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Abstract:This article is motivated by the practical problem of highway tra�c estimation using velocity measurements

from GPS enabled mobile devices such as cell phones. In order to simplify the estimation procedure, a velocity model

for highway tra�c is constructed, which results in a dynamical system in which the observation operator is linear. This

article presents a new scalar hyperbolic partial di↵erential equation (PDE) model for tra�c velocity evolution on

highways, based on the seminal Lighthill-Whitham-Richards (LWR) PDE for density. Equivalence of the solution of the

new velocity PDE and the solution of the LWR PDE is shown for quadratic flux functions. Because this equivalence

does not hold for general flux functions, a discretized model of velocity evolution based on the Godunov scheme applied

to the LWR PDE is proposed. Using an explicit instantiation of the weak boundary conditions of the PDE, the discrete

velocity evolution model is generalized to a network, thus making the model applicable to arbitrary highway networks.

The resulting velocity model is a nonlinear and nondi↵erentiable discrete time dynamical system with a linear

observation operator, for which a Monte Carlo based ensemble Kalman filtering data assimilation algorithm is applied.

The model and estimation technique is evaluated with experimental data obtained from a large-scale field experiment

known as Mobile Century, which is available for download at http://traffic.berkeley.edu.

1 Introduction

1.1 Motivation

The convergence of communication, sensing, and multimedia platforms such as smartphones provides the
engineering community with unprecedented monitoring capabilities. Standard smartphones include numerous
sensors (accelerometers, light sensors, GPS), wireless connectivity ports (GSM, GPRS, Wi-Fi, bluetooth,
infrared), and ever increasing computational power and memory. The rapid penetration of GPS in phones
has enabled the explosion of new Location Based Services, heavily relying on spatial and context awareness.
Their low cost, portability and computational capabilities make smartphones useful for numerous applications
in which they act as sensors moving with humans, embedded in the built infrastructure. Large scale applications
include tra�c flow estimation [28, 36], which is a rapidly expanding field at the heart of mobile internet services.
With the cellular phone communication infrastructure in place and privacy aware smartphone sensing technology
in full expansion [15], a large volume of data from mobile devices is now available [32]. Unlike traditional tra�c
sensors which typically measure vehicle flows from which vehicle densities can be computed, mobile devices report
vehicle speeds or travel times along stretches of roadway. Numerous tra�c estimation techniques developed in the
literature rely on density based tra�c models such as the Lighthill-Whitham-Richards (LWR) partial di↵erential
equation (PDE) [21, 23] and its discretization using the Godunov scheme [34, 19, 25] (also known as the Cell
Transmission Model (CTM) [30, 7] in the transportation literature). Thus, a key missing piece in creating a
real–time system capable of monitoring tra�c using mobile phones is a tra�c flow model with velocity as the
state. This article provides a mathematical approach to address this challenge: it presents a PDE model of
tra�c, applicable to smartphone collected data. The proposed model is new, and it simplifies the estimation
problem when viewed in a state space framework because the state velocity variables are directly observed from
the smartphone data.
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Figure 1: Illustration of the distributed velocity field v(x, t) to be reconstructed from Lagrangian samples. Four
samples v

i

(x
i

(t), t) are shown at t = t

m

, from vehicles i transmitting their data (indicated by up-arrows above
the vehicles).

1.2 Problem statement: Lagrangian data assimilation for distributed velocity fields

This work constructs a model for the evolution of a velocity field v(x, t) on a highway segment x 2 [0, L], which
is a distributed parameter system. Vehicles labeled by i 2 N travel along the highway with trajectories x

i

(t), and
measure the velocity v(x

i

(t), t) along their trajectories (Lagrangian measurements). These discrete measurements
are used to reconstruct or estimate the function v(x, t), in a process referred to as data assimilation or inverse
modeling [20]. Fig. 1 illustrates the process: the evolution of the velocity field v(x, t) can be depicted as a surface,
which is to be reconstructed. A subset of the vehicles is sampled along their trajectories. For illustration purposes
in the figure, four vehicles are sampled at time t = t

m

, which produces four points on the v(x, t) surface which
can be used by the algorithm to reconstruct the surface.

Data from mobile devices can be obtained through a variety of sampling strategies, including a new paradigm
patented by Nokia, called Virtual Trip Lines (VTLs), which act as virtual triggers for mobile sensing [15].

1.3 Related work

Earlier studies have specifically addressed the tra�c flow estimation problem using density evolution models and
Kalman Filtering (KF) in its various forms. In [26], Mixture Kalman Filtering (MKF) was applied to the CTM
[30] to estimate tra�c densities for ramp metering. The nonlinear CTM was transformed into a switching state
space model, which enabled the use of a set of linear equations to describe the state evolution for the distinct
flow regimes on the highway (e.g. highway is in free-flow or congestion). In [14], specific modes of the dynamics
presented in [26] are used to incorporate Lagrangian velocity trajectories into an extension of the CTM, called
the Switched Mode Model (SMM), using Kalman filtering. A real–time algorithm for tra�c estimation based
on the Extended Kalman Filter (EKF) using a model resulting from the discretization of a PDE system for
speed and density was used in [27]. A key ingredient of this work is the di↵erentiability of the numerical scheme
employed for the second order model of tra�c used by the authors, a feature the model proposed in this work
does not possess. Other treatments of tra�c estimation include adjoint–based control and data assimilation in
[16, 33], Unscented Kalman Filtering (UKF) in [35] and Particle Filtering (PF) in [35, 24, 13].

A common feature for CTM based methods [14] described above is that the evolution of tra�c state
(typically density, not velocity) relies on a set of linearized equations which are needed in order to use the KF
or EKF techniques. On the other hand, the PF technique is a nonlinear scheme for solving the Bayesian update
problem, but has a higher computational cost.

Other studies have investigated the highway tra�c estimation problem using cell phone tower information.
In [2], an EKF was applied to a second order model of vehicle density and velocity, and validated in simulation.
In practice, the modeling assumption that network providers can accurately provide both density and flow of
the cellular phones currently on the highway of interest is limited, especially in dense and complex roadway
networks. The work [6] uses a fully nonlinear particle filter to assimilate the mean velocity of a vehicle traveling
between cell tower hand-o↵ points, but also su↵ers from the same practical limitations in dense road networks.
On the contrary, the velocity model and estimation procedure proposed in this work are motivated by practical
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requirements and technical limitations, and were validated in real–time and online with data obtained during a
large–scale field experiment.

1.4 Outline and contribution of the article

This work is organized as follows. We propose a new model for evolution of velocity in the form of a PDE derived
from the seminal LWR PDE in Section 2.1. We establish the equivalence of the proposed model in the velocity and
the density domain for a quadratic flux function (called the Greenshields model) in Section 2.3. We prove that
this equivalence does not hold for general flux functions, which is a negative result. For general flux functions,
we use a transformation of the Godunov scheme which enables us to create a nonlinear discrete dynamical
system for velocity evolution, which approximates the entropy solution of the LWR PDE in a compact domain
(Section 2.4). We then instantiate weak boundary conditions explicitly and derive the domain of boundary data
for which strong boundary conditions can be prescribed (Section 3). We extend the model to a network with the
proper use of the strong boundary conditions, using linear programming to compute their values (Section 3).
The technique used to perform data assimilation with velocity measurements is described in Section 4, which
uses an algorithm based on Ensemble Kalman Filtering (EnKF). The results of the estimation approach applied
to the velocity evolution model are presented using data collected from the Mobile Century field experiment in
Section 5, which ran an earlier version of the algorithm (online and in real–time).

2 Mathematical model of tra�c velocity Evolution

2.1 Preliminaries

This section reviews the theory of scalar first order hyperbolic conservation law, which serves as a basis for
the creation of a class of velocity evolution models. Known as the Lighthill-Whitham-Richards (LWR) partial
di↵erential equation (PDE) [21, 23], the macroscopic tra�c flow model which describes the evolution of vehicle
density ⇢ for a stretch of highway of length L over a time T is given as:

@⇢(x, t)
@t

+
@Q (⇢(x, t))

@x

= 0 (x, t) 2 (0, L)⇥ (0, T ) (1)

⇢(x, 0) = ⇢0(x), ⇢(0, t) = ⇢

l

(x), ⇢(L, t) = ⇢

r

(x) (2)

where Q(·) is the flux function defined in an interval [0, ⇢max], and ⇢max is the maximal density. The terms
⇢0(·), ⇢

l

(·), and ⇢

r

(·) denote the initial data, left boundary data, and right boundary data respectively. The
flux function Q(·) expresses the flow of vehicles as a function of the density, and is known as the fundamental
diagram in the transportation engineering community [7, 30].

Assuming that the velocity can be modeled as a function V (·) of the density in [0, ⇢max], the flux function
reads:

Q (⇢) = ⇢ V (⇢) (3)

Remark 1. For tra�c applications, the flux function Q(·) is generally assumed to be concave and piecewise
C

1. This function may be approximated by strictly concave C

2 flux functions with superlinear growth to fit the
framework of [3] and [18].

Since transport equations such as (1) involve discontinuities which can appear in finite time even from
smooth initial conditions (see [4]), weak entropy solutions to the density evolution model must be considered.

Definition 2.1 (Weak entropy solution). A weak entropy solution ⇢(·, ·) of (1)– (2) is defined as follows:

Z

L

0

Z

T

0

✓

|⇢(x, t)� k| @

@t

'(x, t) + sgn(⇢(x, t)� k) (Q(⇢(x, t))�Q(k))
@

@x

'(x, t)
◆

dxdt

+
Z

L

0

Z

T

0

sgn (k) (Q(⌥⇢(x, t))�Q(k)) · n'(x, t)dx � 0 8' 2 C

2
c

([0, L]⇥ [0, T ); R+) ,8k 2 R

where ⌥ is the trace operator and n is the exterior normal to the domain. In general, in presence of boundary
conditions, equation (1) does not have a solution. It was proposed in [18] to write boundary conditions in such a
way that the entropy solution to equation (1) exists and is unique. This formulation of the boundary conditions
for the initial-boundary value problem (1)– (2) adapted to our case is described next.
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Figure 2: Graphical representation of the left boundary data, trace pairs for a concave flux which satisfy (5).
x-axis: Characteristic speed of the trace of the solution u(0, t). y-axis: Characteristic speed of the boundary
data u

l

(t). The solid line labeled u(0, t) = u

l

(t) corresponds to the first line of (5), the dash-dot region
corresponds to the second line of (5), and the solid gray region corresponds to the third line of (5). The
curve F (u(0, t)) = F (u

l

(t)) bounding the gray region depends on the choice of F (·), and is drawn as a straight
line for illustration purposes. The region in solid white occurs for a set of times t with measure zero.

Definition 2.2 (Left weak boundary condition - concave flux function). For a general flux function F (·), the
proper weak description of the left boundary condition for (1) in terms of the trace of the solution u(0, t) and
the left boundary data u

l

(t) is as follows:

sup
k2D(u(0,t),ul(t))

(sgn (u(0, t)� u

l

(t)) (F (u(0, t))� F (k))) = 0 a.e. t > 0 (4)

where D(x, y) = [inf (x, y) , sup (x, y)].
It was observed in [18] that for a strictly convex continuously di↵erentiable flux function under su�cient

regularity of the boundary data u

l

(·), an equivalent formulation of (4) can be obtained. In [31], it is shown that
continuity of the boundary data is su�cient for an equivalent formulation. In our case, this formulation reads:

a.e. t > 0,

8

>

<

>

:

u(0, t) = u

l

(t)
xor F

0(u(0, t))  0 and F

0(u
l

(t))  0 and u(0, t) 6= u

l

(t)
xor F

0(u(0, t))  0 and F

0(u
l

(t)) > 0 and F (u(0, t))  F (u
l

(t))

(5)

Remark 2. The preceding equation (5) is a description of cases for which (4) is satisfied, which is shown
graphically in Fig. 2. Note the description is slightly di↵erent from [25] in that the sets defined on each line
of (5) are mutually exclusive. The first line of (5) corresponds to the case when the trace of the solution u(0, t)
takes the value of the boundary data u

l

(t), which is analogous to a prescription of the boundary condition in the
strong sense. The second line and third lines correspond to cases which satisfy (4), but where the value of the
trace does not take the value prescribed at the boundary. Finally, the white areas shown in Fig. 2 correspond
to a zero measure set of time values for a left boundary data, trace pair.

Definition 2.3 (Right weak boundary condition - concave flux function). For a general concave flux function
F (·), the description of the right boundary condition for the LWR PDE (1) can be expressed in terms of the
trace of the solution u(L, t) and the right boundary data u

r

(t) one wants to apply as:



A TRAFFIC MODEL FOR VELOCITY DATA ASSIMILATION 5

a.e. t > 0,

8

>

<

>

:

u(L, t) = u

r

(t)
xor F

0(u(L, t)) � 0 and F

0(u
r

(t)) � 0 and u(L, t) 6= u

r

(t)
xor F

0(u(L, t)) � 0 and F

0(u
r

(t)) < 0 and F (u(L, t))  F (u
r

(t))

(6)

where u

r

(·) is a function of C

0(0, T ).

We now expand on the first line of equations (5)– (6) in order to state explicitly the set of the boundary
data, trace pairs for which the boundary data is prescribed in the strong sense.

Lemma 2.4 (Strong boundary conditions - concave flux). For a strictly concave flux function F (·), the cases
for strong boundary conditions read as follows: a.e. t > 0,

u(0, t) = u

l

(t) i↵
8

>

<

>

:

F

0(u(0, t)) � 0 and F

0(u
l

(t)) � 0
xor F

0(u(0, t))  0 and F

0(u
l

(t))  0 and u (0, t) = u

l

(t)
xor F

0(u(0, t))  0 and F

0(u
l

(t)) > 0 and F (u (0, t)) > F (u
l

(t))

(7)

and a.e. t � 0,

u (L, t) = u

r

(t) i↵
8

>

<

>

:

F

0(u(L, t))  0 and F

0(u
r

(t))  0
xor F

0(u(L, t)) � 0 and F

0(u
r

(t)) � 0 and u (L, t) = u

r

(t)
xor F

0(u(L, t)) � 0 and F

0(u
r

) < 0 and F (u (L, t)) > F (u
r

(t))

(8)

Proof. We prove the case of the left boundary condition for a concave flux and note a similar argument
holds for the right boundary and in the case of convex flux functions. Beginning with the statement of weak
boundary conditions, (5) we can write: a.e. t > 0,

u(0, t) 6= u

l

(t) i↵
⇢

F

0(u(0, t))  0 and F

0(u
l

(t))  0 and u(0, t) 6= u

l

(t)
xor F

0(u(0, t))  0 and F

0(u
l

(t)) > 0 and F (u(0, t))  F (u
l

(t))

If we are not in one of these two cases, then by taking their complement, we must have either
8

>

>

<

>

>

:

F

0(u(0, t)) � 0 and F

0(u
l

(t)) � 0
xor F

0(u(0, t))  0 and F

0(u
l

(t))  0 and u (0, t) = u

l

(t)
xor F

0(u(0, t))  0 and F

0(u
l

(t)) > 0 and F (u (0, t)) > F (u
l

(t))
xor F

0(u(0, t)) > 0 and F

0(u
l

(t)) < 0

(9)

For the fourth line in (9), a.e. t > 0 we will have F

0(u(0, t)) = 0, so it is removed and the conditions for strong
left boundary conditions are obtained.

2.2 Velocity functions

In order to obtain a partial di↵erential equation for velocity, we propose to express the density as a function
of the velocity by inverting the velocity function from equation (3). The algebraic expression of the velocity
function is a modeling choice, and it is typically constructed to fit experimental data.

Introduced in 1935, one of the earliest velocity functions considered is the Greenshields [12] a�ne velocity
function:

v = V

G

(⇢) = vmax (1� ⇢/⇢max)

where vmax is the maximum (freeflow) velocity, and ⇢max is the maximum (jam) density. This model remains a
useful mathematical model because of its simplicity, despite disagreements with observed tra�c data. Since it
expresses a linear relationship between speed and density, it is clearly invertible as:

⇢ = P

G

(v) = V

�1
G

(v) = ⇢max (1� v/vmax) (10)
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Figure 3: Fundamental diagrams (top row) and velocity functions (bottom row) for Greenshields (left), Daganzo-
Newell (center), and quadratic-linear (left).

The widely used Daganzo-Newell velocity function assumes a constant velocity in free-flow and a hyperbolic
velocity in congestion:

v = VDN(⇢) =

(

vmax if ⇢  ⇢

c

�w

f

⇣

1� ⇢

max

⇢

⌘

otherwise

where vmax, ⇢max, ⇢

c

and w

f

are respectively the maximum velocity, maximum density, critical density at
which the flow transitions from free-flow to congested, and the backwards propagating wave speed, respectively.
Because the Daganzo-Newell velocity function is not strictly monotonic in freeflow, it cannot be inverted.

In order to use the Daganzo-Newell model in a velocity setting, we approximate it by a hyperbolic-linear
velocity function, with a linear expression in free-flow and a hyperbolic expression in congestion:

v = VHL(⇢) =

8

<

:

vmax

⇣

1� ⇢

⇢

max

⌘

if ⇢  ⇢

c

�w

f

⇣

1� ⇢

max

⇢

⌘

otherwise

For continuity of the flux at the critical density ⇢

c

, the additional relation ⇢c

⇢

max

= wf

v

max

must be satisfied.
The hyperbolic–lienar velocity function can be inverted to obtain the velocity as a function of density:

⇢ = V

�1
HL (v) =

8

>

<

>

:

⇢max

⇣

1� v

v

max

⌘

if v(x, t) � v

c

⇢max

✓

1
1+ v

wf

◆

otherwise
(11)

where v

c

is the critical velocity: v

c

= V (⇢
c

). This hyperbolic-linear velocity function yields a quadratic-linear flux
function as illustrated in Fig. 3. Unless noted otherwise, we assume the velocity function is invertible throughout
the remainder of this article.

2.3 Derivation of a velocity PDE in conservative form for the Greenshields flux function

In this section, we derive a velocity PDE in conservative form for the Greenshields flux and we show that
for other C

1 velocity functions, there is no velocity transport equation equivalent to the LWR equation. The
important result shown here is that unless the velocity function is a�ne (i.e., the Greenshields case), there will
not be equivalence between weak solutions to the derived velocity PDE and the weak solutions of the density
PDE written in terms of the velocity.

First, we introduce the notion of a weak velocity solution to the LWR PDE. Assuming that the velocity
function is invertible with inverse P (·), the PDE (1) in weak form for ⇢(·, ·) is equivalent to the following
formulation for v(·, ·):

Z

L

0

Z

T

0

✓

P (v(x, t))
@'

@t

(x, t) + Q(P (v(x, t)))
@'

@x

(x, t)
◆

dxdt

+
Z

L

0

P (v0(x)) '(x, 0)dx = 0 8' 2 C

2
c

([0, L]⇥ [0, T )) (12)
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In order to use existing numerical analysis schemes for the PDE we want to obtain, we would like to
transform the weak formulation (12) into the following conservation law for velocity with initial condition v0(·):

(

@

@t

v(x, t) + @

@x

R (v(x, t)) = 0
v(x, 0) = v0(x)

(13)

By analogy with the classical LWR equation, the velocity PDE (13) is called LWR-v PDE. Because the flux
function R(v) in the velocity conservation law (13) is convex, the weak boundary conditions are given as follows:

Definition 2.5 (Weak boundary conditions - convex flux function [3, 18]). For a convex flux function F (·),
the weak formulation of boundary conditions reads:

a.e. t > 0,

8

>

<

>

:

u(0, t) = u

l

(t)
xor F

0(u(0, t))  0 and F

0(u
l

(t))  0 and u(0, t) 6= u

l

(t)
xor F

0(u(0, t))  0 and F

0(u
l

(t)) > 0 and F (u(0, t)) � F (u
l

(t))

and
a.e. t > 0,

8

>

<

>

:

u(L, t) = u

r

(t)
xor F

0(u(L, t)) � 0 and F

0(u
r

(t)) � 0 and u(L, t) 6= u

r

(t)
xor F

0(u(L, t)) � 0 and F

0(u
r

(t)) < 0 and F (u(L, t)) � F (u
r

(t))

where u

l

(·), u

r

(·) are functions of C

0(0, T ). The functions u

l

(·) and u

r

(·) are the strong boundary conditions
one wants to apply at the left and the right boundaries.

We can now state the main result of this section, which defines the velocity functions for which a velocity
evolution PDE in conservative form can be constructed.

Theorem 2.6. For a velocity function piecewise analytic in [0, ⇢max], the velocity PDE in weak form (12) is
equivalent to system (13) if and only if the velocity function is a�ne (Greenshields case).

Proof. See Appendix A.

Thus for more realistic tra�c models with nonlinear velocity functions, it is not possible to derive a PDE
model for velocity in conservation form (13).

2.4 Numerical approximation of the solution

The LWR-v PDE (13) can be discretized using the Godunov discretization scheme [11] to construct a nonlinear
discrete time dynamical system [29]. The Godunov scheme computes an approximation of the weak solution
to the PDE in conservative form in discrete time and space. Because of the equivalence of the solution of (12)
and (13), the Godunov discretization and the velocity inversion commute, which is not the case for general flux
functions.

Remark 3. For the case when the velocity function is not a�ne, the discrete velocity model must be constructed
by applying the Godunov scheme directly to the LWR PDE, then applying the velocity inversion. Note that
the order in which the operations are done is important, and that inversion before discretization for non-a�ne
velocity functions would not lead to the solution of (12) [4].

We discretize the time and space domains by introducing a discrete time step �T , indexed by n 2
{0, · · · , nmax} and a discrete space step �x, indexed by i 2 {0, imax}. Given the LWR PDE (1), application
of the Godunov discretization scheme yields the following relation for the time evolution of the discretized
solution of (1):

⇢

n+1
i

= ⇢

n

i

� �T

�x

�

G

�

⇢

n

i

, ⇢

n

i+1

��G

�

⇢

n

i�1, ⇢
n

i

��

(14)

In the above equation, ⇢

n

i

denotes the value of the computed solution at time step n and space step i. The
Godunov flux G (⇢1, ⇢2) is defined as:

G (⇢1, ⇢2) =

8

>

>

>

<

>

>

>

:

Q(⇢2) if ⇢

c

 ⇢2  ⇢1

Q(⇢
c

) if ⇢2  ⇢

c

 ⇢1

Q(⇢1) if ⇢2  ⇢1  ⇢

c

min (Q(⇢1), Q(⇢2)) if ⇢1  ⇢2

(15)
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In order to ensure numerical stability, the time and space steps are coupled by the CFL condition [19]:
↵max

�T

�x

 1 where ↵max denotes the maximal characteristic speed. This discrete model is commonly referred
to as the cell transmission model in the transportation engineering community [30, 7].

Note that if ⇢1  ⇢2, with v1 = V (⇢1) and v2 = V (⇢2), then v1 � v2 when V (·) is monotonically decreasing
(which is typically the case for tra�c applications). Furthermore, since V (·) is invertible, from (3), we obtain
the following relationship: Q(⇢) = V

�1(v)v. Finally, application of the inversion to (14) and (15) yields the Cell
Transmission Model for velocity (CTM-v):

v

n+1
i

= V

✓

V

�1 (vn

i

)� �T

�x

⇣

G̃

�

v

n

i

, v

n

i+1

�� G̃

�

v

n

i�1, v
n

i

�

⌘

◆

(16)

where the transformed Godunov velocity flux G̃ (v1, v2) is given by:

G̃ (v1, v2) =

8

>

>

>

>

<

>

>

>

>

:

Q̃ (v2) if v

c

� v2 � v1

Q̃ (v
c

) if v2 � v

c

� v1

Q̃ (v1) if v2 � v1 � v

c

min
⇣

Q̃ (v1) , Q̃ (v2)
⌘

if v1 � v2

(17)

Example 2.7 (Hyperbolic-linear model). After evaluation of the function (11), equation (17) reduces to:

G̃ (v1, v2) =

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

v2⇢max

✓

1
1+

v
2

wf

◆

if v

c

� v2 � v1

v

c

⇢max

⇣

1� vc
v

max

⌘

if v2 � v

c

� v1

v1⇢max

⇣

1� v

1

v

max

⌘

if v2 � v1 � v

c

min
�

V

�1
HL (v1) v1, V

�1
HL (v2) v2

�

if v1 � v2

(18)

We choose not to simplify the last line in (18) due to the piecewise analytical expression of function V

�1
HL (·).

We note that the evolution of the velocity field at each discrete point on an edge except at the boundary
points v

n

0 and v

n

i

max

are well defined by (16) and (18). At these boundaries the equations:

v

n+1
0 = V

⇣

V

�1 (vn

0 )� �T

�x

⇣

G̃ (vn

0 , v

n

1 )� G̃

�

v

n

�1, v
n

0

�

⌘⌘

v

n+1
i

max

= V

⇣

V

�1
�

v

n

i

max

�� �T

�x

⇣

G̃

�

v

n

i

max

, v

n

i

max

+1

�� G̃

�

v

n

i

max

�1, v
n

i

max

�

⌘⌘ (19)

contain references to the ghost points v

n

�1 and v

n

i

max

+1, which are points which do not lie in the physical domain.
The values of v

n

�1 and v

n

i

max

+1 are given by the prescribed boundary conditions to be imposed on the left and
right side of the domain respectively. Note that these boundary values do not always a↵ect the physical domain
because of the nonlinear operator (18), which causes the boundary conditions to be implemented in the weak
sense.

3 Extension of the model to networks

3.1 Network model and edge boundary conditions at junctions

We now show how to extend the velocity model to road networks in the presence of shocks and weak
boundary conditions. This extension is addressed in the literature for density tra�c models in the transportation
engineering community using physical principles in [7], and also in a mathematical context in [10].

We model the highway transportation network as a directed graph consisting of vertices ⌫ 2 V and edges
e 2 E . Let L

e

be the length of edge e. The spatial and temporal variables are x 2 [0, L

e

], and t 2 [0,+1)
respectively. In order to model tra�c flow across the network, we define a junction j 2 J as a tuple
J

j

:= (⌫
j

, I

j

, O
j

) ✓ V ⇥ E ⇥ E , consisting of a single vertex ⌫

j

2 V, a set of incoming edges indexed by ein 2 I
j

,
and a set of outgoing edges indexed by eout 2 O

j

. On each edge, the velocity field evolves according to (16),
with an important modification in the computation of the points at the boundary. Instead of implementing
ghost points, it is natural to require the left and right boundary conditions to be a function of upstream and
downstream links, so that the velocity field can be evolved across the network.

We look for unique description of the evolution of the velocity dynamics at the junctions. Following the
conditions for uniqueness of [10], we present three physically motivated restrictions on the dynamics, namely
(i) conservation of vehicles across the junction, (ii) vehicles follow a set route across the junction, which define
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how the tra�c flux from edges into the junction are routed to the outgoing edges (iii) tra�c flow across the
junction is maximized. Conditions (i) and (ii) imply that for the edge boundaries at the junction, boundary
conditions must hold in the strong sense. This creates an upper bound on the flows on each edge into and out of
the junction, which can be computed. By transforming these conditions into the velocity domain, the velocity
evolution at the junctions can be determined by solving a linear programming problem.

3.1.1 Physical constraints

Consider a junction j with |I
j

| incoming edges and |O
j

| outgoing edges. First, we assume that the junction has
no storage capacity, so all vehicles which enter the junction must also exit the junction. Conservation of the
number of vehicles across the junction gives rise to the constraint that the total flux into the junction must
equal the total flux out of the junction:

X

e

in

2Ij

Q̃

e

in

(v
e

in

(L
e

in

, t)) =
X

e

out

2Oj

Q̃

e

out

(v
e

out

(0, t)) (20)

Next, we assume that the total volume of tra�c entering from an incoming edge is distributed amongst the
outgoing edges according to an allocation parameter ↵

j,e

in

,e

out

(t) � 0. The allocation matrix A

j

2 [0, 1]|Oj |⇥|Ij |
,

where A

j

(eout, ein ) = ↵

j,e

out

,e

in

, encodes the aggregate routing information of the tra�c across the junction.
That is, for all vehicles entering the junction j on edge ein , ↵

j,e

out

,e

in

denotes the proportion of vehicles which
will exit the junction through edge eout. This proportion can be determined empirically using historical origin-
destination tables, or by analyzing the volumes of data collected near the junction. Because the vertex has no
storage capacity, the sum of allocated flows from a fixed incoming link across all outgoing flows must be equal
to one:

X

e

out

2Oj

↵

e

out

,e

in

= 1 (21)

Note that constraints (i) and (ii) combined imply A

j

Q̃

e

in

= Q̃

e

out

. If we view the exiting flows from the
incoming edges of the junction as a boundary condition for an outgoing edge, then the physical constraint
P

e
in

2I ↵

e

out,ein

Q̃

e

in

= Q̃

e

out

for each eout can be interpreted as a requirement that strong boundary conditions
must be imposed on eout. But strong boundary conditions (i.e. equality) cannot always be imposed for an
arbitrary pair

⇣

P

e
in

2I ↵

e

out,ein

Q̃

e

in

, Q̃

e

out

⌘

, so the statement of strong boundary conditions ((7) and (8) for a
concave flux) provides upper bounds on the admissible incoming and admissible outgoing fluxes over which the
flow is maximized (constraint (iii)). The maximum incoming admissible flux into the junction from edge ein

given a desired velocity v

e

in

to be prescribed in the strong sense is denoted by �

max
e

in

(v
e

in

) (resp. �

max
e

in

(⇢
e

in

) for
a given density). Similarly, the maximum outgoing admissible flux out of the junction from edge eout given a
desired velocity v

e

out

to be prescribed in the strong sense is denoted by �

max
e

out

(v
e

out

) (resp. �

max
e

in

(⇢
e

in

) for a given
density).

Thus the three conditions give rise to the following linear program for the exiting fluxes (denoted by the
vector dummy variable ⇠ 2 R|I|) on the incoming edges ein for junction j:

max: 1T

⇠

s.t. : A

j

⇠  �

max
Oj

0  ⇠  �

max
Ij

(22)

where �

max
Ij

:=
⇣

�

max
e

in,1
, · · · , �

max
e

in,|Ij |

⌘

, �

max
Oj

:=
⇣

�

max
e

out,1
, · · · , �

max
e

out,|Oj |

⌘

are the upper bounds on the fluxes on the
edges entering and exiting the junction, to be computed subsequently. With the optimal solution to (22), denoted
by ⇠

⇤
e

in

, the terms G̃

e

in

�

v

n

i

max

, v

n

i

max

+1

�

and G̃

e

out

�

v

n

�1, v
n

0

�

in the CTM-v (19) are given by:

G̃

e

in

�

v

n

i

max

, v

n

i

max

+1

�

= ⇠

⇤
e

in

, G̃

e

out

�

v

n

�1, v
n

0

�

=
X

e

in

2Ij

↵

e

out

,e

in

⇠

⇤
e

in

(23)

Remark 4. We note that the solution to this linear program is not always unique. In fact, for some instantiations
of A

j

, the gradient of the objective function may be normal to a facet of the constraint set polytope, in which case
all feasible points on the facet will obtain the same objective value. This can be resolved in many cases by adding
some noise to the coe�cients of A

j

. A second problem can occur when the maximum flow on an outgoing edge
is an active constraint in the solution. When this occurs, the linear program must be augmented with additional
priority constraints which describe how the flux from the incoming edges share the limited outgoing capacity.
For more information on resolving the nonuniqueness of solutions to (22), the reader is referred to [10].
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3.1.2 Computation of the maximum admissible flux

First we introduce a function ⌧(·), used to describe the domain for which we obtain admissible fluxes F (·). For
a continuous strictly concave C

0 flux function with F (0) = F (umax), the mapping from flux F (u) to u is double
valued, with one value above and one value below the critical value u

c

. For a given u, ⌧(u) is the map which
produces the alternate u for the same flux. The function is expressed as follows:

F (⌧(u)) = F (u) 8 u 2 [0, umax]

⌧(u) 6= u 8u 2 [0, umax]\{uc

}
Given that F (·) is in C

0 ([0, umax]), strictly increasing in [0, u

c

) and strictly decreasing in (u
c

, umax] the following
holds:

0  u  u

c

, u

c

 ⌧(u)  umax

We now define the upper bounds on the flux entering the junction from each incoming edge, and the flux
leaving the junction on each outgoing edge. More precisely, for each incoming and outgoing link, we seek to find
the upper bound on the admissible flux entering (resp. leaving) the link such that strong boundary conditions
are imposed on the boundaries for all edges at the vertex. First we derive these admissible fluxes �

e

out

(·) (resp.
�

e

in

(·)) in terms of the trace of the density ⇢

e

out

(0, t) (resp. ⇢

e

in

(L, t)), then apply the velocity inversion to arrive
at admissible fluxes �

e

out

(·) (resp. �

e

in

(·)) in terms of the trace of the velocity v

e

out

(0, t) (resp. v

e

in

(L, t)).
For a strictly concave flux F (·) with a maximum obtained at the critical value u

c

we categorize the values
of u(0, ·) and u

l

(·) for which which (7) holds:

a.e. t > 0, u(0, t) = u

l

(t) i↵
(

u(0, t) 2 [0, u

c

] and u

l

(t) 2 [0, u

c

]
xor u(0, t) 2 (u

c

, umax] and u

l

(t) 2 [0, ⌧(u(0, t))) \ {u(0, t)}
(24)

Recalling that incoming admissible fluxes are the set of fluxes corresponding to boundary data for the outgoing
links which can be imposed in the strong sense, we can define the set of incoming admissible fluxes on an
outgoing edge as:

• For ⇢

e

out

(0, t) 2 [0, ⇢

c,e

out

]:

�

e

out

(⇢
e

out

(0, t)) 2 ⇧
e

out

(⇢
e

out

(0, t)) :=
n

Q̂ : 9⇢̂ 2 [0, ⇢

c,e

out

] ; Q̂ = Q (⇢̂)
o

(25)

where ⇢

c,e

out

is the critical density on the edge eout.

• For ⇢

e

out

(0, t) 2 [⇢
c,e

out

, ⇢max,e

out

]:

�

e

out

(⇢
e

out

(0, t)) 2 ⇧
e

out

(⇢
e

out

(0, t)) :=
n

Q̂ : 9⇢̂ 2 {⇢
e

out

(0, t)} [ [0, ⌧ (⇢
e

out

(0, t))) ; Q̂ = Q (⇢̂)
o

(26)

Similarly, (8) can be rewritten in terms of outgoing admissible fluxes for incoming edges as:

• For ⇢

e

in

(L
e

in

, t) 2 [0, ⇢

c,e

in

]:

�

e

in

(⇢
e

in

(L
e

in

, t)) 2 ⇧
e

in

(⇢
e

in

(L
e

in

, t)) :=
n

Q̂ : 9⇢̂ 2 {⇢
e

in

(L
e

in

, t)} [ (⌧(⇢
e

in

(L
e

in

, t), ⇢max,e

in

] ; Q̂ = Q (⇢̂)
o

(27)

where ⇢max,e

in

is the maximum density on the edge ein.

• For ⇢

e

in

(L
e

in

, t) 2 [⇢
c,e

in

, ⇢max,e

in

]:

�

e

in

(⇢
e

in

(L
e

in

, t)) 2 ⇧
e

in

(⇢
e

in

(L
e

in

, t)) :=
n

Q̂ : 9⇢̂ 2 [⇢
c,e

in

, ⇢max,e

in

] ; Q̂ = Q(⇢̂)
o

(28)

If the admissible flux is maximized, and written in terms of velocity, we obtain:

�

max
e

out

(v
e

out

(0, t)) =

(

Q̃(v
c,e

out

) if v

e

out

(0, t) 2 [v
c,e

out

, vmax,e

out

]
Q̃ (v

e

out

(0, t)) if v

e

out

(0, t) 2 [0, v

c,e

out

]

and

�

max
e

in

(v
e

in

(L
e

in

, t)) =

(

Q̃ (v
e

in

(L
e

in

, t)) if v

e

in

(L
e

in

, t) 2 [v
c,e

in

, vmax,e

in

]
Q̃ (v

c,e

in

) if v

e

in

(L
e

in

, t) 2 [0, v

c,e

in

]

which are the upper bounds used in (22).
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Example 3.1 (Maximum admissible flux - hyperbolic-linear model). The maximum outgoing admissible flux is
given as:

�

max
eout

(v
eout

(0, t)) =

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

⇢max

⇣

1� vc,eout

v

max

⌘

v

c,eout

if v

eout
(0, t) 2 [v

c,eout
, vmax,eout

]

⇢max

 

1

1+
veout (0,t)

wf

!

v

eout(0, t)

if v

eout
(0, t) 2 [0, v

c,eout
]

(29)

and the maximum incoming admissible flux is given as:

�

max
ein

(v
ein

(L
ein

, t)) =

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

⇢max

⇣

1� vein
(Lein

,t)

v

max

⌘

v

ein(Lein , t)

if v

ein(Lein , t) 2 [v
c,ein , vmax,ein ]

⇢max

✓

1

1+
vc,ein

wf

◆

v

c,ein

if v

ein
(L

ein
, t) 2 [0, v

c,ein
]

(30)

3.2 Discrete CTM-v network algorithm

The CTM-v network algorithm is obtained by sequentially applying the CTM-v scheme on each link of the
network and solving the junction conditions as presented in the previous section, which includes solving the
LP (22) posed earlier. The network is thus marched in time and consists in a large scale discrete dynamical
system which can be used for data assimilation and inverse modeling. Given the velocity field at each discrete
point i = 0 to i = imax on all edges of the network

v

n :=
h

v

n

0,e

0

, · · · , v

n

i

max

,e

0

, · · · , v

n

0,e|E| , · · · , v

n

i

max

,e|E|

i

the velocity at time t = (n + 1)�T is given by:

v

n+1 = M[vn] (31)

where M[·] denotes the following update algorithm:

1. For all junctions j 2 J :

(a) Compute �

n

i

max

,e

in

�

v

n

i

max

,e

in

� 8ein 2 I
j

, and �

n

0,e

out

�

v

n

0,e

out

� 8eout 2 O
j

using (29) and (30).
(b) Solve the LP (22) for ⇠

⇤, and update G̃

e

in

�

v

n

i

max

, v

n

i

max

+1

�

and G̃

e

out

�

v

n

�1, v
n

0

�

through (23).

2. For all edges e 2 E : Compute v

n+1
i,e

8i 2 {1, imax} according to the CTM-v (16) and (19).

4 Velocity estimation

The goal of this section is to build an estimator to reconstruct the evolution of the velocity field on the highway.
That is, we wish to estimate the velocity field v

n on the network at each time step n using velocity data obtained
from the mobile devices.

4.1 State–space model

Given the velocity field at all points on the network at time n�t, the velocity at time (n + 1)�T is constructed
using the CTM-v algorithm v

n+1 = M[vn], which is given by the CTM-v network algorithm in section 3.2. This
algorithm consists of the following steps. For each vertex in the network, a linear program is solved such that
strong boundary conditions are imposed on the incoming and outgoing edges of the junction. Next, the velocity
field is updated according to the numerical scheme outlined earlier (which is nonlinear and non-di↵erentiable).
If we operate on the CTM-v model, rather than the CTM model, the observations of the state (i.e. the velocity
measurements from mobile devices) can be modeled with a linear observation operator, which simplifies the
estimation problem. For estimation purposes, we extend the model to

v

n = M[vn�1] + ⌘

n (32)
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where ⌘

n ⇠ (0,Qn) is the Gaussian zero-mean, white state noise with covariance Qn, used to model inaccuracies
in the evolution model (see for example [17]).

A network observation model is given by:

y

n = Hn

v

n + �

n (33)

The linear observation matrix Hn 2 {0, 1}p

n⇥ encodes the p

n discrete cells on the highway for which the velocity
is observed during discrete time step n and  =

P

e2E(imax,e

+ 1) is the corresponding (total) number of cells
in the network. The last term in expression (33) is the white, zero mean observation noise �

n ⇠ (0,Rn) with
covariance matrix Rn.

4.2 Extended Kalman filtering for nonlinear systems

If equation (16) was di↵erentiable in v

n, so would be the operator M[·] in (32), in which case the optimal
estimate for the state v

n could be obtained using the following traditional extended Kalman filtering equations:

• Forecast step (Time-update):

v

n

f

= M[vn�1
a

]

Pn

f

= Mn�1
L

Pn�1
a

�Mn�1
L

�

T + Qn�1 (34)

where M
L

is the Jacobian matrix of mapping M (also known as the tangent linear model) defined as

Mn�1
L

(i, j) =
@M

i

[vn�1
a

]
@v

n

j

(35)

• Analysis step (Measurement-update):

v

n

a

= v

n

f

+ Gn

�

y

n �Hn

v

n

f

�

(36)

Pn

a

= Pn

f

�GnHnPn

f

(37)

Gn = Pn

f

(Hn)T

⇣

HnPn

f

(Hn)T + Rn

⌘�1

(38)

where Pn

f

(resp. Pn

a

) is the error covariance of the forecast (analyzed) state at time n.

The initial conditions for the recursion are given by v

0
a

= v

0 and P0
a

= P0.

4.3 Ensemble Kalman filter

The ensemble Kalman filter was introduced by Evensen in [9] as an alternative to EKF to overcome specific
di�culties with nonlinear state evolution models, including non-di↵erentiability of the model and closure
problems. Closure problems refer to the fact that in EKF, it is assumed that discarding the higher order
moments from the evolution of the error covariance in (34) yields a good approximation. In cases in which this
linearization approximation is invalid, it can cause an unbounded error variance growth [9]. To tackle this issue
EnKF uses Monte Carlo (or ensemble integrations). By propagating the ensemble of model states forward in
time, it is possible to calculate the mean and the covariances of the error needed at the analysis (measurement-
update) step [5] and avoid the closure problem. Furthermore, a strength of EnKF is that it uses the standard
update equations of EKF, except that the gain is computed from the error covariances provided by the ensemble
of model states.

EnKF also comes with a relatively low numerical cost. Namely, usually a rather limited number of ensemble
members is needed to achieve a reasonable statistical convergence [5].

In traditional Kalman filtering, the error covariance matrices are defined in terms of the true state as
P

f

= E[(v
f

� v

t

)(v
f

� v

t

)T ] and P
a

= E[(v
a

� v

t

)(v
a

� v

t

)T ] where E[·] denotes the average over the ensemble,
v is the model state vector at particular time, and the subscripts f , a, and t represent the forecast, analyzed,
and true state, respectively. Because the true state is not known, ensemble covariances for EnKF have to
be considered. These covariance matrices are evaluated around the ensemble mean v̄, yielding P

f

⇡ Pens,f =
E[(v

f

� v̄

f

)(v
f

� v̄

f

))T ] and P
a

⇡ Pens,a = E[(v
a

� v̄

a

)(v
a

� v̄

a

)T ] where the subscript ens refers to the ensemble
approximation. In [5], it is shown that if the ensemble mean is used as the best estimate, the ensemble covariance
can consistently be interpreted as the error covariance of the best estimate. For complete details of derivation
of the EnKF algorithm, the reader is referred to [9].

The ensemble Kalman filter algorithm can be summarized as follows [9, 5]:
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1. Initialization: Draw K ensemble realizations v

0
a

(k) (with k 2 {1, · · · , K}) from a process with a mean
speed v̄

0
a

and covariance P0
a

.
2. Forecast : Update each of the K ensemble members according to the CTM-v (32) forward simulation

algorithm. Then update the ensemble mean and covariance according to:

v

n

f

(k) = M[vn�1
a

(k)] + ⌘

n(k) (39)

v̄

n

f

=
1
K

K

X

k=1

v

n

f

(k) (40)

Pn

ens,f =
1

K � 1

K

X

k=1

�

v

n

f

(k)� v̄

n

f

� �

v

n

f

(k)� v̄

n

f

�

T (41)

3. Analysis: Obtain measurements, compute the Kalman gain, and update the network forecast:
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(43)

4. Return to 2.

In (43), an important step is that at measurement times, each measurement is represented by an ensemble.
This ensemble has the actual measurement as the mean and the variance of the ensemble is used to represent the
measurement errors. This is done by adding perturbations �

n(k) to the measurements drawn from a distribution
with zero mean and covariance equal to the measurement error covariance matrix Rn. This ensures that the
updated ensemble has a variance that is not too low [5].

4.3.1 Large scale real–time implementation

The ensemble Kalman filter algorithm presented in the previous section is in a framework in which all of
the unknown state variables on each edge in the network are updated simultaneously. This introduces the
following problems. First, because the state covariance is represented through a limited number of ensemble
members, non-physical correlations may arise. This means that the correlation matrix may incorrectly show
correlation between distant parts of the highway network which do not correlate in practice. Secondly, the
framework described previously requires the forecast error covariance in (41) to be computed for the entire
highway network, then used for computing the Kalman gain in (42). When operating on large scale networks
such as the San Francisco Bay Area, CA, the covariance matrix can easily require more than 2 GB of memory
to load, creating computational limitations for implementation.

To circumvent the above mentioned problems for practical implementations, we employ a covariance
localization method. This approach limits the correlation between the velocity states on all edges in the network.
For a given edge e, only nearby links (upstream and downstream in the network) can exhibit correlation,
thereby removing correlation across distant parts of the network. These techniques have also been implemented
for oceanography data assimilation problems (see e.g. [22]).

For this large scale tra�c network estimation problem, localization also provides a computationally e�cient
way to update the state variables at the measurement update time in (42)–(43). Namely, due to the localization,
the computation of the covariance matrix in (41) is transformed into a computation of numerous small localized
covariance matrices for each edge in the network. These small scale covariance matrices are computed for each
edge given its neighboring edges on which the correlation is assumed to be physically meaningful. Finally, this
allows the distributed solving of the update equations.

For the localization, we introduce a localization operator L
e

for each edge e, which is constructed at the
initialization stage. This operator indicates which velocity states on the other edges of the network are allowed to
have correlation with the velocity state on the eth edge. The implementation of the EnKF algorithm described
previously can be modified for localization by replacing the measurement update equations (41)-(43) with the
following sub-algorithm:
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For each edge e 2 E :

1. Using the localization operator L
e

, compute the localized forecast error covariance:
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2. Analysis: Obtain measurements y

n

meas,e from edges that are indicated in L
e

, compute the Kalman
gain, and update the the local forecast:
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3. Return to 1.

It is worth noting that in practice, the operator L
e

does not need to be constructed as a matrix in the
computer memory and subsequently be used to do the relatively demanding matrix multiplications. In other
words, the e

th edge has references to the forecasts and measurements of its neighboring edges needed to construct
the localized forecast error covariance matrix.

5 Experimental Results

5.1 Mobile Century case study (February 8, 2008)

Nicknamed the Mobile Century experiment, a prototype privacy-aware data collection system was launched
on February 8, 2008 and used to estimate tra�c conditions for a day on I-880 near San Francisco, CA. With
the help of 165 UC Berkeley students, 100 vehicles carrying Nokia N95 phones drove repeated loops of 6 to
10 miles in length continuously for 8 hours. This section of highway was selected specifically for its complex
tra�c properties, which include alternating periods of free-flowing, uncongested tra�c, and slower moving tra�c
during periods of heavy congestion. These vehicles represented approximately 2% to 5% of the total volume of
tra�c on the main line of the highway during the experiment. A local log on each device stored the position,
time, and estimated speed at 3 second intervals (Fig. 4a) for experiment analysis purposes.

Because of privacy constraints, the full trajectories of the vehicles are never sent to the tra�c estimation
system. Instead, measurements are obtained from the mobile devices using a sampling strategy known as Virtual
Trip Lines (VTLs) [15], which are virtual geographic line segments placed on the roadway. When a vehicle
trajectory intersects a VTL, the phone reports its velocity to the system.

The section is also monitored with 17 inductive loop detectors, which are processed by the PeMS system to
produce speed estimates every 5 minutes [1]. To construct a velocity contour (Fig. 4b), the roadway is discretized
into 17 links centered around the detectors. A complete description of the experiment and comparison of the
VTL data and PeMS data can be found in [32]. The data collected during the experiment is downloadable on
the project website. [37].

During the experiment at approximately 10:30 am, a multiple car accident created significant unanticipated
congestion for northbound tra�c south of CA-92 (see Fig. 4a). The California Highway Patrol reported an
incident located at postmile 26.64 at 10:27 am, lasting 34 minutes [1], although GPS readings in Fig. 4a show
slowdowns in the area as early as 10:10 am. An earlier version of the EnKF CTM-v algorithm, running in
real-time during the experiment, detected the accident’s resulting bottleneck and corresponding shockwave [29],
and broadcast the results to the web.

5.2 Numerical implementation

The network implemented for the results presented in this article is a 6.8 mile stretch of I-880N from the Decoto
Rd. entrance ramp at postmile 20.9, to the Winton Ave. exit ramp at postmile 27.7. The network model consists
of 13 edges and 14 junctions (6 exit ramps, 7 entrance ramps, and 1 lane drop), shown in Fig. 5. The following
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(a) (b)

Figure 4: I-880N experiment data. (a) Vehicle trajectory logs stored locally on the phone. (b) PeMS velocity
contour plot. Color denotes speed in mph. x-axis: time of day. y-axis: postmile.

20.9 21.6 22  23.2 23.6 23.8 24.3 24.7 25.1 25.8 26.3 26.8 27.5 27.7
postmile

5 4 4 4 5 5 5 4 5 4 4 4 5

Figure 5: Road geometry of I-880N between Decoto Rd. (postmile 20.9) to the south and Winton Ave. (postmile
27.7) to the north. Arrows represent ramp entrance and exit locations, numbers represent the number of lanes
on each of the 13 links.

link parameters are selected for this experiment: ⇢max = 200 vehicles per lane per mile, vmax = 70 mph, and
w

f

= 13 mph. Each link is discretized into equal maximal length cells such that �x  0.11 miles and a time step
�t = 5 seconds is used to ensure numerical stability. The mainline boundary conditions are assumed to be free
flowing at 67 mph with standard deviation of 2 mph, and the ramps are set at 30 mph with a standard deviation
of 2 mph. The boundary conditions are implemented in the weak sense, and thus are not always imposed on
the computational domain. The state noise covariance matrix Qn is assumed diagonal with standard deviation
2 mph, and the measurement error covariance Rn is assumed diagonal with standard deviation 4 mph. Further
work on parameter estimation and characterization of the error covariance structures is the subject of ongoing
work. An initial ensemble with 100 members with mean 67 mph is drawn from P0

a

, which is assumed diagonal
with standard deviation 4 mph. In one scenario, measurements are collected from 10 evenly spaced VTLs, while
a second scenario considers measurements collected from 40 evenly spaced VTLs.

5.3 Comparison with inductive loop detectors

We present a comparison of the velocity estimate from the EnKF CTM-v algorithm using measurements from
10 and 40 VTLs (Fig. 6a–6b) with the velocity estimate obtained from the PeMS system [1]. In order to compare
the velocity contours, the EnKF CTM-v estimates are projected onto the coarse discretization induced by the
location of the PeMS inductive loop detectors and their corresponding update frequency, then averaged. Because
the inductive loops used in the PeMS system are also subject to errors, the resulting velocity contour should
not be taken as the true velocity contour.

In general, the results of the EnKF CTM-v with 10 VTLs (Fig. 6c) and 40 VTLs (Fig. 6d) show good
agreement with the PeMS velocity estimate (Fig. 4b). Both VTL and PeMS estimates capture important features
of the congestion pattern, including the extent of the queue resulting from the accident, which propagates
upstream to postmile 23.25 just after 11:00, before it begins to clear (see Figs. 6 and 4b). The e↵ects of
bottlenecks created by capacity decreases at postmiles 25.8 and 24.7 are also well described, and di↵er by less
than 10 mph throughout most of the experiment when 40 VTLs are used 7b.
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(a) (b)

(c) (d)

Figure 6: VTL measurements with (a) 10 VTLs and (b) 40 VTLs, and EnKF CTM-v velocity contour plots
with (c) 10 VTLs and (d) with 40 VTLs. Color denotes speed in mph. x-axis: time of day. y-axis: postmile.

Features of the velocity model are also evident in Fig. 6c-6d. In freeflow, information propagates downstream
along characteristics, while in congestion information propagates upstream. Also, the discontinuities in the
solution joining free flowing upstream sections with congested downstream sections are resolved with high
granularity (see in particular the discontinuity caused by the morning accident, Fig. 6c-6d). On the other hand,
the PeMS estimates in the same region transition from freeflow speeds in excess of 65 mph to 20 mph congestion
over a period of 15 min.

One area where the model appears to underestimate the congestion appears between postmiles 24.7 and
25.1, in Fig. 6c. Both the upstream and downstream sections are 5 lanes, while the intermediate section has only 4
lanes. The lane drop at 24.7 acts as a bottleneck, and vehicle speeds increase after entering the 4 lane link. While
speeds increase in both the raw GPS logs (Fig. 4a) and the PeMS estimates (Fig. 4b), the resulting velocity
estimated from 10 VTLs is approximately 15 mph faster than the PeMS estimate (Fig. 7a). The di↵erence
decreases with additional VTLs (Fig. 7b).

The congestion resulting from the morning accident also highlights some of the di↵erences between the
EnKF CTM-v estimates created with 10 VTLs and 40 VTLs. Because the model does not predict accidents,
measurements are needed to drive the ensemble states into congestion. Because the congestion is recorded on
VTLs earlier and more frequently than with the coarser VTL spacing, the ensembles converge to the slower
state more quickly. Additionally, because the congested state is slower, the di↵erence in fluxes surrounding the
discontinuity is increased, which in turn causes the shockwave speed to increase. Particularly around postmile
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(a) (b)

Figure 7: PeMS and EnKF CTM-v comparison. Color denotes speed di↵erence between PeMS and EnKF CTM-v
with (a) 10 VTLs and (b) 40 VTLs, in mph. Color denotes speed in mph. x-axis: time of day. y-axis: postmile.

25, the decrease in velocity from the shockwave causes the di↵erence between PeMS and EnKF CTM-v velocity
measurements to increase with additional VTLs (Fig. 7a–7b).

At postmile 26.3, the EnKF CTM-v and PeMS estimates di↵er by almost 20 mph throughout the day (Fig.
7a–7b), on the order of 20 mph. However, there is good agreement on the downstream cell centered at pm 26.0
which is congested, and the upstream cell centered at 26.5, which is freeflow, so disagreement comes from the
transition between the two states. Another area of disagreement occurs in the afternoon rush hour 20.9–23.6.
The EnKF CTM-v estimates show several distinct shockwaves followed by faster tra�c. These features are
missed in the average speeds reported by PeMS in the region, which leads to high disagreement in this area.

6 Conclusion and Future Work

This article presents a new scalar hyperbolic partial di↵erential equation (PDE) model for the evolution of
tra�c velocity on highways, based on the seminal Lighthill-Whitham-Richards (LWR) PDE. It proves the
equivalence of the solution of the new PDE and the LWR PDE for quadratic flux functions, and proves that
the equivalence does not hold for general flux functions. To circumvent this negative result, the article proposes
a discretized model for the evolution of velocity, obtained using a transformation of the Godunov scheme.
With an explicit instantiation of weak boundary conditions, the nonlinear discretized scheme is generalized to a
network, thus making the model applicable to arbitrary highway systems. The resulting nonlinear time invariant
dynamical system forms the basis of the ensemble Kalman filtering algorithm, which is introduced because of the
nonlinearity and non-di↵erentiability of the model. The algorithm was validated using velocity data obtained
from GPS-equipped mobile phones in vehicles during the Mobile Century field experiment, and shows good
agreement with velocity estimates from PeMS using loop detector data, even at penetration rates below five
percent. This algorithm was implemented in a live system in which both fixed loop detector data and cell phone
data was fused to produce tra�c estimates in Northern California as part of a follow-up field operational test
known as Mobile Millennium [37].
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A Proof of Theorem 2.6

Proof. The proof proceeds in two steps. Beginning with equation (12) instantiated for the Greenshields density
function (10), we show that the conservative equation obtained is the one from system (13). Substitution of the
explicit expression of P

G

in (12) yields:
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which means that v is a weak solution of the PDE:
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with the initial condition v(x, 0) = v0(x), and the velocity flux function
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This completes the first part of the proof.
Now, we show that the Rankine-Hugoniot jump condition [8, 19] is not conserved in the transformation

from (1) to (13) for the general case, which means that the equivalence is not obtained for general flux functions.
First, note that a necessary condition to have equivalence between the LWR PDE (1) and the LWR-v

PDE (13) is to have the same characteristics speeds for a state ⇢ in (1) and for the state V (⇢) in (13). This
yields Q

0(P (v)) = R

0(v). Integrating this relation between any states (⇢1, v1) and (⇢2, v2) we obtain:
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Using the variable change v = V (⇢), we obtain:
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Next, the Rankine-Hugoniot jump condition [8, 19] reads:
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which we can rewrite as:
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If we substitute equality (47) into equation (49) we obtain:
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which translates to:
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If we define the function G
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Given the expression of G
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⇢

1

(⇢2)� V

0(⇢2) by
�(⇢2 � ⇢1) G

0
⇢

1

(⇢2) we obtain:

G

0
⇢

1

(⇢2) ((⇢2 V (⇢2)� ⇢1 V (⇢1))� (⇢2 � ⇢1) (V (⇢2) + ⇢2 V

0(⇢2))) = 0 (52)
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The second term in the product can be written as Z(⇢1, ⇢2) = Q(⇢2)�Q(⇢1)� (⇢2 � ⇢1)Q

0(⇢2). So either Q(·)
is a�ne and Z(⇢1, ⇢2) is zero, either Q is strictly concave or strictly convex and Z(⇢1, ⇢2) is di↵erent from
zero, and the first term of (52) must be zero. If the first term in (52) is zero, it means that V is of the form
V (⇢) = a ⇢ + b. If the second term is zero, it means that V is of the form V (⇢) = a

⇢

+ b. So we obtain a necessary
condition that V is piecewise a�ne or hyperbolic.
If there exists a point ⇢

i

2 [0, ⇢max] s.t. V has a di↵erent algebraic expression for ⇢ > ⇢

i

and ⇢ < ⇢

i

, simple
algebra shows that the equality of the Rankine-Hugoniot speeds (48) does not hold in general. Therefore V is
either of the form a ⇢ + b in [0, ⇢max], or a

⇢

+ b in [0, ⇢max]. The second possibility is excluded by assumption on
V (unbounded speed as ⇢ goes to zero).


