
Streaming computation algorithms for spatiotemporal micromobility service
availability

William Barbour∗†§, Michael Wilbur∗‡, Ricardo Sandoval‡, Abhishek Dubey∗‡ and Daniel B. Work∗†‡
∗Institute for Software Integrated Systems
Vanderbilt University, Nashville, TN, USA
†Civil and Environmental Engineering

Vanderbilt University, Nashville, TN, USA
‡Electrical Engineering and Computer Science

Vanderbilt University, Nashville, TN, USA
§Email: william.w.barbour@vanderbilt.edu

Abstract—Location-based services and fleet management are
important components of modern smart cities. However, statis-
tical analysis with large-scale spatiotemporal data in real-time
is computationally challenging and can necessitate compromise
in accuracy or problem simplification. The main contribution
of this work is the presentation of a stream processing approach
for real-time monitoring of resource equity in spatially-aware
micromobility fleets. The approach makes localized updates to
resource availability as needed, instead of batch computation of
availability at regular update intervals. We find that the stream
processing approach can compute, on average, 62 resource
availability updates in the same execution time as a single
batch computation. This advantage in processing time makes
continuous real-time stream processing equivalent to a batch
computation performed every 15 minutes, in terms of algorithm
execution time. Since the stream processing approach considers
every update to the fleet in real-time, resource availability is
always up-to-date and there is no compromise in terms of
accuracy.

Keywords-Stream processing; spatiotemporal; micromobil-
ity; resource equity

I. INTRODUCTION

A. Motivation

The proliferation of affordable location-aware sensor tech-
nologies has made positioning applications, such as location-
based services and fleet management, extremely popular.
Positioning technologies such as GPS are now easily de-
ployed in vehicles and smart phones. As cities and private
companies look to optimize resources, the high velocity
spatiotemporal nature of these systems present unique chal-
lenges at scale [1].

Increasingly, applications in this domain must work with
dynamic data and operate in real time [2]. Allocation of
city-operated microtransit (i.e., flexible route vans) and
micromobility fleet management rely on constantly adapting
operations based on information from these data streams [3],
[4].

Large-scale spatiotemporal data of this nature is sent
as a data stream with timestamped positions. Traditional

Database Management Systems (DMBS), which are opti-
mized for finite data sets and one-time queries, are not well
suited for this type of processing. The simplest solution is
to process periodically in time, as a batch computation. In
this model, data is accumulated over a fixed time period
and a batch computation is run on this data. There are
two primary disadvantages to the batch processing model
in this context. By waiting for a fixed period of time, stale
data is introduced to downstream applications between time
steps. Additionally, batch processing can require redundant
computation on unchanged data.

A solution to these shortcomings is an approach that
responds to new data in real-time. In this case, events from
incoming data streams trigger updates to an existing model.
In the case of fleet management an event could be a change
in availability of a resource. Compared to a batch processing
approach, which periodically checks the availability of all
resources, this stream processing approach would avoid
costly redundant computation. In a real-time application,
stream processing is also more accurate because updates are
computed immediately.

The main problem with stream processing approaches on
real-time spatiotemporal data is designing a solution that can
handle large volumes of data arriving at unpredictable rates.
The cumulative cost of stream processing can also be very
high if updates are frequent. Weighing batch processing and
stream processing approaches in this context requires bal-
ancing trade-offs between accuracy, computation demands,
and algorithmic complexity.

In this work, we focus on the problem of processing
resource equity in micromobility fleets. The problem is
defined as a real-time spatiotemporal process, therefore
emphasizing up-to-date results. Additionally, the large, city-
scale nature of the problem requires careful consideration of
computational requirements.

B. Contributions and outline

The main contribution of this work is a stream processing
approach for real-time monitoring of resource equity in
spatially-aware micromobility fleets. The approach makes
small, localized updates to resource availability as needed,
instead of batch computation of availability at regular up-
date intervals across the full study area. We find that
the stream processing approach can compute, on average,
62 availability updates in the same execution time as a
single batch computation. Therefore, our stream processing
approach is equivalent to a batch computation performed
every 15 minutes, in terms of execution time. As the stream
processing model considers every update to the fleet in real-
time, resource availability is always up-to-date and there is
no compromise in terms of accuracy.

This article is organized as follows. Section II explores
existing literature on stream computing and transportation
equity. Section III formulates the stream processing model.
Section IV presents a case study and its results are presented
and discussed in Section V. Section VI concludes and
provides specific areas of future work.

II. RELATED WORK

A. Stream computing

Online mapping services such as Google Maps has led
to significant research in real time queries on large-scale
geospatial data. These applications require shortest path
computation [5], [6], on massive road networks, which
is computationally intensive [7], [8]. Most work in this
field has focused on efficient methods for storing routing
networks in traditional SQL databases [4], [9] or NoSQL
databases [10]. To achieve near real-time requirements,
shortest paths are pre-computed [4]. In this model, shortest
paths are time-dependent and require periodic, computation-
ally expensive batch updates [4].

Stream processing involves reactively updating a model
with each new data element, rather than in large batches.
Therefore, stream processing avoids the problem of stale
or out-of-date data between batch updates by processing
updates in real time [11]. Popular stream processing frame-
works are based on directed acyclic graphs (DAG) [12], [13].
Stream processing on spatiotemporal data presents unique
challenges because of the disparate spatial and temporal
operators that are often available [2].

B. Transportation equity

The proliferation of micromobility services such as elec-
tric scooters and bikeshare programs has the potential to
extend transportation access to groups of people beyond tra-
ditional fixed-route transit [14], [15], [16], [17]. To address
equitable spatial distribution, some cities have set metrics
and standards that micromobility operators must meet related
to accessibility of micromobility resources [18], [19], [20],

Figure 1. System models: both the stream and batch processing models
start with the construction of an availability map. The stream model updates
the map each time a device k is added or removed from the map. The batch
processing model reconstructions the full map every τ seconds.

[21]. Equity requirements of this kind require real-time
monitoring of fleet resources.

III. METHODOLOGY

A. Formulation of availability map

In order to quantify equity, we measure the availability
distance of micromobility devices, defined to be the distance
from a given location to the nearest available device. This
will be abbreviated as the availability at a given point. The
availability distance is measured across the city street and
sidewalk network in order to emulate the actual walking
distance for a user to a device. Other measures of this
distance are possible, such as Euclidean distance, Manhattan
distance, or a weighted form of street network distance.

An availability map, generally, is a map showing the
availability distance at any point to the nearest micromobility
device. In this work we compute the availability map in a
discrete form (as an approximation of the continuous map),
which is a collection of points on the city street network
each with a calculated distance to the nearest available
micromobility device. Using points on the city street network
is an approximation of availability at residences, businesses,
and other street-side locations, while having the benefit
of allowing direct network routing between points on the
network. Likewise, available devices are assigned to their
nearest point on the street network for routing purposes.

The street network is constructed as a graph, G = (V,E),
which is a collection of nodes (or vertices), V , and edges, E,
that enumerate valid connections between nodes. The order
of graph G is denoted as n and is defined as the cardinality
of the set of vertices, |V |. The difficulty of availability
map construction is dependent on the order of G because
this increases the number of nodes for which availability
distances must be computed and, hence, the number of
computations in routing through the graph.

B. Availability map algorithms

The batch and stream processing models are presented in
Figure 1. Computation and updating of an availability map
under the batch and streaming strategies are as follows:

• Batch: compute the availability map at the beginning of
the operating day, time tmin, and update the map on a
fixed periodic schedule every τ minutes by performing
a new batch computation until the end of the operating
day at tmax.

• Streaming: construct the full availability map at tmin
and update portions of the map upon every removal of
an available device from the network or addition of a
newly available device to the network.

The set of nodes comprising the network graph is V and
individual nodes are referenced as v ∈ V . Let the location of
all nodes on the network graph be N such that N ∈ Rnx2,
where n = |V | is number of nodes in the graph and we
refer to the location of an individual node as Nv , given in
latitude and longitude coordinates. Let the set of available
micromobility devices at a time t be S(t) and the position
of each of these devices be M such that M ∈ R|S(t)|x2,
where |S(t)| is the number of devices available at time t.
We refer to an individual device as s ∈ S(t) and its location
as Ms, given in latitude and longitude coordinates.

We first present the algorithm for the batch computation
of the full availability map for all network nodes. This
is used for periodic batch computation and to initialize
the availability map at the beginning of the operating day.
We then present algorithms for streaming updates to the
availability map pursuant to the removal or the addition
of a device on the network. For these three algorithms,
we present the procedure/pseudocode for a construction or
update.

1) Batch construction of full availability map:
Input: locations of any available devices, S(t), at time
t.
Output: for each node v ∈ V , the nearest available
device, S∗v (t), and distance to device, D∗v(t).

1) Find the nearest node to each device s ∈ S(t) based
on euclidean distance between N and M , and denote
this node as v∗s ∈ V .

2) Let H be the subset of nodes (where H ⊂ V)
comprised of all v∗s at time t. For each node h ∈ H ,
make a queue of devices that are “located” at the node
(i.e., had the same v∗) and denote the queue as Qh(t).
A queue of devices is necessary because multiple
devices will frequently be located at a single node. At
this point, no queue is empty: Qh(t) 6= ∅ ∀ h ∈ H .

3) Assign values D∗h(t) = 0 for each h ∈ H and set
S∗h(t) to be the first device in the queue Qh(t).

4) Perform Dijkstra shortest path routing beginning with
the subset H as source nodes and ending at all other
nodes in V .

5) The result of the routing is the shortest path from
each node v ∈ V to any node in H (referenced to an
available device). Let the value D∗v(t) be the length of
this shortest path, and let S∗v (t) be the device located
at the source node in H where the shortest path began.

Assign the values D∗v(t) and S∗v (t) to the availability
map entries of each node v ∈ V .

2) Streaming update: removal of device:

Input: a device k ∈ S(t) to remove from the available
devices at time t.
Output: updates to the availability values S∗v (t) and
D∗v(t) for any affected node v ∈ V .

1) Remove k from the queue of available devices, Qh(t)
at its assigned node h. If the queue contains additional
devices, update any references to k in values S∗v (t) to
the next device in the queue; then terminate the update.

2) If the queue does is empty after removal of k, deter-
mine the set of nodes v ∈ V that reference device k
as their nearest device (i.e., S∗v (t) = k. Denote this set
as I , which we refer to as unassigned nodes because
they have now-undetermined availability values S∗v (t)
and D∗v(t).

3) Construct the subset of nodes J ⊂ V , where I∩J = ∅,
as the set of nodes that are direct neighbors of any
unassigned node in I . We refer to J as the assigned
neighbor nodes.

4) Run Dijkstra routing to all unassigned nodes I , be-
ginning with the assigned neighbor nodes J as source
nodes. For each source node j ∈ J , begin the shortest
path routing with the path length initialized to the
availability distance D∗j (t).

5) The result of the Dijkstra routing is a shortest path
from each assigned neighbor nodes j ∈ J to any
unassigned node i ∈ I . The shortest path for each
node i ∈ I has a predecessor node j ∈ J and its new
availability distance D∗i (t) is the availability distance
at j, D∗j (t), plus the distance from j to i. The nearest
available device for node i, S∗i (t) is the same device
as that of the predecessor node j on its shortest path.
The values D∗i (t) and S∗i (t) are now part of the full
availability map and these update values are logged
for temporal availability tracking across the day.

3) Streaming update: addition of device:

Input: a newly available device k which shall now
become a part of S(t), the available devices at time t.
Output: updates to the availability values S∗v (t) and
D∗v(t) for any affected node v ∈ V .

1) Add device k to set of available devices S(t).
2) Find the nearest node to device k, v∗k ∈ V , by

euclidean distance, and add k to the queue of available
devices, Qv∗

k
(t).

3) If Qv∗
k
(t) was not empty before k, terminate the

update.
4) Update the availability map for node v∗k with values

D∗v∗
k
= 0 and S∗v∗

k
= k.

5) Run Dijkstra routing from node v∗k as the source to all
other nodes in the graph. Explore only nodes on the
routing frontier that have availability distance D∗(t)

less than their distance from v∗k. That is, route only
through nodes where the new device k is the nearest,
because any successive nodes explored will only be
further from v∗k. Let the set of updated nodes be C ⊂
V .

6) Update the availability map with new values D∗c (t)
and S∗c (t) for all c ∈ C.

C. Computation of temporal statistics

Given the ability to compute the availability distance at
each node in a street network graph and the ability to
update this value throughout time, we can compute the time-
weighted average availability distance for each node. This
value considers each availability distance measurement and
how long each measurement persisted as a proportion of
the time period. We first initialize the availability value
of node v at time tmin. Let any successive updates to the
availability value of node v occur at times t1,v , t2,v , etc.
The final availability value of node v is thus present until
the end of the analysis period at tmax. We denote the time
values delineating availability value updates (including tmin
and tmax) for node v as Uv as

Uv = {tmin, t1,v, t2,v, . . . , tmax}. (1)

For all times during the analysis period, [tmin, tmax], D∗v(t)
is the availability distance of node v at time t. The function
D∗v(t) is a step function that changes values at times in Uv .
We calculate the time-weighted average availability distance
as the availability distance during each update period (ti,v
to ti+1,v), multiplied by the proportion of the day that time
period occupied: (ti+1,v − ti,v)/(tmax − tmin). The time-
weighted average availability is denoted D∗v and defined:

D∗v =

|Uv|−1∑
i=0

ADv(ti,v)(ti+1,v − ti,v). (2)

IV. CASE STUDY

The case study in this work is based on data collected
from micromobility operators in Nashville, Tennessee, USA.
The micromobility data and the street network graph of
Nashville are described first, followed by a discussion of
the experimental setup for the case study.

A. Description of data

We begin data preparation with micromobility trip data
from two of six major operators in Nashville between August
31, 2018, and June 21, 2019. We construct a complement
to the trip dataset: all time periods during which each each
micromobility device was parked between trips. We term
this dataset of parking intervals the dwell dataset. A unique
device identifier is used to determine successive trips that
were taken on a device and the parking interval is the time
between trips taken on the same day. Spatial coordinates
(latitude and longitude) are assigned to each period of dwell

Table I
NUMBER OF NODES AND EDGES IN PARTITIONED GRAPHS.

Partition (m) Nodes Edges

25 293,473 513,207
100 172,434 192,168
300 80,898 100,632

original 56,744 76,478

between trips on the device using the endpoint of its last trip.
Dwell intervals are assumed to end at the closing of each
operating day at 8:00pm [22]. They begin the following day
when devices are staged for pickup by users. The first dwell
interval of the day is assigned a location retroactively based
on the location at which its first trip of the day begins. The
dwell dataset thus includes the fields: dwell start time, end
time, and dwell location.

A network graph for Nashville was constructed from
OpenStreetMap data, processed into undirected graph format
of nodes and edges [23]. We subsequently create three
versions of the network graph by partitioning graph edges
to a maximum length of 25, 100, or 300 meters. These
graphs are created to increase the spatial resolution of
availability calculations. Numbers of nodes and edges for
each partitioned network graph and the original graph are
given in Table I.

B. Experimental setup

A 14-week span of operating days between March 1,
2019, and June 7, 2019, were used in this case study. Each
day was analyzed for 10 hours between tmin = 9:00am and
tmax = 7:00pm. As described in Section III-B, the initial
device availability was assessed at tmin by constructing the
full availability map. To evaluate execution time of periodic
batch processing, the availability map was re-constructed
every 5 minutes until tmax. Streaming updates in the form of
removal of a device (unavailable) or addition of a device
(newly available) to the network were evaluated as they
occurred chronologically between tmin and tmax. Each day
in the case study was evaluated independently and execu-
tion time results for batch and streaming computations are
aggregated across the day.

The algorithms are implemented in Python using Net-
workX for network graphs. They were run on a computer
with 16-core AMD processor running at 3.4GHz and 128GB
RAM. No more than 8 simultaneous single-threaded in-
stances of the algorithms, each evaluating separate days,
were run in order to leave CPU headroom for background
tasks so execution time would not be influenced.

V. RESULTS

In this section, we first present a comparison of batch
versus streaming algorithm execution time. We then compute
the batch computation interval that could be realized for each

20 22 24 26 28 30 32
average function time (s)

0

10

20

30

[2
5-

m
et

er
 g

ra
ph

]
 n

um
. d

ay
s median

85th pctl
95th pctl

Figure 2. Distributions of daily mean execution time values for batch
availability computations on the 25-meter network graph. Median, 85th
percentile, 95th percentile lines are shown.

day based on the streaming computation budget. Finally,
we discuss the spatial results of applying the streaming
computation algorithms to compute availability statistics on
a long time horizon at city scale.

A. Algorithm execution time

Each run of the batch algorithm for every 5 minutes of the
dataset is naturally independent from the preceding run. The
mean execution time of all iterations of the batch algorithm
on a given day is computed. The distribution of daily mean
execution times is shown for the 25-meter network graph in
Figure 2. Lines denoting the median, 85th percentile, and
95th percentile values of the daily average execution time
are shown on each subplot.

Table II shows the median and 95th percentile execution
time values for the batch algorithm on each of the three
partitioned graphs. As is to be expected, batch algorithm
execution time is considerably longer on higher-resolution
network graphs. The ranges of the distribution for the 100-
meter and 300-meter graph are approximately 3 seconds and
less than one second, respectively, while the 25-meter graph
exhibits execution times from 20 seconds to over 30 seconds
– a range of over 10 seconds.

We also measure execution time on the core routing
portion of the batch algorithm function, from available
devices to all nodes. This routing portion of the algorithm
is identified as step (4) in the batch construction algorithm
(Section III-B1). This portion of the full execution time is
also shown in Table II and we see that it represents the
majority of the execution time. In the cases of the 100-meter
and 300-meter graphs, it is approximately 60% of execution
time; but in the 25-meter graph, it is nearly 80%.

The same timing analysis was performed for the streaming
algorithm. The routing component of the update algorithms
(step (4) in Section III-B2 and step (5) in Section III-B3)
was also timed and this portion of the execution time is
included in the full function execution time. Each update
– addition or removal of a device from the network – for
a day of operations was executed and the days are treated
independently.

Table II
BATCH ALGORITHM DAILY AVERAGE EXECUTION TIME ON EACH

NETWORK GRAPH AND PERCENTAGE OF TIME SPENT IN SHORTEST PATH
ROUTING.

Batch compute
execution time (s)

% of execution time
on graph routing

Graph Median 95th pctl. Median 95th pctl.

25-meter 28.6 30.56 78.4% 79.9%
100-meter 5.61 5.99 61.1% 60.9%
300-meter 2.00 2.31 56.5% 57.6%

0.375 0.400 0.425 0.450 0.475 0.500 0.525
average function time (s)

0

5

10

15

[2
5-

m
et

er
 g

ra
ph

]
 n

um
. d

ay
s median

85th pctl
95th pctl

Figure 3. Distributions of daily mean execution time values for streaming
availability updates on the 25-meter network graph. Median, 85th percentile,
95th percentile lines are shown.

Figure 3 shows the distribution of execution time for the
streaming updates on the 25-meter graph, averaged across
each day. Median, 85th percentile, and 95th percentile values
are also shown by the black lines. These values are extracted
in Table III for the three network graphs and it is apparent
that the 100-meter and 25-meter graphs incurred execution
times of nearly 3 times and 10 times greater than the
execution time of the 300-meter graph, respectively. The
component of the execution time representing the routing
portions of the streaming update algorithms represents a
very small portion of the overall function time: only 2-10%.
Compared to the batch algorithm this is a much smaller
portion, which is due to the other activities that the update
function must perform, such as finding nodes to update,
computing the neighborhood of the update, and reassigning
changes. The batch algorithm, by comparison, needs only
to save the result of the routing procedure in the desired
format.

B. Compute time equivalence

For each day of the 14-week dataset, we have shown
the mean execution time results for each version of the
algorithm. Now we seek to compute the number of batch
algorithm iterations that could be performed in the same
computation time budget as the streaming updates take
to run for the day. This quantifies the coarseness with
which the periodic batch algorithm would operate given
the computational budget of the streaming algorithm, which
calculates availability exactly across the day. For example,

Table III
STREAMING UPDATE ALGORITHMS DAILY AVERAGE EXECUTION TIME

ON EACH NETWORK GRAPH AND PERCENTAGE OF TIME SPENT IN
SHORTEST PATH ROUTING.

Stream update
execution time (s)

% of execution time
on graph routing

Graph Median 95th pctl. Median 95th pctl.

25-meter 0.464 0.533 3.58% 7.77%
100-meter 0.133 0.159 2.71% 5.47%
300-meter 0.051 0.060 2.55% 5.50%

Table IV
LENGTH OF TIME INTERVAL BETWEEN BATCH AVAILABILITY

CALCULATIONS WHEN EXECUTION TIME BUDGET IS SET AT STREAMING
UPDATE ALGORITHM EXECUTION TIME FOR THE DAY.

Compute
budget (s)

Function equivalence interval
(minutes)

Graph Median Median 85th pctl. 95th pctl.

25-m. 1658 10.3 16.7 24.6
100-m. 506 6.5 10.9 15.8
300-m. 183 6.5 10.7 15.2

if 2,000 updates were performed for a given day at a time
of 0.10 seconds per update, then a computation budget of
200 seconds could be allocated; if each batch computation
requires 5 seconds, then 40 iterations could be performed
in the same budget. The coarseness of the batch algorithm
is given in terms of the time interval with which the
periodic iterations would be separated, given the compute
budget. Following the same example with 40 batch iterations
equivalent to the total stream update execution time, these
iterations could be spread out across the 10-hour day used
in the experiments at 15-minute intervals.

Table IV shows the computational equivalence intervals
for the batch algorithm under the three partitioning sizes of
the network graph, as well as the average daily execution
time budget. The 100-meter and 300-meter graphs exhibit
a nearly identical distribution of interval times, with the
median time intervals of 6.5 minutes and extending up to 15
minutes in the 95th percentile case. This is not to say that
the total computational budget under the two graph versions
is the same. In fact, the median budget was 506 seconds
for the 100-meter graph and 183 seconds for the 300-meter
graph. The 25-meter graph, however, demonstrated a much
longer batch computation interval that would be allowed,
with a median of 10 minutes and 95th percentile value of
nearly 25 minutes. Its daily median execution time was 1658
seconds. This highlights the larger disparity in execution
times between batch and stream algorithms under the 25-
meter graph than the other two graphs.

C. Long-term availability

We now give an example of the long-term city-scale
spatiotemporal statistics that can be computed efficiently

Figure 4. Mean availability at each node on the 100-meter partitioned
graph across the full 14-week study period. Availability distance was capped
at 5000 meters in this map.

with specialized streaming update algorithms. The time-
mean availability at each node is computed for each day
in the 14-week dataset, as described in Section III-C. The
daily mean values are then averaged across the 98 days
in the case study and result in the aggregate availability
map, at the 100-meter partitioned level, in Figure 4. The
map shows very smooth distribution of availability, minus a
few anomalies due to highway road segments and the river
running through the city. This map required an execution
time of 797 minutes (13 hours, 17 minutes) to compute
433,518 streaming updates. This execution time included
the batch computation that is requited at the beginning of
each day to initialize the availability map before streaming
updates can begin.

VI. CONCLUSION

In this work we presented a stream processing approach
for real-time monitoring of resource equity in spatially aware
micromobility fleets. Empirical results from a case study of
scooter micromobility data in Nashville, TN show that the
computational cost of our streaming approach is equivalent
to a batch processing model executed at 15 minute intervals.
Future work on this topic includes extending our approach to
other fleets including bus transit systems, and adapting our
approach to a decentralized implementation on fog networks.
Additional algorithmic enhancements could further improve
the computational advantage for stream processing.

ACKNOWLEDGEMENTS

The authors would like to thank the Metropolitan Gov.
of Nashville and Davidson County, TN, for their ongoing
support. These analyses were derived from information

collected by Metro and shared with Vanderbilt as permitted
by current legislation through the ongoing partnership. This
material is based upon work supported by the National
Science Foundation under Grant No. CMMI-1853913.

REFERENCES

[1] P. Huang and B. Yuan, “Mining massive-scale spatiotemporal
trajectories in parallel: A survey,” in Trends and Applications
in Knowledge Discovery and Data Mining. Springer, 2015,
pp. 41–52.

[2] S. Eom, S. Shin, and K.-H. Lee, “Spatiotemporal query pro-
cessing for semantic data stream,” in Proceedings of the 2015
IEEE 9th International Conference on Semantic Computing
(IEEE ICSC 2015). IEEE, 2015, pp. 290–297.

[3] M. A. B. C. B. Sethu and R. E. Katibah, “Spatio-temporal
stream processing in microsoft streaminsight,” Data Engi-
neering, vol. 69, 2010.

[4] J. Sankaranarayanan and H. Samet, “Roads belong in
databases,” Data Engineering, p. 4, 2010.

[5] E. W. Dijkstra et al., “A note on two problems in connexion
with graphs,” Numerische mathematik, vol. 1, no. 1, pp. 269–
271, 1959.

[6] N. Jing, Y.-W. Huang, and E. A. Rundensteiner, “Hierarchical
encoded path views for path query processing: An optimal
model and its performance evaluation,” IEEE transactions on
knowledge and data engineering, vol. 10, no. 3, pp. 409–432,
1998.

[7] Z. Chen, H. T. Shen, X. Zhou, and J. X. Yu, “Monitoring
path nearest neighbor in road networks,” in Proceedings
of the 2009 ACM SIGMOD International Conference on
Management of data, 2009, pp. 591–602.

[8] W. Zeng and R. L. Church, “Finding shortest paths on real
road networks: the case for a*,” International journal of
geographical information science, vol. 23, no. 4, pp. 531–
543, 2009.

[9] R. Obe and L. Hsu, “Postgis in action,” GEOInformatics,
vol. 14, no. 8, 2011.

[10] M. Miler, D. Medak, and D. Odobašić, “The shortest
path algorithm performance comparison in graph and re-
lational database on a transportation network,” Promet-
Traffic&Transportation, vol. 26, no. 1, pp. 75–82, 2014.

[11] M. Cherniack, H. Balakrishnan, M. Balazinska, D. Carney,
U. Cetintemel, Y. Xing, and S. B. Zdonik, “Scalable dis-
tributed stream processing,” in CIDR, vol. 3, 2003, pp. 257–
268.

[12] M. H. Iqbal and T. R. Soomro, “Big data analysis: Apache
storm perspective,” International journal of computer trends
and technology, vol. 19, no. 1, pp. 9–14, 2015.

[13] S. Kulkarni, N. Bhagat, M. Fu, V. Kedigehalli, C. Kellogg,
S. Mittal, J. M. Patel, K. Ramasamy, and S. Taneja, “Twitter
heron: Stream processing at scale,” in Proceedings of the 2015
ACM SIGMOD International Conference on Management of
Data, 2015, pp. 239–250.

[14] S. Groth, “Multimodal divide: Reproduction of transport
poverty in smart mobility trends,” Transportation Research
Part A: Policy and Practice, vol. 125, pp. 56–71, 2019.

[15] K. Lucas, G. Mattioli, E. Verlinghieri, and A. Guzman,
“Transport poverty and its adverse social consequences,” in
Proceedings of the institution of civil engineers-transport, vol.
169, no. 6. Thomas Telford (ICE Publishing), 2016, pp. 353–
365.

[16] H. Titheridge, R. Mackett, N. Christie, D. Oviedo Hernández,
and R. Ye, “Transport and poverty: a review of the evidence,”
2014.

[17] D. Booth, L. Hanmer, and E. Lovell, “Poverty and transport,”
A report prepared for the World Bank and DFID. London:
Overseas Development Institute, 2000.

[18] SFMTA, “Stationless bikeshare permit application distribu-
tion guidelines.”

[19] S. Adrian Leung, “Bikeshare.”

[20] San Francisco Municipal Transportation Agency, “SFMTA
stationless bikeshare program permit application.”

[21] M. G. of Nashville and D. County, “Second substitute bill
bl2018-1202(as amended),” Metropolitan Code of Laws, vol.
Title 12, 2018.

[22] G. McKenzie, “Spatiotemporal comparative analysis of
scooter-share and bike-share usage patterns in Washington,
D.C.” Journal of Transport Geography, vol. 78, pp. 19–28,
2019.

[23] G. Boeing, “Osmnx: New methods for acquiring, construct-
ing, analyzing, and visualizing complex street networks,”
Computers, Environment and Urban Systems, vol. 65, pp.
126–139, 2017.

