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Abstract
Proliferation of shared urban mobility devices (SUMDs), particularly dockless e-scooters, has
created opportunities for users with efficient, short trips, but raised management challenges for
cities and regulators in terms of safety, infrastructure, and parking. There is a need in some
high-demand areas for dedicated parking locations for dockless e-scooters and other devices. We
propose the use of data generated by SUMD trips for establishing locations of parking facilities
and assessing their required capacity and anticipated utilization. The problem objective is: find
locations for a given number of parking facilities that maximize the number of trips that could
reasonably be ended and parked at these facilities. Posed another way, what is the minimum
number and best locations of parking facilities needed to cover a desired portion of trips at these
facilities? In order to determine parking locations, areas of high-density trip destination points are
found using unsupervised machine learning algorithms. The dwell time of each device is used to
estimate the number of devices parked in a location over time and the necessary capacity of the
parking facility. The methodology is tested on a dataset of approximately 100,000 e-scooter trips
at Vanderbilt University in Nashville, Tennessee, USA. We find DBSCAN to be the most effective
algorithm at determining high-performing parking locations. A selection of 19 parking locations,
is enough to capture roughly 25% of all trips in the dataset. The vast majority of parking facilities
found require a mean capacity of 6 scooters when sized for the 98th percentile observed demand.



1 Introduction
The launch of shared urban mobility devices (SUMDs) within cities has added a new dimension to
the transportation sector — opening up a new way in which to move. Docked bicycles have been
established in many cities throughout the world and have seen over 158 million rides since 2010 in
the U.S. alone, as of January 2019 [1]. Dockless bicycle sharing systems were a paradigm shift that
solved some issues around availability by eliminating limits on where the devices could be dropped
off. Shared e-scooters operate under the same dockless model, and their rise in popularity has been
dramatic; they have been referred to as part of the "micromobility revolution" [2]. As these devices
spread across the United States and the world, the number of e-scooter trips exceeded the number
of docked bicycle trips by 2 million in 2018. Docked bikes accounted for 36.5 million trips, while
e-scooters amassed a staggering 38.5 million trips [1]. The management issues associated with
dockless micromobility – such as clutter, accessibility, and safety – have only grown. In order to
alleviate some of the pressure caused by a chaotic distribution of scooters, cities have begun to
create dedicated parking facilities for SUMDs.

The number of scooter companies in Nashville, Tennessee, USA, has grown to seven as of
July 2019. The number of devices grew so quickly due in part to a policy that allows companies to
deploy additional scooters after a threshold of three average rides per day is met [3]. The number
of trips taken on scooters in Nashville has reached over 1.8 million in the course of approximately
one year [4]. Due to an influx of electric scooters, Nashville has experienced enormous amounts
of scooter clutter on sidewalks, causing a safety hazard to pedestrians and in some cases, violating
requirements for sidewalk clearance under the Americans with Disabilities Act (ADA) [5]. Another
notable safety issue concerns where scooters are allowed and intended to ride around a city. In
many cities, riding scooters on the sidewalk is illegal due to the risk posed to pedestrians. However,
in the presence fast-moving vehicular traffic and without dedicated bicycle lanes, scooter riders are
understandably reluctant to ride in the roadway.

There is an obvious demand for cities to adopt forms of SUMD parking management,
but there needs to be an effective process by which the locations of this parking are determined.
Observations and empirical evidence are insufficient in the placement of this infrastructure. In most
proposals for SUMD parking, use of these parking locations would not be mandatory; they would
be placed conveniently to collect trips ending near high-volume destinations and their use would
be encouraged for riders. This calls for a rigorous, data-based solution calculated over months of
micromobility trips. A large dataset has the potential to reveal patterns that may not be obvious
to observation and effectively provide governments with the tools to make these infrastructure
decisions.

1.1 Contributions
To our knowledge, this is the first study in the United States to propose a data-driven solution for
locating SUMDparking facilities and evaluating the efficiency and anticipated utilization of parking
facilities. It also provides the first empirical results on how many facilities are needed to serve
SUMD demand in an urban campus setting and the capacity allocation and anticipated utilization
of such parking facilities. This very well could assist cities in using their own micromobility data
to place SUMD parking facilities in the most effective areas.

The remainder of this article is organized as follows. First, we summarize recent literature
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related to our research. Second, we explain in detail the data-driven methodology . Third, the case
study dataset is explained. Finally, the results of the study are presented along with discussion. The
article is concluded along with an overview of possibilities for future areas of research.

2 Literature review
In this section, we present a review of relevant literature including safety concerns regarding shared
scooters, related policy discussion, and relevant data driven research on SUMD parking.

2.1 Safety concerns
Various forms of micromobility, shared e-scooters included, have gained popularity and interest in
part due to their efficiency and ease of use for short, inner city trips [6]. The fact that dockless
SUMDs can be picked up and dropped off wherever available has, itself, contributed to many of
the safety concerns including the lack of helmet use and hazardous sidewalk clutter. During the
Portland’s scooter pilot project, the Portland Bureau of Transportation estimated that 90% of riders
did not wear a helmet [7]. The results of a study done by Austin Public Health and the Center
for Disease Control (CDC) reported that 99% of injured persons were not wearing a helmet when
they were injured yet 48% of all injuries observed occured on the head [8]. In a study from Santa
Monica, 21 hospital visits concerned non-rider pedestrians, 5 of which were directly related to
tripping over scooter clutter in walkways [9]. Better parking allocation could reduce the chances
of those types of injuries from occurring.

2.2 Policy discussion
Policy-wise, many changes are being proposed regarding themanagement of these scooters. Service
providers in Shanghai plan on implementing fines to customers parked outside of their "electric
fence" parking spots for a bike sharing service [10]. In Nashville, companies are fined $10 for
each scooter not in a designated geofence, and $25 for every scooter blocking a right-of-way [11].
Fines are even harsher in San Francisco, where scooter companies are fined over $100 for a parking
offense [12]. Along with creating parking fines, there is also mention of potentially using mobile
parking infrastructure that shifts based upon current trends [13]. This would allow for a flexible
system where data could suggest new locations and the parking infrastructure could be shifted with
minimal effort. Improving the scooter infrastructure as a whole is a way to encourage better parking
behavior and cause fewer injuries.

2.3 Related micromobility studies
The study on dockless bikes in Shanghai, China presents an optimization framework that is used
for the planning of parking infrastructure [10]. The researchers use their optimization algorithm
along with the clustering algorithm DBSCAN to determine the optimal locations based on density.
Their infrastructure plan only included geofenced parking zones with no physical boundaries. In
a study on the spatiotemporal behavior of bicycles, existing docked bike stations in Ningbo City,
China, were analyzed using three different clustering algorithms [14]. After performing clustering
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on all 477 of these bicycle docking stations, they decided that the algorithm k-means had the
highest performance and presented their findings with this result. Their objective was to group
the stations according to similar characteristics, not according to parking feasibility. A study done
comparing the usage patterns of scooters to dockless bicycles discusses the spatiotemporal patterns
of bikeshare, but with the added element of comparing it to dockless scooters within Washington,
D.C. [15]. Using four months of scooter data from Lime, the patterns found were contrasted with
existing data on Capital Bikeshare. While usage trends for both were identified, there was no
discussion for potential infrastructure to support scooters.

Existing ways of solving facility location problems, similar to the problem of placing SUMD
parking, include: Optimization as used in bike sharing developed for Lisbon, Portugal [16] or a
numerical method (i.e. The uncapacitated facility allocation problem (UFAP)) as used to determine
facility location for autonomous vehicles in Pittsburgh [17].

Unlike all these similar studies, our study focuses on the parking of e-scooters by combining
the use of clustering algorithms to determine facility locations with careful evaluation of these
parking locations through temporal capacity analysis.

3 Methodology
In this section we briefly describe our approach to placement and sizing of parking facilities
for shared urban mobility devices (SUMDs). First, we outline the use of unsupervised machine
learning algorithms to generate high performing parking facility locations. We then discuss details
about hyperparameter tuning for relevant algorithms, followed by our process for determining the
required size of each parking facility.

By decoupling the generation of parking facility locations and the process for determining
the required size of each facility, city officials can determine how to best allocate their available
resources. The following methods serve to both provide a comprehensive method for facility
deployment, as well as data-driven feedback regarding the SUMD network operations.

3.1 Overview of analysis pipeline
We use three distinct unsupervised machine learning algorithms to first generate clustering allo-
cations of trip endpoints. Each unsupervised machine learning algorithm takes as input a dataset
of trip ending locations inside the Vanderbilt campus extents. Exact parking facility locations are
calculated using the distribution of points within each cluster, which we explain later.

The performance of a clustering output is determined by the number of trips that fall within
a given distance – we refer to this given distance as the capture radius – from the exact parking
location. This number of trips is referred to as trip capture. The objective is to place a particular
number of parking facilities such as to maximize trip capture. Multiple runs of each algorithm are
performed using different combinations of hyperparameters or different random initializations to
achieve the highest trip capture for a specific number of parking clusters (i.e., parking facilities). In
this manner, an ideal parking facility allocation is determined at each number of parking clusters,
which is then useful in caseswhere facilitiesmust be prioritized up to a fixed number (e.g., allocating
resources for a particular number of facilities).
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The relationship between the number of parking facilities and total trip capture works both
ways. A desired level of trip capture (e.g. 25% of trips) can also be used to estimate the number
of parking facilities required. The number of trips captured per facility, which we refer to as
capture efficiency, is also an informative metric for decision making. It can help quantify utility
or cost-benefit of the infrastructure investment. The following summarize the performance metrics
for parking locations:

• trip capture: the number of trip endpoints located a distance less than or equal to a given
capture radius from the parking location coordinates.

• capture rate: the proportion or percentage of trip endpoints captured out of the total
number of trips in the dataset; applicable for a single location or totalled across a set of
locations.

• capture efficiency: the number of trips (or mean number of trips) captured per parking
location, given a set of multiple locations.

The dataset used for this work is divided into two mutually exclusive subsets: training data
and testing data. Training data is used to establish parking location with the unsupervised machine
learning algorithms. Final performance metrics are calculated and reported on the testing dataset,
so as to reduce the potential impact of bias introduced by the training data. The following steps
outline the data analysis pipeline used in this work:

1. Collect raw scooter trip data.

2. Preprocess data, apply temporal and geographical filters, and separate data into training
and testing sets.

3. Apply unsupervised machine learning algorithms and perform hyperparameter tuning
on training data to generate parking clusters.

4. Determine exact parking facility locations based on distributions of trip endpoints within
clusters.

5. Assess parking locations by trip capture metric using testing data.

6. Establish parking location capacity requirements using training data.

3.2 Unsupervised machine learning algorithms
We assess the performance of three different clustering algorithms – k-means, DBSCAN, and
HDBSCAN – against our objective. Our decision to do so stems from two reasons. First, we
want to demonstrate some of the different clustering tools available to decision makers. Second,
we want to determine which clustering algorithm has the best performance with respect to our
objective, and solves the problem in a timely manner. As each algorithm is comprised of its unique
hyperparameters, in addition to the number of clusters, we use a heuristic method for determining
the optimal parameters in the context of our objective.
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3.2.1 k-means

This algorithm is one of the simplest and most popular of the unsupervised machine learning
clustering algorithms. The only input parameter required is n_clusters, which allows the user to
specify how many clusters in which to partition the data [18]. The k-means algorithm initializes
random points as centroids to represent the specified amount of clusters. Then, the algorithm begins
a two-step process. First, it assigns all remaining points to its nearest centroid based on euclidean
distance (in our case, given 2D space) [19]. Second, it recalculates the centroids by taking the
mean of all points assigned to each individual centroid. These two steps iterate until no data points
are reassigned or the maximum number of iterations is reached. For more specifics of the k-means
algorithm used, reference the documentation in [20].

3.2.2 DBSCAN

The DBSCAN algorithm is a density-based clustering algorithm introduced in [21]. Two of the
differentiating factors of this clustering algorithm are its ability to discover clusters of arbitrary
shape and its ability to find clusters based on their density, as opposed to only being able to find
clusters of a predefined shape or including points that are too sparse to be considered part of a
cluster. DBSCAN relies on the input of two parameters by the user: MinPts and Eps-neighborhood.
The Eps-neighborhood parameter is referred to in this paper as ε. The idea behind both parameters
is the following: determine a dense cluster whose points are within a certain distance ε from each
other, and contains at least MinPts points. As a result, DBSCAN classifies points within the dataset
as part of a cluster matching the parameterized criteria or as noise [21]. DBSCAN determines a
new cluster “by starting at an arbitrary point p, and then retrieving all the density-reachable points
based on the hyperparameter combination ε and MinPts”, as stated in [21]. If DBSCAN is not able
to retrieve a density-reachable point, it then moves on to the next point in the dataset and repeats
the procedure.

In contrast to k-means and other distance-based clustering approaches, DBSCAN does not
take the number of clusters as input. Rather, DBSCAN determines the number of clusters meeting
the criteria of MinPts and ε. This is useful in ensuring efficient facilities, but poses a challenge
when incorporating resource constraints, or a specific number of facilities, when modeling facility
locations. In order to address this challenge and offer a representative analysis for different numbers
of facilities, we trained DBSCAN on a wide range of hyperparameter combinations – explained
later in the paper – and grouped based on the number of clusters found.

3.2.3 HDBSCAN

The HDBSCAN algorithm was introduced in [22] as an extension to the existing DBSCAN algo-
rithm by "converting it into a hierarchical clustering algorithm, and then using a technique to extract
a flat clustering based in the stability of clusters" [23]. In this context, hierarchical refers to building
a hierarchy of clusters, combining similar points into a cluster at each iteration. Its goal is to find
the most significant clusters in a dataset based upon density, while maintaining an efficient runtime
and minimal parameters. The only parameter required is min_cluster_size, which specifies the
minimum size desired for a cluster. An optional parameter, min_samples, is often implemented to
tune the clustering to the specific dataset. For more information regarding this algorithm, refer to
the documentation in [22].
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3.3 Hyperparameter tuning
Hyperparameter tuning is an essential step when working with clustering algorithms. The objective
of this step is to find the set of hyperparameters for an algorithm that achieve the desired fit to the
training data, but generalize well to testing data. In our case, we used hyperparameter tuning to
maximize the capture rate of each clustering algorithm at each specific number of clusters. We
experiment with hyperparameters on training data in order to get the best parking locations, then
assess these parking locations on the testing data.

k-means does not require hyperparameter tuning, but due to its random initialization of cen-
troids, requires numerous runs to determine its best performance. A specific value for n_clusters,
is given from 1 to 100 clusters. The algorithm is run with ten initialization and the best result is
taken for that value of n_clusters according to trip capture. Additional initialization were not run
due to low variability between each set of results and computational run-time constraints.

As previously described, DBSCAN relies on two parameters: MinPts and ε. We create
a range of 233 different values for ε ranging from 2e-05 to 0.0006, and a range of 29 different
values for MinPts. The values for MinPts are normalized according to the dimensionality of
the input data until specified to the algorithm as a number of points. In total, we assess 6,757
different hyperparameter combinations, from which we chose one for each number of clusters that
maximized our objective. Following this notion, we find the hyperparameters 0.00018 for ε and
5.75% of the number of points in the training dataset for MinPts, which generates 20 clusters. We
use this particular clusters to present results throughout this paper.

HDBSCAN, similar to DBSCAN, has two parameters for tuning: min_cluster_size and
min_samples. For min_cluster_size, a set of 55 different values ranging from 0.07% to 1.96% is
used. There are 39 different values for min_samples, normalized in the same fashion as MinPts in
DBSCAN above. 2,145 combinations were evaluated in the hyperparameter tuning, and the most
efficient combination was chosen for comparison to the other algorithms.

3.4 Parking facility location and assessment
The exact location of the parking facility must be determined from the cluster assignment generated
by each realization of the various algorithms. We first calculate the median longitudinal and median
latitudinal coordinates within each cluster, then place the parking location at this coordinate. A
circular buffer zone for each parking location is centered at each parking coordinate corresponding
to the capture radius. A capture radius of 100 feet is the baseline for analysis. This is the distance
required by the US Green Buildings Council (USGBC) for bicycle parking at buildings seeking
LEED certification, which numerous Vanderbilt buildings have achieved [24].

3.5 Capacity allocation and analysis
In order to assess capacity requirements for a given parking location, we use the dwell time dataset,
described next, to count the number of scooters parked at every minute across the dataset for every
trip located within the facility’s given capture radius.
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4 Case study dataset

4.1 Description of raw data
The dataset was acquired from the Metropolitan Government of Nashville and Davidson County,
Tennessee, and covers two of the scooter companies currently operating in Nashville. The historical
data spans all trips from August 31, 2018, to March 21, 2019, occurring within the Vanderbilt
campus geofence. Data is formatted according to the Mobility Data Specification (MDS) and
includes detailed spatiotemporal data for each trip [25]. In our capacity determination, we remove
periods of time in which no scooters are parked, including non-operating times (i.e., at night). This
is done to reduce bias of capacity for times when the facility is unused, just as would be done for a
commercial parking facility or otherwise.

4.2 Preprocessing steps
Data preprocessing first applies a geofilter for the Vanderbilt University campus, retaining only
trips for which the trip origin or destination point fell within the campus extents. A temporal filter
also removed trips that ended outside of the scooter operating time range: 8:00 to 22:00, inclusive.
This range is based on the notion that scooters are typically removed from the streets after 22:00
for recharging, and are then staged the subsequent day around 4:00 to 8:00 [15]. The 8:00 bound
is conservative in order to reduce the inclusion of data for morning staging.

We sorted the dataset chronologically before we separated the full dataset into training and
testing subsets for parking location determination and assessment, respectively. The dataset was
sorted by trip start time and the first 75% of trips were assigned to the training dataset, leaving the
latter 25% of the data for the testing dataset. In this manner, the training data covers the date range
of August 31, 2018 to March 03, 2019 containing 71,391 trips, and the testing data covers March
03, 2019 to June 21, 2019 containing 23,797 trips

A dwell time dataset was then derived from the original trip data to identify the location and
duration each scooter was parked between trips. We identified each scooter by its unique device
ID and tracked it through the trip dataset. When a scooter trip ended, the device ID was used to
identify when the next trip started. The dwell time was defined as the time between trips. Therefore
each dwell consists of a start time, in which the scooter was first parked, an end time in which
the scooter started a new trip, and a latitude and longitude coordinate identifying where the dwell
occurred. Dwells are also assumed to end each night, meaning that if the end time is past 22:00,
that end time is automatically assigned a value of 22:00.

Careful consideration was taken in ensuring that the starting location of the next trip was the
same location as the end location of the previous trip. Each device has a natural accepted error of
100 feet, the maximum tolerated distance between the previous trip end location and start location.

4.3 Exploratory analysis of dataset
Exploratory data analysis for scooter trips at Vanderbilt University reveals that trips are generally
short in both distance and duration. Distribution statistics for trip distance, duration, and speed are
given in Table 1. The median trip distance was 0.69 miles and the mean was 0.97 miles, due to
a tail in the distribution of much longer trips. The median trip duration was 6.05 minutes with a
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Table 1 : Summary statistics for scooter trips in dataset.

Mean Median Standard
deviation

Distance 0.97 miles 0.69 miles 0.92 miles
Duration 9.71 minutes 6.05 minutes 9.05 minutes
Speed 6.28 mph 6.31 mph 3.17 mph

mean of 9.71 minutes, again due to much longer trips. Trip speeds are roughly normally distributed
around a mean speed of 6.28 mph. A significant fraction of trips have extremely low speed below
1.0 mph. Some of these are trips with near-zero distance and some are sight-seeing-type trips with
modest distance over very long amounts of time.

Demand by day of week for trips at Vanderbilt University is flat from Monday to Saturday,
with a slight decrease on Sunday. These trips on and around campus show uniquely stable demand
during weekdays due to student use for transportation to and from campus. This is in contradiction
to to the general trend in Nashville where demand is significantly higher on weekends.

5 Results
In this section, we present and discuss results of applying the full methodology on the case study
dataset. This begins with the data-driven facility placement with unsupervised machine learning,
followed by capacity allocation of individual facilities.

5.1 Facility placement and capture potential
As described in the methodology of this work, we explore three unsupervised machine learning
(a.k.a., clustering) algorithms for the placement of SUMD parking facilities – a representative, but
not exhaustive, selection. The facility locations generated by each algorithm are evaluated with
respect to the trip capture within the testing dataset for a capture radius of 100 feet. Trip endpoints
that are located within the capture radius of two parking facilities are counted only once towards
the total trips captured. Since hyperparameter tuning of certain algorithms will generate multiple
realizations with the same number of clusters but different locations, we report for each number of
clusters the maximum trip capture rate across all relevant hyperparameter combinations. Note that
hyperparameter tuning (only applicable for DBSCAN and HDBSCAN) is not exhaustive; certain
numbers of clusters were found many times by various combinations of hyperparameters, while
some numbers of clusters were rarely found. The results for k-means, DBSCAN, and HDBSCAN
algorithms are shown in Figure 1.

DBSCAN out-performed HDBSCAN and k-means at most numbers of clusters, in terms
of total capture rate. Its performance was more variable at higher numbers of clusters, which
could be due in part to fewer hyperparameter combinations generating these higher numbers of
clusters. At low numbers of clusters, k-means struggled to generate effective clusters, likely due to
its mechanism for determining cluster locations. As k-means is not density based, at low numbers
of clusters it finds large, sparsely distributed clusters with non-optimal facility locations. For this
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Figure 1 : Comparison of unsupervised machine learning algorithms for the placement of parking
facilities, according to number of trips captured within 100 feet.

reason we find density based methods such as DBSCAN and HDBSCAN provide more consistent
results regardless of the number of clusters.

During the decision-making process on the number of parking facilities to implement, two
metrics will likely be considered, which we have described previously: the total proportion of trips
captured across all facilities (capture rate) and the number of trips captured per parking facility
(capture efficiency). While the total capture rate generally increases as additional facilities are
added, capture efficiency eventually reaches a point of diminishing returns—meaning that as more
facilities are added, the capture rate per facility starts to decrease significantly. This knowledge is
useful in determining the number of facilities to be installed that would potentially maximize the
return on investment. This efficiency tradeoff for DBSCAN is apparent in Figure 2. A hinge point
is noticeable in the capture rate curve, where the capture efficiency begins to decrease sharply; this
occurs at approximately 19 parking facilities. Selected benchmark values taken from these results
are summarized in Table 2.

This relationship between the number of clusters, the capture rate and the capture efficiency
can be interpreted as a sort of policy. The total capture rate by a given number of parking facilities
provides clear guidance on the expected coverage of SUMD demand in a given area. The capture
efficiencymetric gives per-facility capture values that are useful to evaluate the return on investment
for a set of facilities. For instance, in the case study dataset, a point of rapidly diminishing returns
is clearly noticeable, which can help inform a decision on the investment of limited resources.
It is important to note that this data-driven procedure is fully consistent regardless of number of
facilities chosen or the locale from which the data is sourced. In this sense, outside factors (such as
available city resources for deployment) can be taken into account. Data from any city can be used
in this same manner.
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Figure 2 : Relationship between total trip capture (colored points) and per-facility capture rates
(i.e., capture efficiency) (black line) for DBSCAN facility placement. Note: capture efficiency is
given on the secondary y-axis.

Table 2 : Trip capture rate and capture efficiency at various numbers of parking facilities, generated
by DBSCAN.

Number of parking
facilities Capture rate (%) Capture efficiency

(% per location)
5 7.0% 1.16%
10 13.3% 1.21%
15 20.4% 1.28%
20 25.5% 1.21%
25 28.5% 1.10%
30 31.1% 1.00%
40 36.6% 0.89%
50 45.0% 0.88%
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Table 3 : Parking location names and descriptions

Parking Location Location Name Description
A Rec. Center Campus recreation and wellness center
B 21st Ave. (North Side) Adjacent to several restaurants
C Hillsboro Village Commercial area for students to eat and shop
D Rand Hall Dining hall in the middle of main campus
E Commons Center Dining hall in the center of first-year living

The precise locations of parking facilities and their respective capture metrics are dependent
on the number of facilities found by or specified to the unsupervised machine learning algorithm,
and also by the capture radius. For the remainder of this paper, we present results from a specific
parking facility realization generated by the DBSCAN algorithm using the best hyperparameter
combination for 19 facilities. This realization was chosen due to its high capture efficiency rate
(see Figure 2).

The locations of parking facilities generated under this realization are shown in Figure 3.
The cluster assignment of trip endpoints is shown by the color of points (unassigned points are in
grey) and a 100-foot capture radius is overlaid on each facility location for scale. The Vanderbilt
campus extents are represented by the shaded orange area and Vanderbilt facilities are the hatched
outlines.

While there appear to be some areas of concentrated points that are not part of clusters, it
should be noted that all of these areas fail to meet the mathematical cluster requirements for this
run of DBSCAN. This is an advantage of the algorithm: clear delineation between clusters meeting
criteria and all other points.

The capture rates and capture efficiency metrics upon which the algorithms are evaluated
depend on the capture radius value that is used for assessment. The results presented on algorithm
comparison and capture efficiency dealt with a capture radius of 100 feet [24]. As this value is
increased, the number of trips within the capture radius will increase. The rate of this increase is
dependent on the density distribution of trips around the facility location. We select a subset of
five parking locations (described in Table 3 and shown in Figure 3), labeled A-E from the set of
19 facilities generated by DBSCAN, which are diverse in their location. The effect of increasing
capture radius on these facilities can be seen in Figure 4. All location see higher trip capture as
capture radius is increased, but location B and C have rapid capture growth between 100 and 200
feet. This indicates that a multi-part parking facility may be advantageous at these locations to
capture trips around a larger capture radius.

5.2 Parking facility capacity
We now present parking capacity results for the same subset of five parking facilities A-E. For
each location, the number of devices dwelling – according to the last known trip endpoint – within
the facility capture radius, is calculated at every minute of the training dataset. We established
the capture radius to be 300 feet during capacity evaluation in order to account for extraneous
variables, such as GPS inaccuracy. Times at which no scooters are present are removed and the
remaining times are arranged in descending order, forming a distribution of the number of scooters
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Figure 3 : Map of 19 parking locations (red X’s) and capture radii of 100 feet (red dashed lines)
generated byDBSCAN. The colored points at each parking location are the trip endpoints belonging
to each cluster. Trip endpoints not belonging to a cluster are shown as light grey points. Vanderbilt
University campus facilities and campus extents are also shown.
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Figure 4 : Growth in trip capture rates as a function of increasing capture radius.

present at a given location at any time. The required capacity for each facility is calculated at
specific percentile values for the number of parked scooters: 75, 80, 85, 90, 95, and 98. For
example, the 98th percentile capacity value refers to the number of parked scooters that is greater
than 98% of all other non-zero counts of parked scooters at a particular location. The distributions
of number of parked scooters for locations A-E are shown in Figure 5, and percentile values are
shown by colored horizontal lines. As it can be seen in Figure 5 the two parking locations with the
highest 98th percentile values are facilities C and D, with a number of scooters corresponding to
this percentiles being 7 and 8, respectively. Total area under each distribution is indicative of the
amount of scooters parked over time—with locations C and D having a higher area, while location
E having a lower area. This indicates that locations C and D have a greater occupancy than location
E, because a greater area under the curve is equivalent to a greater occupancy. Additionally, the
rate at which the curves decrease also varies across parking locations. While location A has a
steep decrease from 12 scooters to 6 scooters in a short period of time, location D shows a lower
rate of decrease, taking around 6,000 minutes to decrease from a little more than 13 scooters to 6
scooters. This means that location D is more frequently populated by a larger number of scooters
than location A.

These distributions of the number of parked scooters at any given time are sorted and do
not take into account the actual time corresponding to the minute that was sampled. Looking at
the usage of the selected parking locations by the hour of the day and by the day of the week, as
shown in Figure 6, we can see varied trends. Location D (Rand Hall) has much higher utilization
during the middle of the day and across weekdays, but falls inline with the other four locations in
the evenings and is one of the least-utilized locations during the weekend. Location A (The Rec
Center) has uniquely higher demand in the evenings and location B (21st Ave.) has considerably
higher demand over the weekend compared to the weekdays.
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Figure 5 : Distributions of the number of dwelling scooters at specific parking locations, calculated
for all times when devices are present. The 75th, 80th, 85th, 90th, 95th, and 98th percentile capacity
values are shown for each. Note that some of these lines may be overlaid on top of each other due
to the discrete nature of the capacity values. Also note that the x and y axis have been standarized
across the subplots, but Parking Location C has a maximum value of 23 scooters.
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Figure 6 : Distribution of scooter trips captured for parking locations A-E across hours of the
operating day (LEFT) and days of the week (RIGHT).

6 Conclusions
This article proposes the data-driven placement of dedicated SUMD parking facilities, so as to
maximized their impact in terms of potential capture of trips. These parking facilities are sorely
needed in highly congested areas that are prone to clutter of SUMDs, such as e-scooters, on
sidewalks. Data-driven placement increases the likelihood that, under an optional usage model,
they are effective at convincing users to park devices because of proximity to their destinations.
Parking facility locations are determined through the application of unsupervised machine learning
algorithms. A case study of these techniques at Vanderbilt University in Nashville, Tennessee,
USA, showed that 19 of these locations had the potential to capture 25% of trip demand when
evaluated on a previously-unseen testing dataset.

Examination of proposed parking locations over time revealed that the peak capacity re-
quired to serve up to 98% of usage periods was likely very low – only 6 devices on average across
a set of 19 locations. Clear distinctions were observed in the usage patterns of parking facilities
at different locations at Vanderbilt University. Over the course of a day and by day of the week,
demand by location varied dramatically. Similar temporal fluctuations would be anticipated in other
locales, and the data-driven approach to capacity assessment allows such decisions to consider all
time covered by the dataset, instead of anecdotal judgments about location and capacity.

Future work includes accounting for irregularly-shaped (non-circular) clusters of trip end-
points that should probably be served by multiple parking facilities when capture radius does not
cover the entire area of dense points sufficiently. Location determination should consider truly
feasible facility locations that are free from obstructions such as buildings and roadways. Consid-
ering a capture zone that is non-circular in shape due to occlusion by buildings. Furthermore, a
model could be created for the likelihood of SUMD users to park in optional dedicated facilities,
parameterized by the distance from the facility to their destinations, the area in which the facility is
located, and other factors.
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