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Abstract—An inverse modeling algorithm is developed to re-
construct the state of traffic on highways (velocity field) from GPS
measurements gathered from mobile phones traveling on-board
vehicles. The algorithm is based on Ensemble Kalman Filtering
(EnKF), to overcome the nonlinearity and non-differentiability
of a distributed highway traffic model for velocity. The algorithm
is implemented in an architecture which includes GPS enabled
Nokia N95 phones and a privacy preserving data collection
infrastructure based on the novel concept of Virtual Trip Lines (a
technology developed by Nokia). The data collection infrastruc-
ture is connected to a traffic estimation server running the EnKF
algorithm online, and the estimation results are broadcast in real
time back to mobile phones and to the internet. Results from the
algorithm are presented with the unprecedented February 8, 2008
Mobile Century experiment data, in which a shock wave from a
five-car accident is captured. A prototype estimation algorithm
and system were run during the experiment, and highlight that
measurements from as few as 2-5% of the commuting public are
sufficient to accurately reconstruct the highway traffic state.

I. INTRODUCTION
A. Smartphones as Lagrangian Sensors

With the standardization of GPS in mobile devices such
as cell phones, and their increasing presence in vehicles in
traffic, we are entering a new era of transportation system
monitoring capabilities. The increased accuracy of GPS pro-
vides an appealing alternative to traditional approaches heavily
relying on cell tower information, in particular triangulation
and trilateration [1]. While tower monitoring approaches have
proved to be useful to assess travel time for spatial scales
significantly larger than the typical size of a cell (which is
a few hundred meters) [2], [3] their performance for local
traffic flow estimation in complex road network scales have
been disappointing because of the lack of precision in position
and speed measurements. In contrast, as demonstrated with
ongoing experiments [4], [5], GPS has the potential of making
significant breakthroughs in highway traffic monitoring.

A fundamental challenge of using smartphone data (geo-
referenced velocity) for highway traffic estimation is the devel-
opment of a model for the evolution of traffic velocity. While
GPS provides accurate speed measurements, accessing densi-
ties (on which most traffic flow models rely) from smartphones
is currently not possible, because of the difficulty of creating
empirical models capable of extrapolating the penetration rate

of GPS equipped smartphones traveling in cars to vehicle
density. This challange is addressed by using a new model
for the evolution of velocity, called CTM-v, in the form of a
discrete time nonlinear dynamical system.

The second fundamental challenge in using smartphone
data is the incorporation of Lagrangian measurements into
a flow model. Lagrangian specifically refers to the fact that
measurements are gathered from sensors which move along a
trajectory in the field which is being sensed (velocity field in
the present case), rather than sampling at a fixed location. This
is in contrast to Eulerian sensing, which refers to fixed sensors
which collect measurements at predefined points. Classical
traffic monitoring infrastructure relies on Eulerian sensors, for
example loop detectors [1], [6], RFID transponders, radars or
cameras [7].

The present article proposes a method capable of incor-
porating any Lagrangian velocity measurement in a velocity
flow model. As will be explained later in the article, the
current architecture on which the method is demonstrated
produces measurements according to a specific privacy pre-
serving sampling procedure designed by Nokia. However, the
proposed method works with any arbitrary sampling procedure
(for example random sampling as in [8] or full trajectory
sampling [9]).

B. Lagrangian Data Assimilation for Distributed Velocity
Fields

The velocity field v(x,t) on a highway segment x € [0, L]
is a distributed parameter system in space. Vehicles labeled
by i € N travel along the highway with trajectories x;(t),
and measure the velocity v(x;(t),¢) along their trajectories
(Lagrangian measurements). These measurements (discrete
in time and space) are used to reconstruct or estimate the
function v(x,t), in a process referred to as data assimilation
or inverse modeling [10]. Fig. 1 illustrates the process: the
evolution of the velocity field v(z,t) is a surface, which
is to be reconstructed. A subset of the vehicles is sampled
along their trajectories. For illustration purposes in the figure,
four vehicles are sampled at time ¢ = t,,, which produces
four points on the v(z,t) surface which can be used by the
algorithm to reconstruct the surface.
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Figure 1. TIllustration of the distributed velocity field v(z,t) to be recon-
structed from Lagrangian samples. Four samples v;(z;(t),¢) are shown at
t = tm, from vehicles ¢ transmitting their data (indicated by up-arrows above
the vehicles).

Data from mobile devices can be obtained through a variety
of sampling strategies, including a new paradigm patented by
Nokia, called Virtual Trip Lines (VTLs), which act as virtual
triggers for mobile sensing. The technique used to perform
data assimilation with this sampling is described in Section II,
which uses an algorithm based on Ensemble Kalman Filtering
(EnKF). This section addresses the specific problem of data
assimilation for the Cell Transmission Model for velocity
(CTM-v), which is a velocity evolution model used in this
article. Section III presents the system implementation used
for gathering smartphone GPS data in a privacy preserving
environment, which addresses the data sampling mechanism
(Section III-A) and the system architecture (Section III-B).
Finally, Section IV presents the results from an unprecedented
experiment realized on February 8, 2008, nicknamed Mobile
Century for its 100 vehicles driving 10 mile loops for 8§ hours,
realizing a 2% to 5% penetration rate on the highway.

II. TRAFFIC ESTIMATION
A. Problem Statement

The goal of this article is to build an estimator to reconstruct
the evolution of the velocity field on the highway. The high-
way transportation network is modeled as a directed graph
consisting of vertices v € V and edges e € £. Let L. be
the length of edge e. The spatial and temporal variables are
x € [0, L], and t € [0, +00) respectively. In order to model
traffic flow across the network, we define a junction j € J
as a tuple J; := (v;, I;,0;) C V x & x &, consisting of
a single vertex v; € V, a set of incoming edges indexed by
ein € Z;, and a set of outgoing edges indexed by eq; € 0.
The objective is to estimate the velocity field at discrete points

i = 0 to ¢ = imax In space at each time step n denoted
by: v = {1}360’... SO ,vg)|5‘7--~ 7”2mx,|5|}f0r all
edges e € £ in the network, using velocity data obtained from

the mobile devices.

B. Related Work

Kalman Filtering (KF) has been widely used for traffic
state estimation in earlier studies in its various forms. In

[11], Mixture Kalman Filtering (MKF) was applied to the Cell
Transmission Model (CTM) [12] to estimate traffic densities
for ramp metering. The nonlinear CTM was transformed into a
switching state space model, which enabled the use of a set of
linear equations to describe the state evolution for the distinct
flow regimes on the highway (e.g. highway is in free-flow or
congestion). In [7], a Kalman Filter was used to incorporate
Lagrangian velocity trajectories into a density based CTM for
highway traffic. A real-time algorithm for traffic estimation
based on the Extended Kalman Filter (EKF) using second
order PDE as a flow model was used in [13]. A key ingredient
of this work is the differentiability of the numerical scheme
employed for the second order model of traffic used by the
authors, a feature which our model [14] does not possess.
Other treatments of traffic estimation include adjoint based
control and data assimilation in [15], [16], Unscented Kalman
Filtering (UKF) in [17] and Particle Filtering (PF) in [17],
[18], [19].

A common feature for CTM based methods [7] described
above is that the evolution of traffic state (typically density,
not velocity) relies on a set of linearized equations which are
needed in order to use the KF or EKF techniques. On the
other hand, PF technique is a nonlinear scheme for solving the
Bayesian update problem, but has a higher computational cost.
The approach proposed in the present work employs Ensemble
Kalman Filtering (EnKF) [20], which enables the use of
fully nonlinear evolution equations such as the discretization
of the new flow model implemented in this article, while
exploiting its linear observation equation. Unlike UKF, which
uses a deterministic sampling technique, EnKF uses Monte
Carlo integrations to maintain the nonlinear features of error
statistics. Furthermore, by employing a fully nonlinear velocity
evolution model, no highway mode selection algorithms or
simplifications to the equations are needed in this work.

Earlier studies have specifically approached the highway
traffic estimation problem using cell phone network data.
In [21], an EKF was applied to a second order model of
vehicle density and velocity, and validated in simulation. In
practice, the modeling assumption that network providers can
accurately provide both density and flow of the cellular phones
currently on the highway of interest is limiting, especially in
dense roadway networks. The work [22] uses a fully nonlinear
particle filter to assimilate the mean velocity of a vehicle
traveling between cell tower hand-off points, but also suffers
from the same practical limitations in dense road networks.

C. Kalman Filtering

1) State—Space Model: Given the velocity field at all points
on the network at time nAt, the velocity at time (n+1)AT is
constructed using the CTM-v algorithm denoted by: v"*! =
M{v™]. This algorithm consists of the following steps. For
each vertex in the network, a linear program is solved such that
strong boundary conditions are imposed on the incoming and
outgoing edges of the junction [23]. Next, the velocity field
at the 7*" discrete point on each edge is updated according to
a nonlinear non-differentiable numerical scheme applied to a



first order scalar hyperbolic partial differential equation, which
has been transformed from vehicle density to velocity:

_ n AT /- % n n
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where the velocity flux G (vy,vs) is given by:
V=1 (vg) vy if v. > vy > 1
V=1 (ve) ve if v > v, > vy
G (v1,v2) = V= (v) g ifvgo >v1 >0, (2)
min (V=1 (vy) vy,
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with an invertable velocity function:

Umax ]- - £ lf p S pC
v = VHL(p) — Pmax . (3)
—wy (1 — L=ex ) otherwise

p

In the proceeding equations, vax (respectively pmax) is
the maximum velocity (density) on the roadway, v. (p.) is the
critical velocity (density) where the highway transitions from
freeflow to congestion, and w; is the maximum shockwave
propogation speed.

For estimation purposes, we extend the model to:

V" = M 4" “4)

where n"™ ~ (0,Q") is the Gaussian zero-mean, white state
noise with covariance Q™. The subscripts f and a refer to the
forecast (time updated) and analyzed (measurement updated)
state, respectively.

A network observation model is given by:

y" =H"" 4+ x" S)
The linear observation matrix:
H" € {0,1}7" %" (6)

encodes the p™ discrete cells on the highway for which
the velocity is observed during discrete time step n and
K = .celimax,e + 1) is the corresponding (total) number of
cells in the network. The last term in expression (5) is the
white, zero mean observation noise:

Xn ~ (0, Rn) (7)

with covariance matrix R".

2) Extended Kalman Filtering For Nonlinear Systems: Two
fundamental challenges appear when sensing traffic conditions
using mobile phones, which appear in the observation model.
The first challenge (which motivates the early parts of this
article) is that for density—based models, the state is not
observed directly. In particular, when applying the Daganzo-
Newell velocity function, both the dynamical system which de-
scribes the density evolution and the observation model which
characterizes the observations are nonlinear. The nonlinearity
of the observation matrix must be linearized at the cost of
accuracy or overcome with computationally intensive particle

filtering techniques. Instead, by developing equivalent models
in which the velocity is stored as the state, the observation
matrix becomes linear. The second challenge is a product
of the motion of the sensor. The observation model must
capture the Lagrangian nature of the sensors, whose motion is
coupled with the model itself by integration of the velocity
field. Because of the high accuracy of the GPS position
measurements, the location of the observation can be used
to construct the observation operator a posteriori (i.e. reduced
to a time-varying observation matrix).

The optimal estimate for the state v™ is obtained using the
following traditional equations known as the Extended Kalman
Filter:

o Forecast step (Time-update):
vy = Mva"
n—1pn— N ..
FEMIPLTE (M) QT ®)

where M, is the Jacobian matrix of mapping M (also
known as the tangent linear model) defined as

M6 g) = ng? : ©)
o Analysis step (Measurement-update):
v, =vf +G" (y" — H"v?) (10)
P; =Py - G"H"P} (11)
G" =Py (H")! (H”P; | 4 R”)ﬂ (12)

where P;ﬁ (resp. P7) is the error covariance of the
forecasted (analyzed) state at time n.

The initial conditions for the recursion are given by v? = v°

and P? = PO,

3) Ensemble Kalman Filter: The Ensemble Kalman Filter
was introduced by Evensen in [20] as an alternative to EKF
to overcome specific difficulties with nonlinear state evolu-
tion models, including non-differentiability of the model and
closure problems. Closure problems refer to the fact that in
EKEF, it is assumed that discarding the higher order moments
from the evolution of the error covariance in (8) yields a good
approximation. However, in cases in which this linearization
approximation is invalid, it can cause an unbounded error
variance growth [20]. To tackle this issue EnKF uses Monte
Carlo (or ensemble integrations). By propagating the ensemble
of model states forward in time, it is possible to calculate
the mean and the covariances of the error needed at anal-
ysis (measurement-update) steps [24] and avoid the closure
problem. Furthermore, a strength of EnKF is that it uses the
standard update equations of EKF, except that the gain is
computed from the error covariances provided by the ensemble
of model states.

EnKF also comes with a relatively low numerical cost.
Namely, usually a rather limited number of ensemble members
is needed to achieve a reasonable statistical convergence [24].

In traditional Kalman Filtering, the error covariance matri-



ces are defined in terms of the true state as

P = E(vy —v)(vf —v)"],
P, = E[(va — ve)(va — v1)"],

13)
(14)

where E[-] denotes the average over the ensemble, v is the
model state vector at particular time, and the subscripts f,
a, and t represent the forecast, analyzed, and true state,
respectively. However, since the true state is not known,
ensemble covariances for EnKF have to be considered. These
covariance matrices are evaluated around the ensemble mean

v,

Py & Pens,; = E[(vy — vf)(vy — 0p))"],
P, ~ Peps.o = E|(va — 04)(va — @a)T},

(15)
(16)

where the subscript ens refers to the ensemble approximation.
In [24], it is shown that if the ensemble mean is used as
the best estimate, the ensemble covariance can consistently
be interpreted as the error covariance of the best estimate.
For complete details of derivation of the EnKF algorithm, the
reader is referred to [20].

The Ensemble Kalman Filter algorithm can be summarized
as follows [20], [24]:

1) Initialization: Draw K ensemble realizations v{ (k)
(with k € {1,--- , K}) from a process with a mean
speed 9 and covariance PY.

2) Forecast: Update each of the K ensemble members
according to the CTM-v [14] forward simulation
algorithm. Then update the ensemble mean and co-
variance according to:

vy (k) = M[vf LR+ " (R).
Uf - KZ }L

K

Z: vy —17}1

a7

(18)

(k) —a7)"
(19)

3) Analysis: Obtain measurements, compute the Kalman
Gain, and update the network forecast:

ensf_

G?ns - Pens f (Hn)T (angf (Hn>T + R")i
(20)
U:(k) = (k) + G:m (ymeas - an?(k) + Xn(k))
(21)

4) Return to 2.

In (21) an important step is that at measurement times, each
measurement is represented by an ensemble. This ensemble
has the actual measurement as the mean and the variance of
the ensemble is used to represent the measurement errors. This
is done by adding perturbations x"(k) to the measurements
drawn from a distribution with zero mean and covariance equal
to the measurement error covariance matrix R". This ensures

that the updated ensemble has a variance that is not too low
[24].

4) Large Scale Real-Time Implementation: The ensemble
Kalman Filter algorithm presented in the previous section is
in a framework in which all of the unknown state variables
on each edge in the network are updated simultaneously.
This introduces the following problems. First, because the
state covariance is represented through a limited number
of ensemble members, non-physical correlations may arise.
This means that the correlation matrix may incorrectly show
correlation between distant parts of the highway network
which do not correlate in practice. Secondly, the framework
described previously requires the forecast error covariance in
(19) to be computed for the entire highway network, then used
for computing the Kalman gain in (20). When operating on
large scale networks such as the San Francisco Bay Area,
CA, the covariance matrix can easily require more than 2
GB of memory to load, creating computational limitations for
implementation.

To circumvent the above mentioned problems for practical
implementation, we employ a covariance localization method.
This approach limits the correlation between the velocity states
on all edges in the network. Instead, for a given edge e,
only nearby links (upstream and downstream in the network)
can exhibit correlation, thereby removing the non-physical
correlation. These techniques have also been implemented for
oceanography data assimilation problems (see e.g. [25]).

For this large scale traffic network estimation problem,
localization also provides a computationally efficient way to
update the state variables at the measurement update time in
(20)—(21). Namely, due to the localization, the computation of
the covariance matrix in (19) is transformed into a computation
of many small localized covariance matrices for each edge
in the network. These small scale covariance matrices are
computed for each edge given its neighboring edges on which
the correlation is physically meaningful. Finally, this allows
the distributed solving of the update equations.

For the localization, we introduce a localization operator
L. for each edge e, which is constructed at the initialization
stage. This operator indicates which velocity states on the
other edges of the network are allowed to have correlation
with the velocity state on the eth edge. The implementation of
the EnKF algorithm described previously can be modified for
localization by replacing the measurement update equations
(19)-(21) with the following sub-algorithm:



For each edge e € &:

1) Using the localization operator L., compute the lo-
calized forecast error covariance:

K
1
Pgns,f,e = K—1 Zﬁe (’U?(k) - 5?) X
k=1

(Le(op(k) — o))"

2) Analysis: Obtain measurements Yp.,s . from edges
that are indicated in L., compute the Kalman Gain,
and update the the local forecast:

(22)

G::Lns,e = gns,f,e (HZ)T X
T -1
(HPs, . DT +RY) @3
Vge(k) = Levy (k)+
Glie (Umeas.e — HEvF (k) + X7 (K))
(24)

3) Return to 1.

It is worth noting that in practice, the operator £, does not
need to be constructed as a matrix in the computer memory and
subsequently be used to do the relatively demanding matrix
multiplications. In other words, the eth edge has references
to the forecasts and measurements of its neighboring edges
needed to construct the localized forecast error covariance
matrix.

III. SYSTEM IMPLEMENTATION

This section presents the system jointly developed by Nokia
and UC Berkeley to monitor traffic using GPS-equipped cell
phones. From a system design perspective, the main challenges
with data collection using GPS-equipped smartphones arise
from the fact that unlike conventional traffic monitoring in-
frastructure, the phone is not a dedicated sensor. In order to
maintain a functioning system, with humans carrying these
devices, resource consumption such as battery and bandwidth
must be sufficiently low, and some degree of privacy and
anonymity should be maintained, for the driving public to
opt in. These issues have a major impact on the sampling
techniques used for collecting measurements.

A. Sampling and Data Collection

A variety of sampling techniques can be used to collect
data from GPS enabled Lagrangian sensors. In the case of
the Nokia NOS5, the embedded GPS chip-set is capable of
producing a geo-position (latitude, longitude, altitude) every
three seconds. A simple filter is implemented to produce an
estimate of the velocity at the same frequency. Over time,
this vehicle trajectory and velocity information produces a rich
history of the dynamics of the vehicle and the velocity field
through which it evolves.

While this level of detail is particularly useful for traffic
estimation, it can be extremely privacy invasive, since the
device is ultimately identifiable with a single user. Even if
personally identifiable information is replaced with a randomly

chosen identification, it is still possible to re-identify individ-
uals. For example, pseudoanonymous trajectories have been
combined with free, publicly available data sets to determine
the locations of participants homes [26].

The transmission of high frequency data without regard to
location wastes resources throughout the system. In addition
to disclosing sensitive information, the trajectory information
on small roadways near users homes are of lower value to the
general commuting public than major thoroughfares such as
interstates. Thus, collection of low utility and highly sensitive
data should be avoided.

A variety of methods can be used to address these problems.
To manage privacy concerns, in addition to pseudoanonomiza-
tion of the trajectory data, the data can be degraded until a
sufficient level of privacy is attained. Common degradation
approaches include (¢) spatial obfuscation (ie blocking data
collection from particular regions, such as home), (i¢) in-
creasing uncertainty through noise addition, and (#i¢) location
discretization approaches which round the measurement to
the nearest discrete grid point. The trade offs between the
measurement utility and privacy under these degradation ap-
proaches have been analyzed with experimental data [27] and
can be cast as a sampling strategy optimization problem [8].

An alternative sampling strategy which is implemented in
this work is based on Virtual Trip Lines (VTLs) [28], which
act as spatial triggers for phones to send updates. Each VTL is
composed of two GPS coordinates which make a virtual line
drawn on a roadway of interest. Instead of periodic sampling in
time, VTLs control disclosure of speed and location updates by
sampling in space, creating updates at predefined geographic
locations on roadways of interest.

Mobile devices monitor their speed and location using GPS
and use the locally stored VTLs to determine when a VTL
crossing occurs. When the phone intersects a VTL, the device
can probabilistically send an update to a back end server with
anonymized position, speed and direction information. The
device may also probabilistically send the travel time observed
between two consecutive trip lines.

A unique feature of this sampling strategy is that data points
are only identified through the ID of the VTL, and not that of
the mobile device which generated the update, so no extended
trajectories are collected. Through careful placement of trip
lines, the system is better suited to manage data quality and
privacy than through a uniform temporal sampling interval.
B. System Architecture ) ) )

The resulting system architecture which supports this re-
search (shown in Fig. 2) consists of four layers: GPS-enabled
smartphones in vehicles (driving public), a cellular network
operator (network provider), cellular phone data aggregation
and traffic service provision (Nokia/NAVTEQ), and traffic
estimation (Berkeley). On each participating mobile device
(or client), an application is executed (see Fig. 3) which
is responsible for the following functions: downloading and
caching trip lines from the VTL server, detecting trip line
traversal, and filtering measurements before transmissions to
the service provider. To determine trip line traversals, probe
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Figure 2. System architecture overview. The system consists of vehicles

equipped with GPS-enabled smartphones, a cellular network provider, an
ID data collection infrastructure and traffic information provision, and traffic
estimation algorithm running on the model server.

vehicles check if the line between the current GPS position
and the previous GPS position intersects with any of the trip
lines in its cache. Upon traversal, the mobile device creates
an encrypted VTL update. The update comprises of speed
readings, timestamps, the trip line ID, and direction trip line
crossing. These VTL updates are transmitted to the ID proxy
server over a secure channel.
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Figure 3. Nokia N95 client emulator used for development of our system.

The client serves both to collect data from individual devices, and to display
current traffic conditions. The colors in the circles represent the speed of
traffic (green corresponds to free flow; red is congested). (Left) Free flowing
traffic in Santa Clara, CA. (Middle) Congestion occurs in San Francisco, CA.
(Right) Bay Area regional traffic.

Note that all data packets transmitted from the mobile device
must contain the mobile device identification information
which is provided to the communication provider for billing
purposes. Thus, an ID proxy server is used to first authenticate
each client to prevent unauthorized updates, then remove the
mobile device identification information from the data packets.
It then forwards anonymized updates to the VTL server. Since
the VTL update is encrypted with the VTL server’s public
key (RSA encryption), the ID proxy server cannot access the
VTL update content. It only has knowledge of which phone

transmitted a VTL update, but no knowledge of the phone’s
position or speed information. Thus we prevent any single
entity from observing both the identification data required by
the network operator, and the sensing data. See [28] for a more
detailed description of privacy protection in VTL based traffic
monitoring.

The VTL server stores all trip lines in a VTL database and
distributes trip lines within a given region to a mobile device
upon receiving a VTL download request for that region. The
VTL server also aggregates updates from a large number of
probe vehicles in the VTL update database and pushes the
data to the UC Berkeley data server for data assimilation,
which combines the cell phone data with other data such as
loop detectors. The data server also provides the NAVTEQ
(now owned by Nokia) NAVSTREETS digital map data to
the EnKF model. This data is essential since it contains the
roadway geometries upon which the base network for the
EnKF algorithm is constructed.

In addition to the EnKF algorithm described in this work,
many other estimation algorithms are run in parallel as part
of ongoing research, including arterial traffic models. An
estimate manager in the traffic estimation server monitors the
performance of the various algorithms and transmits the results
to the traffic report server. The estimates are integrated with
estimates from traffic models provided by NAVTEQ before
being transmitted back to the mobile device.

The current VTL implementation generates approximately
1KB of update data for every two minutes per client while
driving on a major road. Assuming an average two hours of
driving per day on a major road, we expect the total data
transfer is 60KB per day. The database servers can easily
scale to large number of client updates since the bandwidth
and the total data storage demands are rather small by current
information industry standards.

IV. EXPERIMENTAL RESULTS

A. Mobile Century Case Study (February 8, 2008)

Nicknamed the Mobile Century experiment, a prototype
privacy-preserving data collection system was launched on
February 8, 2008 and used to estimate traffic conditions for a
day on I-880 near San Francisco, CA. With the help of 165 UC
Berkeley students, 100 vehicles carrying Nokia N95 phones
drove repeated loops of six to ten miles in length continuously
for eight hours. These vehicles represented approximately 2-
5% of the total volume of traffic on the main line of the
highway during the experiment.

This section of highway was selected specifically for its
complex traffic properties, which include alternating periods
of free-flowing, uncongested traffic, and slower moving traf-
fic during periods of heavy congestion. The section is also
covered with existing loop detectors feeding into the PeMS
system [29], which are used to assess the quality of the EnKF
estimates.



B. Implementation and Results

The network implemented for the results presented in this
article is a 7 mile stretch of I880 northbound from the Decoto
Rd. entrance ramp (south end), to the Winton Ave. exit ramp
(north end). The network model consists of 13 edges and 14
junctions (6 exit ramps, 7 entrance ramps, and one lane drop).
A total of 40 VTLs were placed on this highway segment with
an average spacing of 0.17 miles.

At approximately 10:30 am, a multiple car accident cre-
ated significant unanticipated congestion on northbound traffic
south of CA 92 (see Fig. 4). An earlier version of the EnKF
algorithm, running in real-time during the experiment, detected
the accident’s resulting bottleneck and corresponding shock
wave [4]. It broadcast the speed contour of the highway and
the resulting congestion in real-time [30]. In Figs. 5-8, we
present a comparison of the velocity estimate from the EnKF
CTM-v algorithm with the velocity estimate obtained from the
PeMS system [29], which provides loop detector data for the
deployment area and serves as validation for this method.

Local Phone Logs
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Figure 4. Local phone logs, I880N, Feb. 8, 2008. In addition to the
VTL updates, the raw trajectory of each device was recorded locally to the
device as a backup for the data collection infrastructure for the purposes
of this experiment only. The sharp decrease in the slope (velocity) of the
trajectory corresponds to the vehicle encountering the shockwave and entering
congestion. x-axis: time in minutes past 10:12am. y-axis: postmile between
Decoto Rd. to the south (bottom) and Winton Ave. to the north (top).
Trajectories are in the direction of increasing y.

In general, the results of the EnKF estimation show good
agreement with the PeMS velocity estimate. In particular, the
VTL-based sensing coupled with the EnKF algorithm captures
the main features of the congestion pattern, including the
length of the resulting queue which extends just over two
miles at 10:52 am (see Figs. 5 and 6). This proof of concept
is an important step forward in mobile device-based sensing
because of the sparsity of data used for the EnKF estimate.
Unlike the loop detectors which sense every vehicle in each
lane on the highway, but at fixed points in space, the mobile
device-based sensing collects data from a very small fraction
of vehicles. Furthermore, because of privacy considerations,
the vehicles are not tracked in space; only a subset of the data
logged by each device is used for estimation, sampling only
anonymous location and speed updates triggered by VTLs. No
extended vehicle-trajectory travel times are collected or used

for estimation.

Note there are some differences in the speed estimation
shown in Figs. 5 and 6. In Fig. 7, the relative error between
the EnKF and PeMS contour is shown, with EnKF as the
reference. In the free flowing regions, the relative error is quite
small. The absolute speed difference in this regime is shown
with a dashed green line in Fig. 8 for a sample postmile of
22.8. As expected, the spikes in high relative error in Fig. 7
occur in the queue resulting from the accident. The postmile
with the greatest magnitude relative error (PM 24.6, with
absolute speed difference plotted as a dash dot red line in Fig.
7) occurs because of two factors. First, the EnKF estimates
the velocity contour at a temporal resolution on the order of
seconds, while the PeMS estimate is aggregated over a five
minute window. Second, because the absolute speed in the
congested regime is small, any difference in speed is amplified.
Ultimately, the difference between PeMS and the EnKF on
average is less than 10% across the network at all times, which
is well within the bounds of typical speed distributions on a
multi-lane highway.

Ensemble Kalman Filtering V-Estimate (MPH)
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Figure 5.  EnKEF velocity contour plot, I880N, Feb. 8, 2008. Color denotes
speed in mph, with red denoting slow moving traffic, and blue denoting faster
traffic. Vehicles travel from down to up. x-axis: time in minutes past 10:12am.
y-axis: postmile between Decoto Rd. to the south (bottom) and Winton Ave.
to the north (top).

V. CONCLUSION AND FUTURE WORK

In this article, a new traffic data collection paradigm us-
ing GPS-equipped mobile devices was implemented using a
privacy preserving architecture. A nonlinear time invariant
dynamical system forms the basis of the Ensemble Kalman
Filtering algorithm, which is introduced because of the non-
linearity and non-differentiability of the model. The algorithm
was validated using data obtained from the Mobile Century
field experiment, and shows good agreement with PeMS loop
detector data, even at penetration rates below five percent.
This algorithm will be implemented next for a 10,000 vehicle
deployment in which both fixed loop detector data and cell
phone data is fused to produce traffic estimates for an extended



PeMS V-Estimate

. &u
o
10 20 30 50 60 70

Time (min)

Postmile

Figure 6. PeMS velocity contour plot, I880N, Feb. 8, 2008. Color denotes
speed in mph, with red denoting slow moving traffic, and blue denoting faster
traffic. Vehicles travel from down to up. x-axis: time in minutes past 10:12am.
y-axis: postmile between Decoto Rd. to the south (bottom) and Winton Ave.
to the north (top).

Percent Error
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Figure 7. PeMS-EnKF error Plot, I880N, Feb. 8, 2008. Color denotes speed
in mph, with red denoting slow moving traffic, and blue denoting faster traffic.
Vehicles travel from down to up. x-axis: time in minutes past 10:12am. y-
axis: postmile between Decoto Rd. to the south (bottom) and Winton Ave. to
the north (top).

duration of six months as part of a follow-up field operational
test known as Mobile Millennium [30].
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Speed Difference Between PeMS and EnKF Estimates
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Figure 8. PeMS-EnKF speed difference, I880N, Feb. 8, 2008. Absolute

difference in the velocity estimates between EnKF and PeMS spatially
averaged across the network (solid blue), at postmile 22.8 with low relative
error (dashed green), and postmile 24.6 with high relative error (dash dot red)
as a function of time. z-axis: time in minutes past 10:12am. y-axis: absolute
speed difference between EnKF and PeMS.
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