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Abstract

This article presents data collected through a set of experiments with nine to 10
vehicles driving on a ring road constructed on a closed track. Vehicle trajectory data
is extracted via a series of vision processing algorithms (for background subtraction,
vehicle identification, and trajectory extraction) from a 360-degree panoramic camera
placed at the center of the ring. The resulting trajectory data is smoothed via a two-
step algorithm which applies a combination of RLOESS smoothing and regularized
di↵erentiation to produce consistent position, velocity, and acceleration data that does
not exhibit unrealistic accelerations common in raw trajectory data extracted from
video. A subset of the vehicles also record real-time fuel consumption data of the
vehicles using OBD-II scanners.

The tests include both smooth and oscillatory tra�c conditions, which are useful
for constructing and calibrating microscopic models, as well as fuel consumption es-
timates from these models. The results show a an increase in fuel consumption in
the experiments in which tra�c oscillations are observed as compared to experiments
where vehicles maintain a smooth flow. However, this is partially due to the higher
average speed at which vehicles travel in the experiments in which oscillatory tra�c is
observed.

The article contains a complete, publicly available dataset including the video data,
the extracted trajectories, the smoothed trajectories, and the OBD-II logs from each
equipped vehicle. In addition to the dataset, this article also contains a complete
source code for each step of the data processing. It is the first of several experiments
planned to collect detailed trajectory data and fuel consumption data with smooth and
unsteady tra�c flow in a controlled experimental environment.
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1 Introduction

1.1 Motivation and Related Work

Tra�c instabilities such as stop-and-go waves and speed oscillations are a common phe-
nomenon in dense freeway tra�c. Such waves, often referred to as “phantom jams” have
been shown to arise in uniformly-flowing tra�c, even in the absence of geometric bottle-
necks [1]. The development of tra�c models that exhibit instabilities such as oscillatory
tra�c has been of considerable interest in the past few decades [2, 3, 4, 5, 6]. Much of this
focus has been on microscopic car-following models, where the trajectory of each vehicle
is evolved over time. Often, the evolution equation of each vehicle takes the form of an
ordinary di↵erential equation [7]. Despite the great interest in modeling tra�c instabilities,
there are relatively few high-quality trajectory datasets that exhibit oscillatory tra�c and
tra�c waves. This is largely due to the di�culty in collecting such datasets. Consequently,
calibration of microscopic models is hindered by the lack of abundant trajectory data.

One of the most extensive and widely used trajectory datasets is the Next Generation
Simulation (NGSIM) [8] dataset, which was collected “in support of tra�c simulation with a
primary focus on microscopic modeling.” The dataset was collected using video cameras on a
900m segment of freeway I-80 in California over 30 minutes in December of 2003. In April of
2005, three additional 15 minute duration data collection experiments were performed on a
500m segment of the same highway. Later in 2005, a 640m segment of US-101 in Los Angeles
was instrumented, and three consecutive 15 minute datasets were recorded. The NGSIM
dataset remains an extremely valuable tool for the micro simulation community, however
one must analyze the data with care. As pointed out in several recent works [9, 10, 11],
the velocity and acceleration data are prone to large errors caused by the application of a
finite di↵erence calculation on the vehicle position. If properly smoothed, the data can be
used to calibrate realistic acceleration behaviours and for estimating fuel consumption in
congested tra�c (see Treiber et al. [12] and Piccoli et al. [13]). The primary limitations of
the NGSIM dataset are that it is limited in spatial and temporal scope, and it lacks measured
fuel consumption data.

In addition to the field data collection e↵orts on freeways in California, a pioneering
experiment to demonstrate the generation of tra�c instabilities that arise from uniformly-
flowing tra�c was conducted by by Sugiyama et al. [1] in 2008. The experiment took place
on a single-lane circular track 74m in diameter. The researchers instructed a number of
drivers (22-23 vehicles) to drive around the track at speeds of approximately 30 km/h. In
the experiment, the initially-uniform tra�c flow devolves into a tra�c wave that travels back
at approximately 20km/h. The video footage from the experiment is widely used to motivate
the need to model stop and go dynamics in microscopic tra�c flow models. Datasets con-
taining the position estimates of all vehicles during an approximately four minute test with
22 vehicles, and an eight minute test with 23 vehicles are available from the project website
at: http://traffic.phys.cs.is.nagoya-u.ac.jp. Unfortunately the dataset does not
contain fuel consumption data which is an increasing area of concern at the intersection of
transportation engineering and the environment.

Outside of the NGSIM and Sugiyama et al. experiments, other notable data collec-
tion e↵orts have also been executed. For example, the Mobile Century dataset [14] contains
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detailed GPS trajectory data from a small subset of vehicles for several hours on a freeway in
California, but the coarseness of the GPS position data and the lack of trajectory data from
any non-GPS-equipped vehicles limits its use for microscopic tra�c modeling. At Virginia
Tech, the Center for Data Reduction and Analysis Support has collected and curated several
petabytes of data on a broad range of safety and naturalistic driving topics, including data
obtained via an on-board data acquisition system as part of the Second Strategic Highway
Research Program (SHRP 2) Naturalistic Driving Study (NDS). Because the dataset con-
tains human subjects data, the majority of the data is not publicly available for download.
Moreover, like the Mobile Century dataset, because not all vehicles in the tra�c stream are
equipped with the data collection devices, queries about the onset of oscillatory tra�c are
di�cult to answer from this dataset alone.

1.2 Outline and Contributions

In line with the data collection e↵orts described above, the aim of this paper is to provide
an experimental dataset that i) exhibits the development of tra�c instabilities from uniform
tra�c, and ii) contains vehicle performance data such as fuel consumption as recorded by the
OBD-II data from a subset of vehicles, alongside the smoothed trajectory data obtained from
video processing and trajectory smoothing. The published dataset with this article contains
the raw video, the raw trajectory data extracted from the video, smoothed trajectory data
suitable for microscopic model calibration, and fuel consumption data as recorded by on-
board diagnostics II (OBD-II) devices. A set of four tests (three to five minutes) with nine
and 10 vehicles on a 30m diameter track are published with this article. The dataset may
contribute to improved fuel consumption modeling in the presence of tra�c waves. To this
end, the article also provides a complete set of algorithms to extract vehicle-level trajectory
information from video data collected using a panoramic 360-degree video camera on a
circular track. For the purpose of this article, we consider oscillatory tra�c to be tra�c
in which visible tra�c waves are present. The source code for each algorithm applied to
the dataset is also available with this article. This work is preliminary, and more tests are
planned to increase the number of trajectory datasets available with fuel consumption data.

The remainder of the article is organized as follows. We present a method for conduct-
ing a ring-road experiment to verify the presence tra�c instabilities in uniform tra�c in the
Methodology section. Specifically, in a subsection on Video processing for trajectory recon-
struction, we introduce a vision pipeline (i.e., a collection of o↵ the shelf algorithms applied
to our specific problem) for tracking vehicles using k-means clustering and Density-Based
Spatial Clustering of Applications with Noise (DBSCAN). In the subsection on Smoothing
methods, we discuss how to smooth the vehicle trajectories such that they are consistent
with respect to di↵erentiation and integration while mitigating the error growth due to dif-
ferentiation of the positional data. In the next subsection on Vehicle statistics from OBD-II
scanners, we explain how we instrument vehicles to record real-time fuel consumption data.
In the section on Application of methods to ring road data, we apply the methods to an
experimental dataset collected on June 29, 2016 on a closed track ring road in Champaign,
IL, designed in the same spirit of the Sugiyama et al. [1] experiment. Finally in the last
section the conclusions and our future plans for larger and more comprehensive experiments
are detailed.
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2 Methodology

2.1 Overview

A panoramic camera and several OBD-II scanners are used to reconstruct the vehicle trajec-
tories and record the fuel consumption of the vehicles. The panoramic camera used in the
experiment is a 360 degree camera manufactured by VSN Mobil with a resolution of 3840 ⇥
640 and records at 30 frames per second. The OBD-II scanners used in the experiments are
the OBDLink LX model. The panoramic camera is placed at the center of the track, while
the OBD-II scanners are installed in the vehicles, and are connected to various Android
devices to log the OBD-II data stream. The panoramic camera is chosen because of the
ease of implementation and its potential to provide high fidelity trajectory data. Next, the
algorithms used to process the video data and extract trajectories are briefly described.

2.2 Video processing for trajectory reconstruction

Vehicle trajectories are reconstructed from the panoramic video by means of background
subtraction and image segmentation. Roughly, background subtraction is the process of
identifying for each pixel if it is part of the background image, or part of one of the vehicles
to be tracked. For pixels that are identified as belonging to a vehicle to be tracked, image
segmentation is the process of determining to which vehicle each foreground pixel belongs.
Background subtraction and image segmentation are applied frame by frame throughout the
video data. A final step to construct trajectories is to assign pixel clusters in consecutive
frames as belonging to the same vehicle, thereby connecting the vehicle positions over time.
In this work, background subtraction is achieved through dense optical flow [15] and image
segmentation through k-means clustering. The assignment of clusters across each frame to
vehicle trajectories is achieved through the application of DBSCAN. This process is described
in more detail below.

To separate vehicle pixels from the background in the background subtraction step,
dense optical flow [15] is applied. Dense optical flow is a computer vision algorithm that
estimates the apparent motion of pixels in two consecutive frames. Dense optical flow works
well when the following assumptions are valid: i) the object appearance remains constant
across adjacent frames; ii) the motion of nearby pixels are similar (e.g., objects to be tracked
occupy more than a single pixel); iii) points do not move very fast in the image scene (i.e.,
the object can be found in the same general area in the next frame). When the above
assumptions hold true, moving objects are identified at a pixel by pixel level, and the relative
motion of each pixel is reported. It is assumed that moving objects correspond to vehicles,
and non-moving objects are considered part of the background scene.

Background subtraction via optical flow has limitations that must be addressed when
applying it to extract vehicle trajectory data. For example, the algorithm will fail when
there are objects in the background that are also moving (e.g., tra�c on adjacent roadways,
researchers walking around during the experiment, etc.). Optical flow based background
subtraction will also fail to extract the vehicle positions if the vehicles come to a complete
standstill during part of the experiment. This occurs, for example, at the start of the test,
at the conclusion of the test, and if a complete stop-and-go wave is formed. Nevertheless, for

4
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Figure 1: Segmenting vehicles from the background using optical flow and k-means: (a) A
frame extracted from the panoramic camera video converted to an annulus so the left and
right image boundaries are connected; (b) The separated foreground after using optical flow
for background subtraction. Dark region is the removed static background, while the rest
are the moving foreground; (c) The result of k-means clustering on the foreground pixels.
Distinct clusters are colored di↵erently, with the centers of the clusters marked by a cross.
The partitioning correctly expresses the physical presence of the vehicles in the scene.

the experiments conducted as part of this preliminary work, optical flow is shown to provide
good performance. Improved algorithms may be necessary in future experiments, as noted
in the future work section.

After removing the static background, k-means clustering is then applied to segment
foreground pixels into individual vehicles in the frame. Given the number of clusters, the
k-means algorithm finds a partitioning that minimizes the variance within each cluster. It is
one of the most widely used clustering techniques in the research community, and with the
implementation of e�cient heuristics, it is able to scale to very large datasets with convex
and isotropic clusters with relatively low dimensionality. In addition, since the number of
vehicles run during each experiment is known a priori, one is able to simply set coe�cient k
equal the number of vehicles on the ring, leading to excellent clustering performance.

One di�culty in clustering the foreground data is due to the panoramic video bound-
ary. In polar coordinates on the ring, pixels located at 359 degrees are likely to belong to
the same vehicle as pixels located at 1 degree. Unfortunately, in the (x, y) coordinates of the
panoramic image, the periodicity of the image is lost, and consequently a direct application
of k-means will not cluster the pixels as belonging to the same vehicle. To circumvent this
di�culty, the panoramic video is first warped into an annulus as shown in Figure 1, where
the left and right boundaries are attached together. Clusters can be calculated directly in
the transformed space without concern for the periodic image boundary condition.

After application of k-means to group the foreground pixels associated with each
vehicle, the center of each vehicle is estimated as the k-means cluster center. With the cluster
centers marked in each frame, the final step is to connect cluster centers in two adjacent
frames as belonging to the same vehicle, so the trajectory can be reconstructed. Essentially,
each cluster center is located at a position x and y in the annulus frame of reference (i.e.,
Figure 1, and is also associated with a timestamp identified by the video frame. The set
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Figure 2: Reconstructing vehicles’ trajectories through DBSCAN. The raw point cloud of
k-means cluster centers in space and time (left) prior to clustering into trajectories. The
processed data cloud (right) after applying DBSCAN. Spirals are colored di↵erently to dis-
tinguish the trajectories of di↵erent vehicles in the test.

of {x, y, t} points for all vehicles create a family of points in three dimensional space which
can further be clustered into vehicle trajectories. To achieve this clustering across time,
DBSCAN is applied.

DBSCAN is a density-based clustering technique that groups together points that are
close in space and time while discards sparsely spaced points as outliers [16]. Unlike k-means,
it does not take as an input the number of clusters, and instead determines the number of
clusters based on two parameters that define how clusters are created. Specifically, it has
two parameters that define how high the density of points in space need to be in order to
be considered as a valid independent cluster, or if the points will be assigned to an existing
cluster. Similar to spectral clustering and unlike k-means, DBSCAN can discover non-convex
shaped structures, but runs much faster than spectral clustering. Because the trajectories
in space-time are dense non-convex 3D spirals (see Figure 2), DBSCAN is therefore picked
over spectral clustering and k-means clustering for reasons of e�ciency and accuracy. An
application of DBSCAN to two vehicles driving along the ring is shown in Figure 2.

The algorithms described above are very well established methods and there are many
o↵-the-shelf libraries available in the research community. For example, the computer vision
library OpenCV [17] contains an implementation of dense optical flow based on the algorithm
proposed in [15], while the Python machine learning library scikit-learn has highly optimized
implementations of k-means clustering and DBSCAN [18]. Moreover, it also implements
mini batch k-means clustering, a variant of k-means clustering with nearly the same level
of accuracy but faster runtime [19]. We leverage the mini batch k-means implementation,
which reduces the runtime of the image segmentation step from approximately one hour per
experiment down to under 30 minutes. These open-sourced libraries are used in this paper
to produce the results presented in the application section to follow.
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2.3 Smoothing methods

The trajectories collected with video processing techniques are usually highly noisy. There-
fore we need to pre-process data via smoothing methods and robust numerical di↵erentiation
to obtain reliable velocity and acceleration profiles.

Several standard smoothing techniques are available for improving the regularity of
noisy data, like for example the local regression using weighted linear least squares and a
second-degree polynomial model (LOESS) and the local regression using weighted linear least
squares and a first-degree polynomial model (LOWESS). In this paper we use the robust
version of LOESS. The robust LOESS (RLOESS) first smooths the value at a given point
through local regression using nearby data points (the range of the data points is chosen
by a parameter called span) and then it calculates the residuals from the regression and it
assigns a robustness weight to each data point within the span. If we apply the RLOESS
to position, velocity, and acceleration separately, di↵erent spans must be used due to the
fact that the regularities of these quantities decrease. It is worth noticing in this context
that applying the smoothing separately to locations, velocities, and accelerations means that
these quantities may no longer be consistent, i.e., the smoothed speed may be no longer the
derivative of the smoothed location.

Instead of applying the smoothing method to individual trajectories of location, ve-
locity, and acceleration we use a numerical di↵erentiation scheme called the Tikhonov regu-
larization to derive the velocity and the acceleration from the smoothed position data. Such
a scheme is in fact robust against noise in the data and provides speeds that are consistent
with locations. In the following we give a high level description of the method, we refer to
[13] for more details.

The main idea of the method is represent the derivative g of a certain function f
as the solution to a minimization problem, whose cost function is the sum of two terms: a
regularization term and a data fidelity term. The square of the L2 norm of g0 (the derivative
of g) is chosen as the regularization term, which penalizes irregularities in the derivative.
With such choice the derivative g is forced to be continuous. Instead, the data fidelity term
penalizes the discrepancy between the integral of the derivative g and the function f . These
methods are used to compute the velocity and the acceleration from the vehicle position
data extracted from the video.

2.4 Vehicle statistics from OBD-II scanners

In addition to the vehicle position, speed, and acceleration using the 360-degree camera,
we also use OBD-II scanners to connect with the on-board computer on each vehicle and
log performance data. OBD-II compatibility is required for all vehicles that are sold in the
United States past 1996. Every vehicle is required to publish vehicle performance statistics
such as engine speed, velocity, and fuel rate. Using an OBD-II scanner, one can record these
quantities at up to 20Hz. This supplements the video trajectory data by giving insight into
how much fuel is being used in both uniformly flowing and oscillatory tra�c.

For the purposes of this experiment, vehicle speed (km/h), instantaneous fuel econ-
omy (l/100km), total fuel economy (l/100km since start of test), fuel rate (l/hr), engine
speed (rpm), air mass flow rate (grams per second), absolute throttle position (percent),
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Table 1: Summary statistics for each experiment

Test # of Vehicles Duration (s) Avg Spacing +/- Stdev (m) Avg Headway +/- Stdev (s)

A 10 250 9.31 +/- 1.43 5.44 +/- 1.91
B 9 330 10.34 +/- 2.07 5.76 +/- 2.16
C 10 195 9.41 +/- 1.33 4.89 +/- 2.34
D 9 225 10.30 +/- 2.02 5.19 +/- 2.28

relative throttle position (percent), and acceleration (m/s2) from the tablet in the vehicle
are recorded. These parameters are selected since they can be used to determine how tra�c
instabilities a↵ect fuel consumption.

While the data is collected at 20Hz, not all parameters are updated at the same rate
by the on-board computer. Furthermore, vehicle velocity is only reported to the nearest
1km/h, which makes OBD-II data better for summary statistics of vehicle performance, and
suggests that the trajectories obtained using the 360-degree panoramic camera are better
suited for precise velocity profiles.

3 Application of methods to ring road data

3.1 Experimental setup

This section details a set of four tests (two each) with nine vehicles and 10 vehicles on a
ring with a 30m diameter. While a larger-diameter track may render a more realistic driving
scenario with a smaller steering angle, the diameter selected for this study was su�cient
to re-create the driving conditions desired to collect vehicle trajectory data in oscillatory
tra�c. We influence the density of tra�c on the ring by removing a vehicle between tests,
but keeping the total length of road the same. In order to approximate a road of infinite-
length, a circular ring is laid out on a large, flat paved surface. The single-lane ring road is
marked using cones on the inside edge of the lane. The circumference of the center line of
the road is 94m. This is selected such that the vehicle density on the road is similar to that
of the Sugiyama experiment [1] when nine vehicles are on the road. When setting the track,
a 3m lane width is considered.

At the center of the ring, a camera capable of recording the surrounding 360 degrees
is placed on a tripod in order to record vehicle positions. All 10 rental fleet vehicles are
instrumented with OBD-II sensors which are paired via Bluetooth to a tablet which runs an
app to log the data. Note that due to technical problems with the data logger, only five of
the OBD-II loggers successfully collected data during the experiment. All of the vehicles are
labeled with large numbers on the side, and have their vehicle identification number (VIN)
recorded.

Before each test, vehicles are aligned on the track such that there is an equal inter-
vehicle spacing at the start of the test. For tests A and B, drivers try to maintain a constant
velocity, while in tests C and D drivers are instructed to follow the vehicle in front of them
as closely as they feel comfortable. The number of vehicles in each test and total time for
which the test is allowed to run for each test is summarized in Table 1.
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Table 2: Summary of vehicles used in experiment and corresponding average fuel rate (l/hr)
for each experiment. Note that due to low quality OBD-II loggers on vehicles 1-5, no data
was collected.

Veh.
#

Make &
Model

Fuel rate,
Test A (l/hr)

Fuel rate,
Test B (l/hr)

Fuel rate,
test C (l/hr)

Fuel rate,
Test D (l/hr)

6 Ford Focus 1.38 1.26 2.22 2.02
7 Chrysler 200 1.25 1.37 1.74 1.82
8 Ford Fusion 2.09 2.15 2.67 2.79
9 Nissan Versa Note 1.22 1.20 1.26 1.28
10 Nissan Versa Note 1.18 N/A 1.24 N/A

3.2 OBD-II data

The OBD-II data for all experiments conducted are collected and made available online at
https://uofi.box.com/v/RingRoadTRB for future research.
For analysis, we consider the the instantaneous fuel consumption of vehicle 6, a 2016 Ford
Focus with VIN 1FADP3K26GL298016. The fuel consumption collected using an OBD-
II scanner of this vehicle in test A (10 vehicles, smooth tra�c) and test C (10 vehicles,
oscillatory tra�c), as well as test B (nine vehicles, smooth tra�c) and test D (nine vehicles,
oscillatory tra�c) is compared. The resulting plot in Figure 3 indicates that vehicle 6
consumed on average nearly twice as much fuel per unit time when driving in oscillatory
tra�c as compared to when driving in uniformly-spaced tra�c. This is confirmed in Table
2, which shows the average fuel rate for each instrumented vehicle for each test. For every
vehicle, the fuel consumption is higher for tests with oscillatory tra�c (C and D) than smooth
tra�c (A and B). It is important to note that this is due in part to the lower average speed at
which the vehicles travel when in non-oscillatory tra�c. Therefore, vehicles are using more
fuel, but also traveling further per unit time. Again, note that vehicles 1-5 were equipped
with low-quality OBD-II loggers and consequently did not record useful data.

3.3 Vehicle trajectories

The full trajectory dataset is published online at https://uofi.box.com/v/RingRoadTRB.
The source code is published at: https://github.com/Lab-Work/TRB_Conference_2016.
As a summary, Table 1 lists each individual test of the dataset, as well as summary statistics
regarding the average headway and spacing (to the center of the vehicle as calculated by the
vehicle position estimate obtained from the camera).

To give a closer look at the vehicle trajectory data, the trajectories from test A (see
Figure 4) and test C (see Figure 5) are plotted. The trajectory data from test A and test C
show how di↵erent individual driver behavior can collectively a↵ect the global characteristics
of the tra�c by turning smooth tra�c into oscillatory tra�c. For example, Test A, drivers
are instructed to keep a constant cruising speed throughout the test. As a result, no apparent
tra�c wave wave is observed in the trajectory plot. In Test C, drivers are instructed to follow
the vehicle in front of them as closely as they feel comfortable. As a result of the change
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Figure 3: Comparison of fuel burn rate of a 2016 Ford Focus in both smooth and oscillatory
tra�c. Top subfigure shows comparison of fuel rate for vehicle 6 during two 10-vehicle
tests, both with and without oscillatory tra�c, while the bottom subfigure makes the same
comparison for the two 9-vehicle tests.
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Figure 4: Trajectories for Test A: The test has 10 vehicles which are evenly spaced 10.45m,
the same spacing as the 22-vehicle Suigiyama experiment. The test lasts 4 minutes and 10
seconds.

of instructions, oscillations in the tra�c flow are observed, with the strongest variations
produced in the 60-120s interval.

For tests B and D we present the estimated velocity and acceleration both from the
smoothed camera data and from the OBD-II scanner in Figure 6. This demonstrates the
higher-quality estimates obtained when smoothing the optical flow velocity as compared to
the data obtained from the OBD-II data. Specifically, the acceleration data obtained from
the OBD-II scanner produces unrealistically high acceleration rates that oscillate at unreal-
istically high frequencies. It is also worth noting that the un-smoothed velocity estimates
from optical flow are not included in Figure 6 since they are too noisy to be contained in the
same plot. When comparing the velocity and acceleration estimates in Figure 6, we observe
greater variation in test D than test B. This is a result of the traveling wave observed in test
D that was not observed in test B.

4 Conclusion and future work

The main focus of the present article is the collection and processing of trajectory and fuel
consumption data from vehicles in oscillatory tra�c generated on a closed ring road track.
The article provides a detailed description of the vision processing algorithms used to extract
noisy trajectory data in the form of a position timeseries. It also includes a method to smooth
the trajectories to produce consistent velocity and acceleration trajectory data from noisy
position data. It is noted that the estimated velocity data is higher resolution than the
OBD-II velocity data, which only reports the velocity to the nearest kilometer per hour. In
addition to providing the video, raw trajectory, smoothed trajectory, and OBD-II data from
the four tests, this article also contains source code for all processing algorithms used to
construct the various datasets. It is hoped this will lead to a more robust data processing
pipeline and support additional data collection e↵orts.

Several areas are open for future work. The present nine and 10 car experiments are
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Figure 5: Trajectories for Test C: The whole process lasts for 3 min and 15 sec, where
oscillations occur after 30s into the test. The tra�c wave is at its strongest within the 60 -
120s interval.
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Figure 6: Comparison of velocity and acceleration estimates from OBD-II scanner and optical
flow of vehicle 6 for test 2 and 4. OBD-II introduces significant rounding in the velocity
estimates and produces noisy acceleration estimates.
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part of a larger e↵ort to collect fuel consumption data and detailed trajectory information
from vehicles in oscillatory tra�c. This experiment is the first and smallest of several planned
experiments, which will include full-scale tests to replicate the results in Sugiyama et al. [1]
but with additional fuel consumption data collection, as well as other detailed diagnostics
provided by the OBD-II scanners.

Due to the physical constraints on the track size, the maximum speed drivers could
comfortably reach in the experiments presented was restricted. Thus, the fuel consumption
measurements recorded may not be representative of typical highway driving. The larger-
scale experiments are expected to see vehicles attaining a higher maximum speed, which will
give further insight into the influence of oscillatory tra�c on fuel consumption.

Finally, further refinements to the vision pipeline to address noisy background data,
vehicle tracking even when vehicles are at rest, and complete OBD-II data from each vehicle
on the ring are planned in the near future.
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