back to the baseline dispatch plan (assuming the baseline plan was
uniquely optimal).

For reductions in the overall runtime value between these two cases, we min-
imize the amount of alteration of the empirical data that is required. As a
reminder, an “alteration” is defined in (12) of the formulation of problem 2 as
a change in a train’s segment runtime, compared to its empirical value. Chang-
ing a segment runtime naturally shifts the timing points for all successive track
segments by the same amount. The L1 norm on alterations in (12) promotes
sparsity in the alterations that are found in the solution. That is, the objec-
tive function favors fewer alterations as opposed to the larger number of small
alterations that would result from an L2 norm, for instance. The amount of em-
pirical alteration is thus defined as the sum of these alterations and measured
in minutes.

We first analyze the same 9-hour dispatch time period discussed in Section 6.
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Figure 9: (a) Required amount of alteration to τ = 300 empirical data to re-
duce replanned runtime (approximately 3150 minutes, green dashed line) back
towards its optimal value (approximately 2550 minutes, blue dashed line). (b)
Comparison of the number of alterations and the magnitude of alterations re-
quired to reduce runtime at τ = 300 from its replanned lower bound by the
given percentage, relative to the optimal runtime for the dispatch scenario.

At time τ = 300, we solve the minimum empirical alteration problem for runtime
reduction values of 0% to 100% in increments of 10%. Figure 9a shows the
amount of alteration required (red curve) to reduce the overall runtime from its
replanned (at τ = 300) lower bound value of 3178 minutes (green dashed line) to
the baseline (τ = 0) optimal value of 2549 minutes (blue dashed line). Take the
point on the graph at 2990 minutes of runtime. This represents a 20% reduction
in replanned runtime, and this would require an alteration to empirical segment
runtimes of 45 minutes (for decisions up to τ = 300).

The low slope of this curve at higher values of runtime (lower values of
reduction) indicates that alterations to empirical data are yielding large effects
on overall runtime. At the point where runtime is reduced to 2990 minutes, this
reduction of 188 minutes was achieved by an alteration of 45 minutes, less than
25% of the magnitude. In this regime where the amount of empirical alteration
produces a larger effect on the overall runtime, it must necessarily be affecting
the secondary delay. Presuming that, in the 20% reduction case, the 45 minutes
of alteration were all used to directly decrease (and not increase) runtime in
the empirical trajectories, the alterations produced an additional 135-minute
reduction in other runtimes that was the result of an improved ability to replan.

In Figure 9a, a 1:1 line for empirical alteration (y-axis) to runtime reduction
(x-axis) is also shown. A set of empirical alterations which produce a decrease
in overall runtime only as large as the alterations themselves would produce a
slope on this plot the same as this 1:1 line. Therefore, we can interpret slopes
of the alteration curve lower than this line as more effective, producing magni-
fying effects on runtime reduction. Slopes greater than this 1:1 line producing
inefficient effects on runtime reduction – a minute of alteration produces less
than one minute of overall runtime reduction.

An example of one of these magnifying changes is shown in Figure 10. This
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Figure 10: Example stringline diagram for reduction in replanning lower bound
by 20%, compared to baseline plan, using empirical alteration. Lower bound
replanning at τ = 300 (blue dashed line) is shown by the red trajectories.
The reduced lower bound with empirical alteration is shown in green. The
purple box highlights alterations to the empirical data that were applied to a
particular train (bold trajectory lines). These alterations (a total of 20 minutes
change) would allow a meet event to occur earlier in time at a downstream
siding, removing an additional delay of 25 minutes shown by the purple arrow.
This train’s runtime was reduced 45 minutes (yellow box) as a consequence.

stringline diagram shows two sets of trajectories: red trajectories are the re-
planned dispatch at τ = 300, which accounts for empirical decisions made up to
this time (marked by the blue dashed line); green trajectories are the replanned
dispatch with some changes made to empirical data before τ = 300 that decrease
the overall runtime. In general, we should see green trajectories complete before
red ones since the overall runtime is lower, but in some cases tradeoffs can be
made where some trains experience increased runtime but the total decreases.
Two purple boxes highlight changes to the empirical trajectories of one train
that reduced its runtime before τ = 300 and allowed it to make a more effi-
cient meet event with an opposing train at siding further downstream, instead
of waiting a long time at a closer siding. This change that was allowed is high-
lighted by the purple circle and arrow. Notice the downstream location where
the meet between these two trains could occur, instead. This train’s runtime is
allowed to decrease over 40 minutes as a result (change shown in yellow).

The amount of empirical alteration, as described earlier, is measured by
the magnitude of the L1 norm of changes made to track segment runtimes.
This is the quantity that is minimized in the formulation for problem 2; the
L1 norm also promotes sparsity in the alterations. The alterations highlighted
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in problem 2 are perhaps most useful if they are small, unique decisions that
could have significantly changed dispatching. For example, a sub-optimal meet
location which introduced unnecessary delay is a decision that could be easily
investigated and perhaps corrected. From the same test that was described
above, which generated the required alteration curve in Figure 9a, we extract not
only the magnitude of alteration, but the number of track segment runtimes that
were changed. For each percentage reduction in lower bound runtime relative
to optimal runtime (0% to 100%, increments of 10%), Figure 9b shows the
number of distinct alterations (grey hatched bars) alongside the magnitude of
alteration (red bars). A 100% reduction in this context corresponds to altering
the empirical data such that the optimal plan and optimal overall runtime are
feasible. We see that a runtime reduction of 20% can be achieved by changing
23 segment runtimes in the empirical data. While this is a modest number, the
trend does not exhibit the same degree of positive effects that are seen with the
magnitude of alteration; the number of alterations is more linear with respect
to runtime reduction than the magnitude of alteration. We believe this reflects
the fact that, in this instance under analysis, there are a significant number of
smaller alterations that must be made to enable the schedule to return closer
to optimal. This would tend to indicate that the suboptimality encountered in
this instance is complex and interdependent, as opposed to the result of a single
decision.

Thus far, we have presented correction results only for τ = 300 minutes.
Figure 11 shows the same curves for empirical alteration required to produce
runtime reduction at values of τ = 120, 180, 240, 300, 360, 420. The baseline
lower bound is denoted by the blue dashed line. A similar trend is observed for
values of τ on this same window of dispatch data. Large initial gains in overall
runtime reduction (e.g., 10%, 20%) are possible with a very small degree of al-
teration to empirical data, after which returns diminish. The runtime reduction
for τ = 420 is slightly more aggressive for small amounts of empirical alteration.
This could be due to a larger set of decisions that can be altered or greater
secondary effects of those decisions that have propagated to other trains.

Figure 12 shows the magnitude of empirical alteration and the number of
unique alterations for percentage reduction values in this same dispatch window.
Interestingly, the 20% runtime reduction for τ = 420 requires fewer alterations
than the equivalent reduction for τ = 240, 300, 360. This supports the idea that
at τ = 420 there are a larger set of impactful decisions that could be mitigated,
or dispatch decisions have caused greater secondary effects that can be reduced
by altering the initial decision.

8 Results, Problem 3: impact of individual trains

Problem 3 addresses the effects that a single train in the dispatch plan can
have on other trains in the same plan. Specifically, what is the cost to the
dispatch plan of fixing the trajectory of a single train to its empirical value?
We first discuss results on a single window of dispatching data and analyze a
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Figure 11: Required alteration to empirical data at various values of τ to shift
replanned runtime (not shown) toward the optimal plan value of approximately
2500 (blue dashed line).
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Values of τ from 120 to 420 minutes are shown.
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specific train in detail within this time period. Then we look at broader trends
exhibited by trains on this network segment within a month of dispatching.

As discussed in Section 4.3, we define primary added runtime for a given
fixed train w to be the difference between its empirical runtime, γ′w and its
baseline dispatch value, γ. Secondary added runtime is computed as the increase
in runtime of all trains, minus the primary added runtime of train w: (rw −
r0) − (γ′w − γw). It is possible for either the primary or secondary values to
be negative, but not both; the sum of primary and secondary added runtime
must be positive because the baseline dispatch plan was globally optimal and
no possible trajectory for the fixed train may decrease the overall runtime value.
In the case that a train runs faster than its optimal trajectory, it can do so only
at the expense of increasing runtime for other trains by at least as much. In the
case that secondary added runtime is negative, it is possible only because the
fixed train experienced increased runtime.

8.1 Analysis on a single dispatch period

We run the fixed-train dispatch for each train in the 9-hour dispatch window
during the week of January 4, 2016, as described in Section 5. Figure 13 shows
the primary and secondary added runtime caused by each train when it was
fixed in the dispatch. Figure 13a sorts the set of trains by primary added
runtime. Two of the top three trains in terms of their own added runtime
were the top two contributors to the added runtime of others, when fixed: X58
and X75. However, the train experiencing the greatest primary added runtime
caused almost zero secondary effect. At the other end of the spectrum, train
R59 experienced very little primary added runtime, but the secondary effect
was much larger. This train will be analyzed in more detail, later.

In Figure 13b, the same set of trains are sorted according to secondary added
runtime. At the opposite end of this spectrum, fixing train G21 caused a sub-
stantial decrease in runtime for other trains, but at the cost of its own runtime.
Note that the net effect is still added runtime, but it shows that running the
schedule around the departure time of train G21 slowed down the rest of the
trains, significantly. This effect indicates that placing G21 on the network at a
less sensitive moment could likely have improved overall performance.

Let us now analyze the case of train R59 in more detail. This train ex-
perienced a very small amount of added runtime with respect to the optimal
dispatch plan, but this small primary effect caused an outsize secondary effect,
over 5x larger. Consider the partial stringline diagram for train R59 in Fig-
ure 14, which shows a magnified area of the diagram in the vicinity of the train.
Train R59 completes only 5 network segments and incurs 11 minutes of added
runtime, shown by the red trajectory, relative to its optimal trajectory, which
is shown in blue to its left. This shift in the trajectory causes the two trains
following in the same direction, Q11 and G28, to run slower in order to maintain
the required headway. Q11 was supposed to complete its run immediately after
R59, before a train in the opposite direction departed. However, the delay re-
quired Q11 to wait out on the final siding for two trains in the opposite direction
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Figure 13: Comparison of primary added runtime incurred by trains and their
minimum induced secondary added runtime on the optimal trajectories of other
trains. Trains in the same window of data are sorted by primary added runtime
(a), and by secondary added runtime (b).

to clear, before it could complete its route.

8.2 Results across multiple periods

The findings presented thus far concern only a single dispatch window with 17
trains, but can also be analyzed for a longer range of data. We now evaluate
a shifting dispatch window of 9 hours over a month of data, January 2016,
with overlap of 6 hours between windows. Since a train can be observed in
multiple dispatch windows due to overlap, the primary and secondary added
runtime effects are selected for each train from the dispatch window where
secondary effect reaches its observed maximum absolute value. The distribution
of secondary added runtime effects for all trains observed in the month is shown
in Figure 15a, clipped to the upper limit of 800 minutes. A large number of
trains cause over 3 hours (180 minutes) of secondary added runtime and a few,
approximately 20, cause over 5 hours (300 minutes). These large secondary
added runtime values are observed even in the presence of optimal replanning,
caused just by the fixing of a single other train’s trajectory. The trains causing
these would merit further investigation into the configuration that caused such
large secondary effects.

Secondary effects are highly dependent on the primary effect that induced
them. We therefore consider the ratio of secondary to primary added runtime
effects in Figure 15b. The vast majority of trains have less than a 2.0 ratio,
meaning that secondary effects were less than twice the value of primary effects,
but approximately 40 exceeded a 2.0 ratio value and a few were past a 3.0 ratio
value, again indicating high relative impact of these trains on the schedule.

Finally, we observe in Figure 16 these primary-secondary pair values on a
scatter plot. Primary added runtime is on the x-axis and secondary on the y-
axis. A linear trendline for the dataset is shown by the dotted black line, which
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Figure 14: Portion of a stringline diagram with one train, R59, shown in red,
fixed to its empirical data. The optimal plan is shown in blue, behind the
replanned green trajectories that consider the fixing of train R59. An added
11 minutes of runtime for R59 resulted in a delay of at least 83 minutes for
successive train Q11.

has a slope of 1.4 minutes/minute. This means that on average, a train adds 1.4
minutes of secondary runtime to other trains for every minute of its own runtime
in excess of its optimal trajectory. The primary/secondary delay relationship
will be affected by the volume and distribution of trains on the network at a
given point in time and the particular dynamics or configuration of the network
segment, itself, but is valuable for identifying problematic dependencies and
train interactions and investigating those instances further.

9 Conclusion

In this article, we present a methodology by which to analyze empirical dis-
patch performance with regard to its optimal dispatch plan. This methodol-
ogy is applied to answer three principal questions: How did a current network
state contribute to a deterioration in the optimal dispatch plan? Which specific
changes could have hypothetically been made to the network state that would
have reduced the cost of replanned dispatch? Which trains’ performance caused
an effect on others in the schedule in terms of inducing additional runtime?

These three questions are addressed using the proposed dispatch analysis
problem, which follows from a common form of optimization-based dispatch-
ing. The general form of the dispatch analysis problem accommodates each of
these three questions by changing only the objective function and a few key
constraints.
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Figure 15: Distribution of the secondary added runtime effects of trains (a) and
the distribution of ratios of secondary/primary added runtime effects for each
train (b).
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Figure 16: Scatter plot of primary (x-axis) versus secondary (y-axis) added
runtime for a month of trains. Each point is a train’s primary/secondary values
in the dispatch window for which it exhibits the largest secondary added runtime
value. The dotted black line is a linear trendline with R2 = 0.753. Its slope
is 1.4 minutes/minute, indicating 1.4 minutes of secondary added runtime for
every minute of primary added runtime by each train.
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We apply the methodology to the three questions identified and show, for
question 1, that in identifying the deterioration of the optimal dispatch plan,
it can construct a timeline of how the lower bound dispatch performance un-
der optimal replanning increases. Sharp increases in this lower bound indicate
decisions that were costly to the dispatch plan immediately and into the fu-
ture. Each window of dispatching data exhibits a unique pattern around which
this deterioration manifests, an indicator of which portions of the schedule or
dispatching merit reevaluation and possible improvement. In application to
question 2, for alteration of the empirical data to reduce sub-optimality of the
replanned dispatch, it demonstrates that small changes to empirical data can
have a magnifying effect on the reduction of total runtime. In one particular
case, a magnifying effect of 4:1 was observed, meaning that, effectively, each
minute saved in the past would have saved 4 minutes in the overall plan. Not
all of these modifications would be strictly feasible due to features outside of
the model, but reflect critical train interactions and portions of train perfor-
mance that imposed outsized downstream consequences. Finally, the question 3
analysis of specific trains in a dispatch window revealed that trains have highly
non-uniform effects on the schedule with regard to their impact or dependency
on other trains. A small number of trains have secondary effects on the schedule
that far exceed the effect of their own deviation from the optimal schedule. Ad-
dressing the performance or scheduling of these trains could free up possibilities
in the schedule to reduce the runtime of other trains or make the schedule more
resilient to delay.

Overall, we believe this methodology can serve to become a powerful analysis
and examination engine for empirical dispatching practices. Being a natural
extension of optimization-based models that exist in practice, it is generalizable
to a variety of contexts that rely on these models and extensible to additional
details and operating features. In future work, adding fidelity to the dispatching
model could help create more realistic train trajectories via optimal dispatch.
Looking at the relationship between train volume and dispatch performance
relative to an optimal schedule could be valuable for capacity and infrastructure
planning. Also, extending the application to other railroads and territories
and analyzing aggregate effects could reveal larger trends or overall dispatching
performance.
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petri net model to estimate train delays. Simulation Modelling Practice and
Theory 33, 144–157.
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