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Abstract

In order to enable widespread use of data driven analysis for rail oper-
ations problems, large volumes of complete and clean data are needed. In
this work a data reconciliation problem for rail dispatch data is proposed
to automatically clean and complete noisy and incomplete data. The pro-
posed method finds a minimally-perturbed modification of the observed
historical data that satisfies operational constraints, such as feasibility of
meet and overtake events. The method is demonstrated on a large histor-
ical dataset from freight rail territory in Tennessee, US, containing over
3,000 train records over six months. The results show that data reconcil-
iation reduces timing error of imputed points by up to 15% and increases
the number of meet and overtake events estimated at the correct historical
location from less than 40% to approximately 95%. It is also shown that
regularizing the data reconciliation problem with historical train perfor-
mance data further decreases the error of reconstructed points by 15%,
and using an L2 normalization can reduce mean squared error by over
50%. These findings indicate that the data reconciliation method is a
useful preprocessing step for analysis and modeling of railroad operations
that are based on real-world physical dispatching data.

Keywords: data reconciliation, automated data cleaning, applied integer
programming



1 Introduction

1.1 Motivation

Data-driven methods for railroad operations require abundant, high-quality
sources of data for model building. Machine learning, and deep learning meth-
ods in particular, require large datasets for training. These methods will learn
trends from input data, so if the data contains errors, then the errors may
propagate into the trained model and the resulting analysis.

A common challenge in the emerging data science and data analytics fields
is the amount of time spent on data cleaning and data preparation. Common
tasks include standardizing and normalizing data, identifying faulty data and
discarding or correcting it, and imputing values for missing entries. Especially
when (reasonably) clean data from large systems that describe physical pro-
cesses (e.g., freight rail flows) is needed, ad hoc and manual approaches to data
preprocessing can easily be inefficient and can often be intractable.

To automate some aspects of data cleaning and data preparation, it is possi-
ble to use knowledge about the physical constraints of the system to identify and
correct erroneous values. The process by which missing data is estimated and
erroneous data is corrected using a model as a constraint is referred to as data
reconciliation (Tjoa and Biegler, 1991). Given that railroad operations have
obvious logical and physical constraints, useful data reconciliation problems can
be posed and solved, which we demonstrate in this work.

1.2 Overview of Data Errors in Dispatch Data

Train trajectory data typically comes in the form of train arrival times at fixed
locations on the rail network; in the United States these are often called on-
station points, or OS-points. Most OS-points are located at the endpoints of
passing sidings in single-track territory, where a single main line track is sup-
plemented with short sections of parallel track called sidings for trains to pass
each other, or at crossover points in multi-track territory. Track segments refer
to the sections of track delineated by OS-points. The arrival times of a train at
each OS-point between two rail yards or destinations on the network constitute
a trajectory. We note that OS-points are not physical sensors recording passing
trains, but rather virtual delineation points for which timing data is recorded
from track circuit occupancy.

A collection of train trajectories, each of which are composed of timing data
at OS-points between destinations on the rail network, is in this work the rail
dispatch data. More generally, rail dispatch data could include timing data at a
greater number of points or from other sources, such as via rail signaling systems
or locomotive GPS data. In these various sources, errors in timing data and
train trajectories can be expected to manifest in different ways.

Data errors in dispatch data of this type are identifiable as infeasible tra-
jectories because they violate meet constraints (passing events between trains
in opposing directions), overtake constraints (passing events between trains in
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Figure 1: A time-space plot of two trains in opposite directions across one
siding track segment (shaded grey area) and two single track segments. The
train trajectories (blue) should have met at the siding track. The erroneous
trajectory point (red point) in (a) results in an infeasible meet location. This
can be corrected by reconciliation of the timing to the green point in (b).

the same direction), headway constraints (trains following, meeting, overtak-
ing with insufficient time headway clearance), or other operational constraints.
Data may also be missing from a train trajectory. These errors and omissions
could be due to incomplete or imperfect data fusion, corner cases in data trans-
formation, or sensor failures, for example. The variety of sources of erroneous or
missing data can further compound the difficulty of identifying and correcting
errors.

Consider the data error in Figure la, a time-space plot, as an example.
Three track segments are shown on the spatial axis (y-axis): one siding track
segment denoted by the grey shading and two single track segments. Trajectories
of two trains traveling in opposing directions are denoted by the blue points,
which represent known trajectory points, and the blue lines that are the linearly
approximated trajectories between them. In Figure la, there is an imputed
point shown in red along the trajectory. The timing value of this point results
in a meet event (intersection between trajectories highlighted by the red shaded
circle) between the two trains that occurs on a single track segment and is
therefore infeasible. It is clear that the two trains must have passed each other
on the siding and that the imputed trajectory point must be incorrect. Indeed,
by relocating the erroneous imputed point to the location of the green point in
Figure 1b, a feasible set of trajectories is found where the meet event occurs on
the siding (highlighted by the green shaded circle). The amount by which the
imputed point must be moved is dictated by the safety headway.

This simple example demonstrates one types of data error that can be en-
countered in rail operations data, noting that in real datasets the errors can be



more complex, randomly distributed in the dataset, and can be compounded
by missing values. As a consequence, ad hoc or manual approaches to diagnose
and fix infeasible data are not viable on national-scale rail networks that move
thousands of trains daily.

1.3 Problem Statement and Contribution

The main contribution of this work is the development of a method to perform
optimization-based data reconciliation of railroad dispatching data. Given a set
of train trajectories and as set of operational constraints, the data reconciliation
problem simultaneously corrects any data that is infeasible, and also imputes
any missing data. Compared to our preliminary work (Barbour et al., 2019),
we also demonstrate six objective functions and find that the use of L5 norm
and regularization to historical average speeds reduces mean squared error by
60% compared to the original objective.

A constraint set from a dispatch optimization problem that models single-
track rail operations is used to perform data reconciliation and we note that
the method may be generalized to other optimization-based dispatch tools and
network topologies. To illustrate the performance of the method, the data rec-
onciliation problem is implemented on a real freight rail dataset with synthetic
omissions in the data. This is the first work to formalize data reconciliation for
cleaning rail dispatch data, which can be a critical step for machine learning
and data-driven rail operations and is a practical challenge in the transportation
industry.

The remainder of the article is organized as follows. Section 2 reviews the
related work on optimal dispatching, data driven rail operations, and data rec-
onciliation problems posed in other domains. Section 3 provides a general form
of optimization-based dispatching and its relationship to the data reconciliation
problem. Section 4 instantiates a specific data reconciliation problem used in
the work on a real dataset from a US Class-1 railroad. In Section 5, we present
and discuss results from applying the reconciliation to the historical dataset and
to a synthetically incomplete dataset.

2 Background

First a selection of prior work pertaining to posing and solving the rail dispatch
problem with optimization models is summarized. These models define the basis
of logical and physical constraints for rail operations that are used by the data
reconciliation problem. We then explain the need that data-driven rail analysis
techniques have for large volumes of clean historical data and provide examples
of such work. Finally, we discuss prior work on data reconciliation from other
domains of study.



2.1 Optimization-based Rail Dispatch

Optimization-based rail dispatch is a common tool in passenger and freight
railways around the world. Many rail dispatch and control schemes still require
humans in the loop, but actions and plans are often suggested by computer aided
dispatching systems (CAD) (Petersen et al., 1986). These systems are given the
physical and logical constraints of the network, which include network topology,
speed limits, signalling, train passing logic, and train physics, alongside railroad
operating practices and preferences, which include train schedules, train prior-
ity, and delay recovery (Wang and Goverde, 2016; Khoshniyat and Peterson,
2015). The routing problem considers these many factors and constraints and,
along with the size of the rail network, results in a large mized integer pro-
gram (MIP) (Bollapragada et al., 2018; Higgins et al., 1996). These problems
are applicable at multiple levels of operations, including tactical planning, daily
operations, and re-scheduling, as outlined by Térnquist (2006). Ultimately, we
show how to extend these exact types of problem formulations to the data rec-
onciliation problem that ensures feasibility of operational data that is collected.

One of the first formal definitions of the CAD problem was by Petersen et al.
(1986). Higgins et al. (1996) focused on a similar CAD model as a decision sup-
port tool for single-track railways, a single main line track with passing sidings.
Murali et al. (2016) used an integer programming (IP) model for tactical plan-
ning on the Los Angeles rail network. The intractably large MIP problems
created by timetabling over a large geographical area and long time horizon are
addressed with an incremental heuristic by Gestrelius et al. (2017). Wang and
Goverde (2016) took a detailed approach to trajectory optimization from the
energy conservation perspective with consideration of train performance calcu-
lations. Robust train timetabling was addressed with variable time headways
by Khoshniyat and Peterson (2015). Térnquist and Persson (2007) studied the
effects of different optimization objectives using a heuristic technique for dis-
turbance re-scheduling on a mixed passenger/freight traffic corridor in Sweden.
Bollapragada et al. (2018) describe a modern optimization-based system that
handles train dispatching and other ancillary activities used at Norfolk South-
ern Railway in the United States. Much of the dispatching, scheduling, and
disruption management literature is well-summarized by Fang et al. (2015) at
the strategic, tactical, operational, and rescheduling levels.

2.2 Data-driven Rail Analysis

As previously discussed, train routing and control problems are difficult and
nuanced, but are increasingly the focus of railroads seeking to further optimize
and automate operations. Less work has been done on the historical analysis of
dispatching and dispatcher performance and this line of inquiry could have impli-
cations in safety, sustainability, and automation. See Ghofrani et al. (2018) for
a review of many of the applications in this field. All of these data-driven meth-
ods require large volumes of reasonably clean historical dispatch data due to the
unique topology of the rail network and the complexity of operations (Wang and



Work, 2015; Barbour et al., 2018b; Oneto et al., 2019; Ghofrani et al., 2018).

Oneto et al. (2019) analyzed train behavior on a network scale using both
prior network knowledge and historical data. Kecman and Goverde (2015) es-
timated passenger train running and dwell times in the Netherlands in real
time using numerous machine learning models. Chapuis (2017) used artificial
neural networks to produce arrival time estimates for French passenger trains.
Wang and Work (2015) used historical data on Amtrak trains in the United
States, which run with far higher variability than their international counter-
parts, along with vector regression to estimate arrival times. Support vector
regression, ensemble decision trees, and deep learning were all used to estimate
arrival times of freight trains in the United States, which operate with a low
degree of scheduling and high variability (Barbour et al., 2018a,b).

2.3 Data Reconciliation

The number of works focused on data reconciliation is rather limited. An
optimization-based data reconciliation problem was introduced by Tjoa and
Biegler (1991), where chemical process measurement and control data was stud-
ied with respect to noise reduction and gross error correction. Leibman et al.
(1992) develop a new method for data reconciliation using nonlinear program-
ming targeted at dynamic and nonlinear environments. Tong and Crowe (1995)
introduced the use of principle component analysis for gross error detection in
data reconciliation, as an alternative to some statistical tests. Soderstrom et al.
(2001) performed gross error detection and data reconciliation simultaneously
by formulating and solving a mixed integer linear program for process flows.

In the transportation field, Zhao et al. (1998) used data reconciliation tech-
niques for processing traffic count data under flow conservation constraints.
Claudel and Bayen (2011) perform data reconciliation for highway traffic data,
posed as a convex program based on constraints derived from a partial differ-
ential equation describing conservation constraints.

Sessa et al. (2018) performed retroactive train trajectory reconstruction us-
ing an a train’s kinematics and dynamics measurements. Albrecht et al. (2006)
performed reconstruction of the continuous train trajectory and speed profile
using discrete track occupancy data. Compared to work on trajectory recon-
struction, the data reconciliation problem we approach in this work is concerned
with guaranteeing feasibility within the set of all train trajectories on a network,
and not the exact trajectory of a single train. Both problems could be required
to ascertain a complete dataset of all train movements at the network scale and
speed profile scale. The train positioning problem is also related, but deals with
correcting or enhancing the real-time position data of a train along a track or
on the network (Otegui et al., 2017).



3 Optimal Dispatch and Data Reconciliation

In this section we first explain the generalized problem formulation of optimization-
based dispatching and the corresponding data reconciliation problem formula-
tion.

3.1 Optimal Dispatch Problem

The optimal dispatch problem takes a set of trains traveling on a section of
the network (e.g., between major yards or terminals) and finds feasible trajec-
tories that are optimal with respect to minimization of a function of weighted
train runtime and satisfy physical and operational constraints. Broadly, many
dispatch problems can be posed in the general form:

minimize:  f(z,2)
o 0
subject to:  Ajx 4+ Asz < b,

where the decision variables are x € Ri and z € Z%. In a common formulation,
the decision variables x encode times at which trains reach various points on
the network, while the integer decision variables z encode dispatching logic
that indicates if and where meets and overtakes occur on the network. The
objective function f(-, ) is a performance measure that quantifies the desirability
of the dispatch solution, for instance with respect to delay or priority weighted
delay of trains. Integer variables may factor into the objective function if, for
example, one wishes to minimize the total number of meets and overtakes. The
physical and operational constraints, such as the permissible locations of meet
and overtake events, headway constraints, and train travel times, are encoded
in the inequality constraints Ajx + Az < b. For simplicity the constraints are
assumed to be mixed integer linear, although more general dispatch problems
can also be considered.

3.2 Data Reconciliation Problem

With a generic form of the optimal dispatch problem defined, it is now possible
to define the corresponding data reconciliation problem. The constraint set
from the train dispatch problem plays a critical role in the data reconciliation
problem. Accurate data reconciliation assumes that the constraint set correctly
describes the operations of the rail network. Consider a historical trajectory
dataset denoted by & and Z, possibly containing missing entries. Let g and Zq
denote the subset of the historical dataset for which entries are present. The
data reconciliation problem is written as:

mingicnzlize: g(za — Za, za — Za) + h(zw, zv)

(2)

subject to: Ajx + Asz < b,



where = € R’L z € Z4. The variables zq and zq are the subset of the decision
variables that correspond to the historical dataset for which entries are present
and g and zg are the subset of the decision variables that correspond to missing
historical entries. The reconciliation problem finds feasible trajectories, z, z,
that are feasible and minimally-perturbed from the historical data according
to the performance measure g(-,-). An additional term h(-,-) can be added to
the reconciliation problem to further regularize the missing data that must be
imputed by the data reconciliation problem. Importantly, while the historical
data z,Z may or may not be feasible, and may or may not contain missing
entries, the reconciled data indicated by the decision variables at optimality,
x*, z*, are feasible and complete provided the constraint set is not empty.

A variety of possible performance measures can be designed for the data
reconciliation problem. For example, a natural choice is an £, penalty on the
historical data:

g(za — Ta, 20 — Za) = ||za — Zall1, (3)

which promotes sparsity in the changes to the timing variables from the values in
the historical data. In (3), we do not consider a penalty on the integer variables
zq even though it is possible, because it requires more care to design and depends
on the interpretation of the variables. For example, in the problems instantiated
later in this work, the integer decision variables are uniquely determined once
the continuous variables are fixed, and the primary objective is to match the
timing data as much as possible.

In cases of missing historical data, the design of the regularization term
influences the quality of the imputed values found when solving the data recon-
ciliation problem. Supposing again that x denotes timing data, and g denotes
the vector of entries of x corresponding to the missing data in Z, one can advance
trains as quickly as possible with:

Wz, ze) = ||zl (4)

Letting w encode the priority of trains at the various timing points, one can
advance the trains based on priority weights:

h(zy, ze) = wlzy. (5)

It is also possible to regularize based on desired timings x9° that allow for
encoding desired segment speeds (e.g., average speeds) through the sections
with missing data. This can be written as:

h(zy, z9) = ||lze — 241 (6)

It is also possible to regularize based on the integer variables zy, to indicate a
preference to avoid meets and overtakes, for example.



4 Instantiation of a Data Reconciliation Prob-
lem

This section provides an overview of the data reconciliation problem formula-
tion including the parameters, decision variables, the objective function, and
constraints.

We limit the discussion to terminology and constraints needed to understand
the core functionality of the model. For clarity and brevity, in this abbreviated
formulation we do not describe end of train clearance timing, trains entering and
exiting in the middle of the network section, multi-track segments with crossing
tracks, simultaneous meet and overtake events at sidings, and some features
unique to this particular network section. Constraints in dispatch optimization
that deal with ancillary operational activities and additional data sources are
also possible. These could include, for example, crew on-duty time restrictions
that take into account crew records for each train.

The dispatch optimization and data reconciliation problems share the same
parameters, decision variables, and constraint set for a given network topology.
Here a specific form of the MIP is used that is based primarily on the dispatch
formulation of Petersen et al. (1986) and Higgins et al. (1996), but in princi-
ple the data reconciliation problem can be posed using constraints from other
optimization-based dispatching problems.

4.1 Problem Setup

A track graph for the network section over which trains operate is delineated by
OS-points that are located at the endpoints of multi-track segments or siding
tracks (as discussed in Section 1.2). The set of all track segments is denoted M,
with individual segments assigned integer labels beginning with track segment
zero such that M : 0,1,2,3,.... Track segments containing a siding track or
multiple tracks are included in the set S, where S C M. Each track segment
m € M has length K,,. Trains travel in two directions on the network: direction
1 and direction 2. Define direction 1 to be the direction of increasing track
integer labels and direction 2 to be the decreasing direction. Because track
segments are denoted by integers, we can refer to the successor track segment
in direction 1 relative to a segment m € M as segment m + 1 € M. Likewise,
the successor track segment in direction 2 relative to segment m is m — 1.

The set of trains traveling in direction 1 is denoted I and direction 2 trains
are J. Individual trains are referred to as ¢ € I or j € J and have unique
identifiers such that 7 N .J = (). Each train has a known length denoted L; (or
Lj).

An example network section is shown in Figure 2. This section has five track
segments, M : {0,1,2,3,4}, two of which contain siding tracks, S : {1,3}. The
length of each track segment is labeled K, K1, etc. Two trains are also shown:
train ¢ € I in direction 1 and train j € J in direction 2.

Additional parameters used in the objective function and in constraints must



Figure 2: Depiction of track segment notation. The set of all segments in this
example is M : {0,1,2,3,4} and the set of siding segments is S : {1,3}. Lengths
are denoted Ky, K1, etc. Two trains are labeled ¢ € I (direction 1) and j € J
(direction 2).

be provided. Historical data, as discussed in Section 3.2, is denoted Z. Specif-
ically, we define the historical completion time of each train 7 (and j) for each
track segment m to be Z; ,, (and Z;,,). Note that completion time of a segment
is relative to direction, so the values Z; ,, and Z; ., for the same segment m refer
to different endpoints of the track segment.

The free run (i.e., minimum) traversal time of each track segment is defined
specific to each train. If train ¢ takes the main line track on a segment m, its
free run traversal time of the segment is T; ,,. If train ¢ takes the siding track on
a segment s € S, its free run traversal time across the siding track is U; ;. We
assume that the siding free run time values are greater than the corresponding
main line free run time (i.e., U;s > T; ). Trains j € J have corresponding
parameters T, and Uj ;.

For meet or overtake events between pairs of trains, we define minimum
clearance headways in terms of time (minutes). The minimum headway between
trains traveling in the same direction is H;, ;, (or Hj, j,) for pairs of trains in
i1,42 € I (or j1,72 € J). For trains traveling in opposite directions, the headway
time is H; ;, where ¢ € I and j € J.

4.2 Decision Variables

The real-valued decision variables for the reconciliation problem are the recon-
ciled trajectory timing values. The decision variables representing the reconciled
data are denoted x;,, and z;,, for trains ¢ € I and j € J, respectively, cor-
responding to each track segment m € M. These correspond to the historical
data Z; ,, and Z; .

The integer-valued decision variables govern the interactions between trains.
We use variables indicating train ordering (i.e., the order in which trains com-
plete a track segment) to identify meet and overtake events. Let the set of track
segments that are only single-track segments be denoted M \ S, which is the set
M minus the set S. We define the ordering variables ; ; ,, for all combinations
of trains ¢ € I, trains j € J, and track segments m € (M \ S), to be m; j.m =1
if train ¢ crosses segment m before train j, and m; ; ,, = 0 otherwise. For trains
traveling in the same direction, we define ¢;, i, = 1 to indicate that train



i1 € I completed traversal of segment m before train iy € I (where i1 # ia),
and ¢;, i,,m = 0 otherwise. Likewise, ¢;, j, m = 1 if train j; € J completed
traversal of m before train jo € J, where j; # jo.

The occurrences of meet events are indicated by binary values of p; ; s, which
take the value p; j o = 1 if a meet occurs between trains ¢ € I and j € J along
track segment s € S, and p; ;. = 0 otherwise. The occurrence of overtake
events for trains / in direction 1 are indicated by binary values of p;, i, s, which
takes the value p;, i, s = 1 if a meet occurs between trains iy € I and i; €
(where i1 # i) along track segment s € S, and p;, ;,,s = 0 otherwise. Values of
Pji.ja,s €ncode overtakes for trains ji,j2 € J in direction 2.

When meet and overtake events occur, one of the trains in each event must
take the siding track and one must take the main line track. Let o;, = 1 if
train ¢ € I used a siding track at track segment s € S, and o; s = 0 if it did not.
Likewise, let 0, = 1 if train j € J used a siding track at s € S, and o, = 0 if
it did not.

4.3 Objective Function

The specific data reconciliation objective used in the majority of this work is as
follows. We apply an £; norm on the deviations from the historical data when
the historical data is present, and regularize with an £; penalty to a background
term that encourages trains to travel at a constant speed in all sections for which
data is missing. This is written as:

|lzq — Zall + |lze — 291, (7)

where o corresponds to a vector containing entries of z;,, and z;,, for all
1 €I, 7€ J,and m € M for which historical data is available. The vector
29 is arranged to have entries corresponding to the elements of 2 for which no
historical data is available, and is set assuming trains in the historical dataset
travel at constant speeds through sections with missing data, independent of
other trains or physical constraints. Note that 9° may or may not be feasible,
and is only used as a regularization term.

We later, in Section 5.5, present a comparison of various objective functions
with respect to their timing error.

4.4 Constraints
4.4.1 Travel Time Constraints

Train timing at each OS-point is governed by prior OS-point timing data and
minimum free run times. Precisely, the completion time xz; ,, for train 7 of
segment m must be greater than or equal to the completion time x; ,,,—1 of the
preceding segment plus the minimum free run travel time 7; ,, specific to that
train and segment. This is written as:

Ti,m Z Tim—1 + Ti,ma (8)

10



where 7 € I and m € M. For trains j traveling in direction 2, we have:
Tjm 2 Tjmt1 + Tjm, (9)

where j € J and m € M. Note that the segment preceding segment m is m + 1
for direction 2, because the track segments labels are numbered in increasing
order in direction 1.

When train ¢ uses siding s (i.e., 0; s = 1), the completion time z; s of the
track segment s depends on the completion time of the previous segment x; s_1
and the minimum siding travel time U; q:

IF o0, =1, THEN ;3 > ®;s-1 + U;s, (10)

where ¢ € [ and s € S C M. Recall based on the numbering of the track
segments, s — 1 € M refers to the track segment immediately before s and that
the siding travel time U; s > T; s, indicating the minimum siding travel time is
longer than the minimum main line travel time for each train at each segment.

A similar constraint on the completion time when trains j € J take the

siding track handles trains in the opposite direction:
IF Gj,s = 1, THEN Ij,s Z ij7s+1 =+ U'7S. (11)

In this formulation, we allow for train-specific minimum free run times.
These allow for differentiation of behavior based on train train characteristics
and could be the result of a train performance calculator or data mining (De Fab-
ris et al., 2010). It is possible to incorporate more detailed train dynamics into
the model by adding additional train performance constraints.

4.4.2 Meet and Overtake Constraints

Meet and overtake events are constrained using logical properties of the binary
ordering variables 7 and ¢.

We constrain the arrival times of opposite direction trains at siding endpoints
such that a train may not enter onto a single-track segment until the train in
the opposite direction has cleared off the single-track segment, plus a safety
headway. Recalling that m; ;., indicates which train (¢ or j) first traverses a
single-track segment m € (M \ S), and takes the value m; ;,, = 1 if train ¢
traverses first and 0 otherwise. Then the meet constraint is written as:

IF mjm =1, THEN x;,, + H; ; < Tjmy1, ELSE @ + H; j < 24 m—1, (].2)

where m € (M\ S), i € I, and j € J. Constraint (12) activates based on the
value of 7; ; », and applies only to single track segments. If 7; ; ,, = 1, then train
1 is arriving at the end of the single track segment before train j, and must have
at least H; ; minutes of safety headway before train j proceeds onto the single-
track segment. Note that because of directionality, the timing variable z; .,
refers to the completion time of the single-track segment by train ¢ and x; ;41

11



refers to the entry time of train j onto the same single-track segment. In the
case that j traverses the single-track segment before train i (m; jm = 0), then
we require train j to finish the single-track segment, plus the safety headway,
before train ¢ may finish segment m — 1 and enter onto the single-track segment
m. Note that in the case that train j traverses m first, the constraint refers to
the opposite end of the single-track segment where the completion time of train
J is zjm and the entry time of train 7 is z; py—1.

In the case of same-direction trains, we impose a following-headway to the
completion times of each track segment depending on which train completes the
segment first. Recall that ¢;, ;, », = 1 if train ¢; € I traverses segment m € M
before train io € I, where i; # iy (i.e., train is follows train 41). In this case,
the completion time z;, ,, of the segment for train 7o must be at least H;, ;,
minutes (the safety headway) after the completion time ;, ,, of train i;:

IF ¢1’1,i2,m = 1, THEN Tiy,m + Hil,ig S xi,z,m (13)

A similar constraint handles the headway separation of trains traveling in di-
rection 2:

IF 95 jo,m =1, THEN ), m + Hj, 5, < Tjym (14)

1,72
The next set of constraints allows overtakes only on siding segments, by forcing
the order of same-direction trains to stay the same on single-track segments.
For direction 1:

Diyigm = iy ig,m—1, (15)

where m € (M \ ), and direction 2:

¢j17j2,m = ¢j17j27m+1’ (16)

where m € (M \ 5).

In a single-track network topology with a high volume of traffic, simultaneous
meet and overtake events occurring at sidings with more than two parallel tracks
do occur, albeit rarely. For example, if a train i; € [ is overtaken by train
io € (I'\ {¢1}) and both 4; and iy meet train j € J, then three parallel tracks
are required. To simplify the presentation, here we only describe the constraints
that consider the case of two parallel tracks. Extensions to three or more parallel
tracks result in additional meet and pass constraints that are tedious but also
result in mixed integer constraints.

Recall that meet events are identified by p; ;o = 1 if a meet occurs between
trains ¢ and j at siding segment s, and p; ; s = 0 otherwise. Overtake events are
identified by p;, 4,,s = 1 if an overtake occurred between trains i; and iy, and
Pis is,s = 0 otherwise. Consider train i; at track segment s. The total number
of meet events train i; experiences with any opposite direction trains in J at s is
> jeg Mirj,s- Similarly, the total number of overtakes that train i; experiences
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with any same direction trains iz € (I'\ {i1}) is 3=, c 1\ i,}) Pirsin,s- To avoid
simultaneous meet and/or overtake events occurring on segment s, we would

require:
D hivgst Y Piins <1 (17)
jeJ io€(I\{i1})
where i1 € [ and s € S.
Likewise, for a train j; traveling in direction 2, we have an analogous con-

straint:
D tigist Y. Pirges <1 (18)
iel J2€(J\{i1})

with j; € J and s € S.

4.4.3 Siding Assignment Constraints

For each meet event and overtake event that occurs, one of the trains must be
assigned to take the siding track, which in turn imposes the minimum siding
travel time constraint. These constraints are activated by the values of p and p
that indicate the occurrence of meets and overtakes, respectively.

Recall that the siding track indicator variable o; s takes the value o; s = 1 if
train ¢ takes the siding track on segment s, and o; = 0 otherwise. The same is
true for train j and the o; s variables. When p; ;s = 1, a meet occurs between
trains ¢ and j at siding segment s. As a result, one and only one of the siding
indicator variables o; 5, 0;s must be 1. This is written as:

IF w; ;s =1, THEN 05+ 05, =1, (19)

wherei €I, je€ Jand s € S.
Likewise, for overtakes occurring in direction 1 between trains iq,i2 € I on
siding s € S ( indicated by the value p;, i, s = 1), we have:

IF Piyin,s =1, THEN 0y, s+ 04,5 = 1. (20)
A similar constraint holds for overtaking trains in direction 2:
IF pjijo,s = 1, THEN 05, s+ 05,5 =1, (21)

where ji,j2 € J and s € S.

Finally, any trains using siding tracks must be short enough to physically fit
on the available track length without interfering with switch points at the end
of the siding track. If the length L; of a train ¢ € I is greater than the length
K of a siding segment s € S, then train ¢ must not be assigned to take siding
s (i.e., 04,5 = 0). This is written as:

IF L; > K,, THEN o;, =0, (22)
with a similar constraint holding for trains j € J:

IF L > K, THEN o;,=0. (23)
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Nashville, TN Rt Chattanooga, TN i

Figure 3: Map of the rail network territory is shown in the yellow dashed box
between Nashville, TN, to Chattanooga, TN, United States. Multi-track sec-
tions are shown in red and single-track sections are shown in blue. The scale
bar represents 60 kilometers.

We note that variables identifying meets p and overtakes p are set by ad-
ditional constraints using logic derived from timing variables, which we do
not enumerate here. Similar sets of constraints are also used to encode the
IF/THEN/ELSE logic used to simplify the presentation of the constraints. The
complete problem formulation results in a mixed integer optimization problem
and does not require the use of a constraint programming solver.

5 Data Reconciliation Case Study on US Class-
1 Freight Rail Data

In this section, the data reconciliation problem from Section 4 is run on data
from a portion of a US class-1 freight railroad network. First, a description of
the historical dataset and computational environment on which the data rec-
onciliation problem is implemented are described. Two sets of experiments are
run to assess the quality of the data reconciliation approach. In the first exper-
iments, the data reconciliation problem is applied to a data which is complete
but contains errors, for example due to upstream data cleaning steps to impute
missing values. In the second set of experiments a synthetic dataset is created
from the real original dataset by decimating entries of the complete dataset.
Since the true entries are known, it allows assessment of the quality of the
imputed solutions from the data reconciliation problem.

5.1 Description of Historical Dataset

The experiments described in this section use a real historical dispatch dataset
from a section of the CSX Transportation rail network in the eastern United
States between Nashville, TN, and Chattanooga, TN, described also in Barbour
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et al. (2018a,b). The time period used is six months between January 1, 2016,
and June 30, 2016. The dataset contains 4368 hours of data and it includes
more than 3,000 individual train trajectories. This section of the network is
approximately 100 miles in length (160 km) and is highlighted by the yellow
dashed box in the map in Figure 3. The test corridor is predominantly single
track (blue sections on the map) with 11 passing sidings (red sections with
dashed line delineations) of varying length. It is a highly congested area of the
CSX network and trains must also contend with significant grade at multiple
locations caused by mountains. The topology of the network combined with the
high volume of traffic result in many meet and overtake events.

5.2 Computational Environment

The data reconciliation problem is written in the AMPL mathematical program-
ming language and solved using CPLEX 12, a commercial MIP solver. The
model is connected to Python code that loads and transforms data, extracts
results, and analyzes the output.

In order to maintain a reasonable size of MIP for the reconciliation problem,
the data reconciliation problem is solved for datasets with a length between 8
and 24 hours (exact values explained in Section 5.4). A sliding time window is
applied such that a period of data, 8-24 hours, is taken from historical records
where any timing point between the bounds of the time period is included. The
bounds of the window then shift to the successive period of time, with one
hour of overlap. A single 24 hour dataset containing approximately 20 trains
yields a MIP of approximately 5,000 variables and 20,000 constraints, of which
approximately 4,000 variables are binary and approximately 15,000 constraints
encode logical constraints between the binary variables.

5.3 Experiment 1: Reconciliation of a Complete but Er-
roneous Historical Dataset

The first set of experiments are conducted on the six-month long historical
dataset, which is complete, but contains errors. Any missing data points are
imputed in upstream data cleaning steps which may or may not result in feasible
trajectories. Using this dataset we apply the data reconciliation problem to
identify and automatically correct erroneous data that do not satisfy operational
constraints. The complete dataset is analyzed in a 12-hour sliding window with
one hour of overlap between windows until all data has been reconciled.

The results are as follows. On average, each 12-hour window of raw his-
torical data contains approximately three errors that are corrected by the data
reconciliation problem. Due to the proprietary and sensitive nature of the his-
torical dataset, detailed descriptions and analysis of the errors (e.g., statistics
on the types and the frequency at which they occur) specific to this dataset
are not discussed in depth here. However, a detailed analysis of the source of
errors could be of practical benefit to a railroad in continual enhancement of
the sources of data streams. To qualitatively assess the quality of the reconciled
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Figure 4: Stringline diagram of historical and reconciled data. Sidings and
multi-track segments are shown as grey shaded areas. Raw train trajectory
data is shown as blue lines. The raw data indicates that two meet and overtake
events, magnified in the figure inset, occur on a single-track segment, which is
infeasible. The red line is the reconciled data that results in feasible trajectories.

data, after application of the data reconciliation problem, one week of the histor-
ical and reconciled data is manually inspected. The manual inspection verified
that the reconciled data only deviates from the historical data in places where
the historical data led to constraint violation. Common errors based on the
manual inspection include infeasible meets and passes and headway constraint
violations due to errors in the timing data.

To give an insight into the type of errors that are automatically corrected,
a representative example of an error in the historical data is shown in Figure 4
(The first eight hours of the 12 hour period of data are shown). Sidings and
multi-track segments, where trains may pass each other, are denoted as grey
shaded areas, with the white areas denoting single-track segments. The his-
torical train trajectories (blue lines) have impermissible meet/overtake events
that are magnified in the figure inset. The errors are evident in the stringline
diagram because the expected meet and overtake events (i.e., the intersection
point between trajectories) occur on a single track segment. In contrast, the data
reconciliation problem produces the same trajectories as the historical dataset
everywhere except in the neighborhood of the infeasible meet/overtake events.
In that area, the reconciled data is indicated by the red line, and it results in
a set feasible trajectories for all trains. There are three tracks at this passing
siding, allowing both a meet and an overtake event to occur simultaneously.
Note in Figure 4 that trajectories that do not cover the entire space correspond
to local trains that complete routes between small intermediate destinations on
this section of the network.
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5.4 Experiment 2: Reconciliation of a Synthetically Dec-
imated Historical Dataset

Next we quantitatively assess the performance of the data reconciliation problem
when imputing missing data with feasible values. We begin with the historical
data and create a dataset with missing entries by decimating (removing) a subset
of the data entries. This is done to allow comparison between the imputed values
produced by the data reconciliation problem with the true historical values that
are known (but decimated in the data given to the data reconciliation problem).
To aid in interpretability of the results, the data is decimated only in areas far
from any infeasible portions of the historical data, i.e., the historical data that is
decimated is feasible. We clarify this is not a limitation of the method (i.e., it can
be applied to a dataset containing both missing and erroneous data), but that
it is not trivial to assess if differences between the imputed and historical data
are due to infeasibility of the historical data, or due to a poor imputed result
from the data reconciliation problem. In the experiments conducted next, the
synthetically decimated data is feasible so the ambiguity is avoided.

5.4.1 Generation of Synthetically Decimated Historical Datasets

The synthetically decimated historical dataset is created by removing known
trajectory points around meet and overtake events in the reconciled historical
data. At each of these events, a particular number of data points (per train)
immediately before and immediately after the meet or overtake event are re-
moved. This results in missing data centered around known meet and overtake
events. Figure 5 shows an illustration of this removal process for a meet event
between two trains. One point before the meet event in each trajectory and one
point after the event in each trajectory are removed.

We assess and compare the quality of the corrected and imputed data from
data reconciliation with imputed data from a naive linear interpolation ap-
proach. In Figure 5, the red lines and points represent the values imputed via
linear interpolation. The interpolation uses the nearest known trajectory points
to calculate the average speed across the missing trajectory section, from which
the missing points are interpolated.

There are other methods more complex than linear interpolation to which
data reconciliation could be compared — speed-regularized interpolation, delay
minimization, and energy conservation, to name a few — but linear interpolation
is used here as a straightforward baseline method that might realistically be
implemented as a first step in data cleaning. Interpolating points based on speed
regularization or train performance could more closely match train segment
runtimes, but requires mining historical data or manually setting track segment
speeds. Naturally, one could supplement a naive interpolation approach with
logic to fix infeasible meets or passes, but enumerating all such required logic
essentially recreates the constraint set of the optimal dispatch problem.

The quality of the imputed trajectory points is assessed by ¢) evaluating the
location at which the recovered trajectories estimate meet and overtake events
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Figure 5: Four known trajectory points are selectively removed around
meet/overtake events that are identified in historical data. One point imme-
diately before the event and one point immediately after the event are removed
for each train. These deleted points are shown as black ‘X’ markers and the
missing trajectory segments are highlighted in light blue. A linear interpolation
to impute the missing data (red points and lines) can result in infeasible meets.

to occur and i) calculating the time difference between each imputed value and
the known trajectory value.

The location of each meet or overtake event found in the reconciled data is
feasible if and only if it is on a siding or multi-track segment and does not violate
other constraints. This location is correct if it matches the true location of the
event indicated by the known data. Note it is possible for linear interpolation
to produce feasible or infeasible, and correct or incorrect imputed values. In
contrast, data reconciliation always produces feasible imputed values which may
or may not be at the correct location.

The quality of the timing data is assessed via the mean absolute error (MAE)
and mean squared error (MSE) of the imputed values compared to the historical
values that are decimated. Letting xj, denote the vector of reconciled values,
and with a slight abuse of notation, let Zy denote the historical data which is
known but synthetically decimated in the experiment (i.e., the assumed ground
truth). The quality of the imputed values are:

1. . 1. .
MSE= — 7y —2jlf,  MAE= [l — sl (24)
| Tl [Tl
where |Zy| denotes the number of imputed values.

5.4.2 Results on Synthetically Decimated Datasets

The results of the data reconciliation experiments on the synthetic, incomplete
dataset are presented next. A total of 45 data reconciliation experiments are
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Figure 6: Mean absolute error and mean squared error of timing values for each
missing point imputed by interpolation and reconciliation. MAE and MSE are
averaged across trials, grouped by the total number of missing points around
each meet or overtake event.

conducted on the six month dataset. Each experiment is defined by i) the
number of points per train that are removed immediately before a meet or
overtake event, ) the number of points per train that are removed immediately
after a meet or overtake event, and 4ii) the length of the sliding window of data
that is reconciled. For example, the first experiment removes a single point per
train before and a single point per train after each meet/overtake event, and the
data reconciliation problem is solved on a sliding eight hour window through
the six month dataset. The remaining experiments are defined by considering:
i) the number of missing points per train immediately before a meet/overtake
event (1, 2, or 3 points), #) number of missing points per train after an event (1,
2, or 3 points), and éii) the sliding window length (8, 12, 16, 20, or 24 hours).

The MAE and MSE for trajectory points imputed by data reconciliation
and linear interpolation are shown in Figure 6. The results are grouped by the
number of total missing points around each meet or overtake event (i.e., the
total points immediately before and after each event, resulting in between two
to six missing points). Data reconciliation results in a 5-15% reduction in both
MAE and MSE compared to linear interpolation.

As the number of missing data points increases, MAE and MSE generally
decrease. This is due to the fact that when a small number of points around a
meet or pass event are removed, these trajectory points are naturally the most
variable due to incongruous train speeds (i.e., one train slows down significantly
or stops to let the other pass). When larger numbers of points are removed,
this captures a larger period of free-run operation in the trajectory, where train
speed is closer to the train’s mean speed value, which is naturally assumed by
linear interpolation. The period of free-run operation away from the meet or
overtake event thus reduces the mean of the point errors.

The fractions of meet and overtake events that are found to occur at a fea-
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Figure 7: Fraction of meet/overtake events found by data interpolation and
reconciliation that are (a) found to occur at a feasible location, and (b) at the
correct location.

sible location when imputed by data reconciliation and by linear interpolation
are shown in Figure 7a. The trial results are grouped by total number of points
missing (i.e. points immediately before and after an event). The multiple values
for a given number of points correspond to the various experiments run with
differing points missing before or after each event but resulting in the same
number of total missing points per event. Because the data reconciliation prob-
lem uses the physical constraints when interpolating the points, 100% of the
imputed meet/overtake events are feasible. In contrast, linear interpolation re-
sults in feasible meet and overtake locations in only 40-70% of cases and exhibits
variability across the different experiments for the same number of total missing
points.

Figure 7b shows the fraction of meet and overtake events that are estimated
to occur at the correct location as indicated by the known data, grouped by the
number of missing points around each event. Reconciliation recovers the correct
location for meet and overtake events in approximately 95% of cases, while
linear interpolation recovers only 20-50%. Additionally, reconciliation preforms
consistently across trials, with interpolation demonstrating higher variability in
performance.

The increased accuracy of interpolation finding feasible meet/overtake lo-
cations under larger numbers of missing points is due to a longer horizon of
constant-speed approximation being a more accurate predictor of where train
trajectories will intersect than a short horizon approximation. The short hori-
zon approximation is sensitive to one train arriving at the siding early because
it must come to a stop before the other train passes.

The reconciliation problem executes very quickly, even on large amounts of
data. Solve time increases non-linearly as a function of the number of hours used
for the sliding window, as seen in Figure 8b. The number of missing points per
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Figure 8: Solve time of data reconciliation model by length of sliding data
window.

overtake event does not have a substantive effect on the solve time, as shown in
Figure 8a. The solve times for two and three missing points per meet/overtake
event are slightly longer than trials with larger numbers of missing points, but
follow a similar trend to the larger numbers of missing points. Solve time of the
reconciliation model is low due to the fact that the majority of constraints are
already satisfied and the number of corrections required between historical and
reconciled data is low. Based on the solve time for the reconciliation model, a
year of data from a large rail network (e.g., track networks of freight railroad
companies in the United States) could be reconciled in about 20 hours of total
CPU time with a 24 hour sliding window.

5.5 Experiment 3: Comparison of Objective Functions for
Reconciliation

In this experiment, we assess a selection of objective functions on the data
reconciliation problem with respect to their ability to reconstruct the syntheti-
cally decimated dataset described in Section 5.4 with minimal timing error on
trajectory points. The performance of particular objective functions may dif-
fer by dataset, but this survey is intended to benchmark performance of some
candidate functions.

Each of the six candidate objective functions enumerated in Table 1 (the
first of which is used in the other experiments throughout this work) is tested
on a 12-hour sliding window of the same dataset with four trajectory points, two
upstream and two downstream of each meet and pass event, synthetically dec-
imated. Total mean absolute error and mean squared error were calculated by
comparing the reconciled trajectory points to the trajectory points before dec-
imation in each 12-hour window. MAE and MSE are calculated per trajectory
point across the full six months of the dataset.

The results of the objective function comparison in terms of trajectory point
MAE and MSE are shown in Figure 9. Three different methods are used to
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objective func- | equation definitions

tion

Ly, constant speed | ||zq — Zall1 + 2% is interpolated assuming con-

[lzw — 2|1 stant speed across track segments

with missing data.

Lo, constant speed | ||zg — Zql|2 + x° — see previous.

oy — 2l

Ly, average seg- | ||zq — Zalll + x* is interpolated assuming track

ment speed [lzw — 2|1 segment travel times are dis-
tributed proportional to average
historical segment speeds.

Lo, average seg- | |lzq — Zalla + 2% — see previous.

ment speed [lzw — 2|2

L1, train type aver- | ||zq — Zql|1 + z'' is interpolated assuming track

age segment speed | ||zy — 2|1 segment travel times are dis-
tributed proportional to aver-
age historical segments speeds,
grouped by corresponding train
type.

Lo, train type aver- | ||zq — Zall2 + 2t — see previous.

age segment speed | |lzy — 2|2

Table 1: List of objective functions used for comparison, including description
of variables used for missing data imputation.
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Figure 9: Error results of objective functions across £; and Lo versions of each
method for regularizing imputed data points: constant speed (z°%), average
historical segment speed (2*°), and average historical segment speed by train

type (z*).

regularize imputed data according to the variables z°, %%, and x**. The in-
troduction of historical average segment speed (z°) reduces MAE and MSE by
approximately 15% for both £; and Ly cases. Given the higher variability of
this network section relative to others, the effects of this segment-level speed
variable may differ. Refining the average segment speed according to train type
does not have a substantive impact. Introducing historical train performance
will likely enhance reconciliation in most cases because it better captures the
timetable characteristics.

When comparing the £; and L9 cases within each regularization method, we
see that the L5 objective reduces MSE by over 50% (Figure 9b), at the expense
of a slight increase in MAE of 4-5% (Figure 9a). This is to be expected for
the minimization of the £5 norm, which reduces large deviations for corrected
data points by introducing small, additional deviation (compared to the £
objective) for points that have small corrections. In general, the £; norm will
find a sparser set of trajectory modifications than the Lo, which favors smaller
but more numerous modifications.

Ultimately, we believe that the large reduction in MSE of L5 objective func-
tions justifies the small increase in MAE and that the introduction of historical
data is a worthwhile addition to the reconciliation methodology. We therefore
make the recommendation for future use (at least based on this dataset), of
the L5 objective function with regularization according to the historical average
segment speed, x*°.
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6 Conclusion

Given the growing emphasis on data driven analysis and algorithms to improve
operational efficiency, tools are needed to automate the cumbersome data clean-
ing process. This work introduced the data reconciliation problem as a tool to
correct errors and impute missing values in operational rail datasets. The data
reconciliation problem leverages operational constraints that are commonly used
in dispatch optimization in a new context that enables efficient reconciliation of
infeasible historical data. To demonstrate the viability of the method, the data
reconciliation problem is instantiated and applied to a real six-month dataset
containing several thousand trains on a complex portion of a US Class-1 rail
network. The data reconciliation problem is found to identify and correct erro-
neous data, as well as impute missing data in a way that is always feasible and
often correct.

One of the powerful aspects of the data reconciliation technique is that it
is a direct extension of any optimization-based train dispatching model. It will
ensure that empirical data corresponding to such model obeys the particular
constraints outlined in it. A shortcoming produced by this very fact is that the
data reconciliation technique can only perform to the fidelity of the underlying
model. For example, if the dispatching logic employed does not accurately
model physics of individual trains, then trajectories can not be guaranteed to
obey these physics.

Numerous extensions to the data reconciliation problem are possible. For
example, a detailed design and comparison of different performance measures
in the data reconciliation problem objective function might lead to improved
accuracy of the reconciled data. It will also be interesting to investigate the
sensitivity of the data reconciliation problem to different constraint formula-
tions. In addition to the optimization model discussed in this work, we also
intend to test the data reconciliation model on an optimization-based dispatch-
ing formulation for multi-track network topologies. Identification of systematic
errors that appear in the data, concentrated by both individual trains and by
locations, is a logical extension that would bring practical benefit for a specific
data source. These error frequencies could also be used to construct a weighted
norm objective functions that considers reliability of data by location or the
influence of potential error-inducing effects in its modifications. Empirical vali-
dation of erroneous data using supplementary sources such as GPS data might
also help identify shortcomings in the approach. Finally, we note that the data
reconciliation problem posed here does not identify inefficient but operationally
feasible errors. Extensions to identify these errors would be a valuable addition
to the rail data cleaning toolbox.
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