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Abstract—The problem of regulating air traffic in the en
route airspace of the National Airspace System is studied using
an Eulerian network model to describe air traffic flow. The
evolution of traffic on each edge of the network is modeled
by a modified Lighthill-Whitham-Richards partial differential
equation. We pose the problem of optimal traffic flow regulation
as a continuous optimization program in which the partial
differential equation appears in the constraints. The equation
is transformed with a variable change which removes the
nonlinearity in the control variables and enables us to use
linear finite difference schemes to discretize the problem. Cor-
responding linear programming and quadratic programming
based solutions to this convex optimization program yield a
globally optimal solution. The technique is applied for a network
scenario in the Oakland Air Route Traffic Control Center.

I. INTRODUCTION

Research on the steady increase in air traffic volume has

triggered the development of a new class of aggregate flow

models, which describe the evolution of flows of aircraft

rather than individual trajectories in the hope of capturing

traffic patterns in a tractable manner. To our best knowledge,

the article [1] was the first to define traffic flow using

an Eulerian, or control volume based, framework based

on a discretized version of the Lighthill-Whitham-Richards

(LWR) partial differential equation (PDE) [2], [3]. This

work has since inspired several research groups to generate

similar models using a stochastic framework [4], [5]. Two

dimensional models [6] have also emerged, in the hope of

capturing traffic flow patterns more precisely. An important

characteristic of these approaches [1], [4], [5], [6] is the

diffusion or dispersion that they exhibit.

A first attempt to resolve these issues was proposed in

the form of a continuous time - continuous space model in

earlier work of one of the authors [7], based directly on

the LWR PDE. While this approach solves the diffusion

problem, its corresponding optimization programs require

heavy computations based on adjoint problems. In the work

[8], the authors compare the predictive capabilities of the

Large Capacity Cell Transmission Model (CTM(L)) proposed

in [9] with three other Eulerian models, and highlight the

computational issues with the PDE model which motivate

the present article. This work addresses the suboptimality

problem faced in [7] by using a new convex formulation of

the same problem, which also improves the computational

tractability of the model significantly with respect to previous

continuous approaches such as [8].

One of the most powerful techniques used for solving

problems posed as optimization programs in which con-

straints appear in the form of PDEs is adjoint-based opti-

mization [10]. This framework is very general, and enables

systematic treatment of cost functions and constraints. This

method has two main drawbacks: (i) it does not provide any

guarantee of global optimality for non-convex problems; (ii)
it is computationally expensive, due to the necessity of se-

quentially solving a series of “direct” and “adjoint” problems

and using iterative descent methods such as the Broyden-

Fletcher-Goldfarb-Shanno (BFGS) method to optimize the

cost [11].

The present article addresses these two problems by formu-

lating the problem as a convex optimization problem, which

provides a globally optimal solution to the problem posed

earlier in [7], at a lower computational cost (one linear or

quadratic program (LP or QP) vs. an adjoint optimization

procedure).

The remainder of this work is organized as follows. In

section II we describe the PDE network model which is

used as a constraint in subsequent optimization problems.

We show the optimization problem can be transformed into

a convex program, which allows us to efficiently solve for

globally optimal solutions, which is a key contribution of

this work. We discretize the convex problem to solve it

numerically and discuss the potential pitfalls which can occur

when selecting a numerical scheme in section III. In section

IV we apply the method to a trajectory tracking problem

under reduced network capacity on the Oakland Air Route

Traffic Control Center.

II. PROBLEM FORMULATION

A. PDE Network Model

This section uses the PDE model of air traffic flow initiated

in [7], and later extended in [8]. This approach models

jetways as paths composed of a series of line segments known

as links. We represent each link k on a path as a segment

[0, L] and denote by u(x, t) the number of aircraft between

distances 0 and x at time t. We can define the density of

aircraft as the weak derivative of u(x, t) with respect to

x : ρ(x, t) = ∂u(x,t)
∂x

. The aircraft density is a solution of

the partial differential equation:















∂ρ(x,t)
∂t

+ v(x, t)∂ρ(x,t)
∂x

+ ∂v(x,t)
∂x

ρ(x, t) = 0,

(x, t) ∈ (0, L) × (0, T ]
ρ(x, 0) = ρ0(x), x ∈ [0, L]

ρ(0, t) = q0(t)
v(0,t) , t ∈ [0, T ]

(1)
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the transformation of a known problem [7], [8], [16] into a

convex problem, a feature which was previously unknown.

If the previously mentioned constraints are imposed along

with the network PDE model, the optimization program for

a single junction becomes:

min
ρk(x,t), vk(x,t)

J

s.t. 0 ≤ ρk(x, t) ≤ ρk,max(x, t)

vk,min(x, t) ≤ vk(x, t) ≤ vk,max(x, t) (5)

(x, t) ∈ [0, Lk] × [0, T ], k ∈ K

system (2)

The goal of the optimization problem is to find the optimal

ρ(x, t) and vk(x, t) such that the objective function J is

minimized. The output of this program is thus an optimal

speed control policy to be applied by the air traffic controller.

The principle difficulty with solving (5) is that the PDE is

a nonlinear constraint in the optimization variables. Thus,

even if linear discretization schemes are used, the resulting

constraints will be nonlinear. We now propose a change of

decision variables which makes the previous constraints in

(5) linear:

qk(x, t) = ρk(x, t)vk(x, t) (6)

The nonlinear constraint in terms of decision variables

ρk(x, t) and vk(x, t) can be transformed into a linear con-

straint in terms decision variables ρk(x, t) and qk(x, t).
The control variable vk(x, t) is completely absent in the

resulting formulation, and so it must be computed from the

optimal solutions for density and flux obtained by solving

the following equivalent problem:

min
ρk(x,t), qk(x,t)

J

s.t. 0 ≤ ρk(x, t) ≤ ρmax(x, t)

vk,min(x, t)ρk(x, t) ≤ qk(x, t)

≤ vk,max(x, t)ρk(x, t)

∂ρk(x, t)

∂t
+

∂qk(x, t)

∂x
= 0 (7)

ρk(x, 0) − ρ0,k(x) = 0

qk(0, t) − q0,k(t)

−
∑

m∈Mk

βm,kqm(Lm, t) = 0

(x, t) ∈ [0, Lk] × [0, T ], k ∈ K

Note also that the velocity constraint changed from bounds on

vk(x, t) in (5) to a linear constraint on qk(x, t) and ρk(x, t) in

(7). In this latter form, any linear discretization scheme will

yield a discrete formulation which can be solved numerically

using either linear or quadratic programming techniques,

depending on the objective function and its discretization.

This formulation, (both continuous and discrete) is the main

contribution of the article, and was previously unknown.

III. PRACTICAL IMPLEMENTATION

A. Description of Discretization Schemes

1) Notation: For each link in the network, we must

discretize the continuous variables into their discrete forms.

Dropping the link subscript k for brevity, the physical domain

for ρ(x, t) and q(x, t) with (x, t) ∈ [0, L] × [0, T ] is written

in terms of the discrete variables ρn
i and qn

i where i and n are

integers in [0, imax] and [0, nmax] respectively, where imax+1
and nmax + 1 correspond to the number of discretization

points in space and time. Letting ⌊·⌋ denote the floor operator,

we define i in terms of the continuous space x and the

discrete space step size ∆x, as: i =
⌊

x
∆x

⌋

, and note that

imax + 1 corresponds to the number of discretization points

in the space domain. Similarly, n is defined in terms of the

continuous time variable t and the discrete time step size

∆T , as: n =
⌊

t
∆T

⌋

, and nmax + 1 equals the number of

discretization points in time.

2) Schemes Implemented: A variety of discretization

schemes applied to the the modified LWR PDE constraint

(7) have been tested for use in this optimization framework,

and we now present a subset to illustrate key challenges. The

(explicit) Lax-Friedrichs (LxF) scheme is written in terms of

ρ(x, t) and q(x, t) following [17]:

ρn+1
i =

1

2
(ρn

i+1 + ρn
i−1) −

1

2

∆T

∆x
(qn

i+1 − qn
i−1) (8)

which is subject to the Courant-Friedrichs-Lewy (CFL) con-

dition:
∣

∣

∆T
∆x

vn
i

∣

∣ ≤ 1 for stability [17]. Since vn
i is an unknown

optimization variable, we must insure stability for all possible

vn
i , namely:

∣

∣

∆T
∆x

vmax

∣

∣ ≤ 1. Alternatively, if a second order

centered difference in space at the t and t + 1 time steps

are averaged, the (implicit) Crank-Nicholson (CN) scheme is

obtained [18]:

ρn+1
i = ρn

i −
∆T

4∆x

(

qn+1
i+1 − qn+1

i−1 + qn
i+1 − qn

i−1

)

(9)

We also present the (implicit) Crank-Nicholson with dissipa-

tion (CND) scheme [17]:

ρn+1
i = ρn

i − ∆T
4∆x

(

qn+1
i+1 − qn+1

i−1 + qn
i+1 − qn

i−1

)

− ε
16

(

qn
i+2 − 4qn

i+1 + 6qn
i − 4qn

i−1 + qn
i−2

) (10)

which has a dissipative term of order 4 for small values

of ε (i.e. ε = 1
2 ). An upcoming journal version of this

article contains additional schemes and a comparison of their

computation time and accuracy [19].

3) Boundary Conditions: When implementing any nu-

merical scheme, special attention must be paid to boundary

conditions. In this optimization program, we implement the

boundary conditions in the strong sense, at the first grid point

in the physical domain because it is an inflow condition.

Downstream, we implement boundary conditions with ghost

points, following the procedure outlined in [8], [20]. This is

now presented on the LxF scheme, while noting that a similar

procedure is used on the other schemes.
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The initial distribution of density on each link k, given

by ρ0,k(x) is directly imposed in the discrete problem as

follows: ρ0
i,k = ρ0,k(i∆x). If the initial velocity profile

v0,k(x) at the initial time is also known, the initial flux profile

can be defined similarly: q0
i,k = ρ0,k(i∆x)v0(i∆x).

At the link entrance, we impose the inflow flux on link k

on the discrete flux variable qn
0,k according to:

qn
0,k = q0,k(n∆T ) +

∑

m∈Mk

βm,kqm(imax∆x, n∆T ) (11)

This expression can be interpreted as follows: The discrete

flux variable qn
0,k on each link k, at the boundary i = 0,

is equal to the inflow flux function q0,k(t) representing all

aircraft entering the network at link k, plus the fluxes from

all links which feed flow already in the network into link

k. The density along the link entrance ρn
0,k is bounded but

not specified directly at this boundary; its optimal value is

computed directly from the optimization program.

With variables now defined along the initial time and space

boundaries, the LxF scheme (8) is encoded as a constraint

involving ρn
i , ρn

i+1, ρn
i−1, qn

i+1, and qn
i−1 for all i ∈ [1, imax]

and n ∈ [1, nmax]. Because ρn
i+1 and qn

i+1 are undefined in

the PDE evaluation at imax, we introduce a ghost point at

imax + 1 which is not in the physical domain. Instead, it is

used for the sole purpose of computing the flux and density

variables at the link exit according to the discretized PDE

constraint. These variables are constrained to the physical

system by invoking the constraints:

ρn
imax+1 = ρn

i , qn
imax+1 = qn

i (12)

B. Computational Results

We now discuss two common pitfalls when implementing

the discretization schemes through the following example.

Specifying the boundary condition on the inflows:

qn
0 =







0 for n∆T ≤ 1
4

sin(2π(1 − 2n∆T )) for n∆T ∈ [ 14 , 1
2 ]

0 for n∆T ≥ 1
2

(13)

and initial density distribution:

ρ0
i =

{

sin(2πi∆x) for i∆x ∈ [0, 1
2 ]

0 for i∆x ∈ [ 12 , 2]
(14)

we solve the following discretized maximization of airport

arrivals validation problem on a single link subject to a bump

inflow condition and initial density distribution, for one link

with the LxF scheme. We define:

vn
i,max = vn

i,min =

{

2 for i∆x ∈ [0, 1]
3 − i∆x for i∆x ∈ [1, 2]

(15)

and the validation problem is given by:

min
ρn

i
, qn

i

−

nmax
∑

n=0

qn
imax

∆T

s.t. ρn+1
i =

1

2
(ρn

i+1 + ρn
i−1) −

1

2

∆T

∆x
(qn

i+1 − qn
i−1)

ρn+1
imax

=
1

2
(ρn

imax
+ ρn

imax−1)

−
1

2

∆T

∆x
(qn

imax
− qn

imax−1) (16)

−
1

5
≤ ρn

i ≤ 3

ρn
i vn

i,min ≤ qn
i ≤ ρn

i vn
i,max

i ∈ [1, imax], n ∈ [1, nmax]

eqn. (13)

eqn. (14)

Note that the second constraint represents the discretized

PDE with the ghost points correctly implemented at the link

exit boundary. As revealed by our study, while problem (7)

or its discrete counterpart (16) is convex in theory, a simple

implementation of these programs which does not take into

account specific features of the numerical schemes often

results in (numerical) infeasibility or meaningless solutions.

This occurs even when physically meaningful solutions exist

for the continuous programs.

1) Infeasibility: One ironic feature of the numerical imple-

mentation is the fact that a problem can become infeasible by

relaxing the velocity constraint from vmin(x, t) = vmax(x, t)
to vmin(x, t) < vmax(x, t): seemingly increasing the feasible

set of valid velocities results in infeasibility! This is the case

for the CND scheme. To see why this occurs, we examine the

second constraint in the formulation (7): vmin(x, t)ρ(x, t) ≤
q(x, t) ≤ vmax(x, t)ρ(x, t). In the framework of air traffic

control, the density and flux should remain non-negative to

be physically meaningful. However, the discrete formulations

of the LWR PDE can introduce an overshoot which causes

the density to become slightly negative (see Fig. (2)). In

the problem formulation, we can relax the explicit constraint

that ρ(x, t) ≥ ρmin (with ρmin = 0) to accommodate this

numerical error. In the validation problem, this causes a

proportional negative flux, but the problem remains feasible

(assuming it does not violate the relaxed ρmin constraint). The

same can not be said for the control problem. Even when the

ρmin constraint is relaxed to allow for overshoot, the problem

formulation has an implicit constraint that ρ(x, t) ≥ 0. To see

why, we assume ρ(x, t) ≤ 0, and note that the constraint on

q would become:

vmin(x, t) · (−1)|ρ(x, t)| ≤ q(x, t)
≤ vmax(x, t) · (−1)|ρ(x, t)|

(17)

which leads to the following contradiction:

vmin(x, t) ≥ vmax(x, t) (18)

47th IEEE CDC, Cancun, Mexico, Dec. 9-11, 2008 WeA09.1

2144



0 0.5 1 1.5 2

0

0.5

1

1.5

2

Position (x)

D
e
n

s
it

y
 (

ρ
)

 

 

Exact

LxF

CND

t=0.67 sec

Figure 2. Comparison of the computed density LxF and CND schemes
and the exact solution to problem (16) at time t = 0.67 seconds. Vertical
axis density (ρ). Horizontal axis: position (x). The LxF scheme is feasible
for the control problem, while the CND scheme is infeasible, because of
the undershoot clearly visible, which violates ρ(x, t) ≥ 0 locally due to
numerical inaccuracy.

Thus, schemes such as CND, which are very accurate overall

for the validation problem, cannot be used for the control

problem because of a slight negative overshoot (see Fig. 2)

making the optimization program infeasible.

2) Physically Meaningless Solutions: Another implemen-

tation challenge occurs when implicit schemes such as CN

are used in the optimization framework of (7). Although

these schemes are unconditionally stable, they may still

suffer from significant sawtooth-like oscillations, as shown

in Fig. 3. This figure shows the result of solving a con-

trol problem with constant initial and boundary conditions.

The observed oscillations are a direct consequence of the

symmetric centered spatial difference of
∂q(x,t)

∂x
that appears

in (9). This symmetry opens the potential for solutions to

the discretized PDE which are not solutions to its contin-

uous counterpart. For example, consider the original PDE

constraint:
∂ρ(x,t)

∂t
+ ∂q(x,t)

∂x
= 0, and impose an additional

constraint that
∂ρ(x,t)

∂t
= 0 for all x and all t. In the continuous

framework, any solution to the optimization problem with

this constraint must necessarily satisfy
∂q(x,t)

∂x
= 0. Taking

the discrete version of this condition by applying a centered

difference operator on the spatial derivative of q, we find

there are multiple solutions to the discretized constraint
qn

i+1−qn

i−1

2∆x
= 0. One such solution, corresponding to the

analytic solution of the continuous constraint is:

qn
0 = qn

1 = · · · = qn
imax

= C (19)

where C is a constant. A more pathological solution to the

difference equation can be expressed as:

{

qn
1 = qn

3 = qn
5 = · · · = C1

qn
0 = qn

2 = qn
4 = · · · = C2

(20)

where C1and C2 are constants. Here, the spatial profile of

the flux oscillates between the values of C1 and C2, and

therefore would not satisfy the continuous constraint in the

Figure 3. Density (left column) and flux (right column) solutions to a
control problem with constant boundary and initial conditions: q(0, t) = 2,
ρ(x, 0) = 1, with vmin = 0.5 and vmax = 0.2, at time t = 0.67 (top
row). Surface plots of the density and flux (bottom row) show the solution
exhibits oscillatory behavior. Color darkens with increasing density and flux.

limit: ∂q
∂x

= 0. On the other hand, it does satisfy the discrete

constraints:







(

∂q
∂x

)

i=2
= q3−q1

2∆x
= C1−C1

2∆x
= 0

(

∂q
∂x

)

i=3
= q4−q2

2∆x
= C2−C2

2∆x
= 0

(21)

Thus, this solution exists only in the discrete representation

of the problem, and does not correspond to the physics of

air traffic flows on the network.

Clearly, discrete models using the central difference oper-

ator have a potential for solutions with large deviations from

the continuous model because they allow too much freedom

for the solution to oscillate. The pathological cases presented

in this section unfortunately happen frequently in practice,

and thus require careful selection of a good numerical scheme

which avoids the two pitfalls presented in sections III-B2 and

III-B1.

IV. APPLICATION TO THE OAKLAND AIR ROUTE

TRAFFIC CONTROL CENTER

A. Model Construction

Using previous modeling work (see [8], [9]), we now apply

the proposed algorithm to the en route and arrival airspace in

the Oakland Center, which we have studied in the past and

for which we have a database of Aircraft Situation Display to

Industry (ASDI) data. In [8], we have validated a model of en

route traffic flow against this data and assessed its accuracy.

The selected subset of this network, depicted in Fig. 4,

consists of 14 links merging into the Oakland Terminal Radar

Approach Control (TRACON), in which traffic follows a 15th

link. Corresponding historical velocity profiles v(x) can be

identified from the database. We construct this range from the

historical mean, from which we allow speed amendments of

±15%.

B. Flow Simulation

In the simulation presented next, 117 aircraft enter the

network at the boundaries of 9 different links over a 6 hour
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Figure 6. Comparison of the flux profile (vertical axis) at the last point in
the network, for the unconstrained (dotted) network, and the network with
capacity reduced to 66% (solid).

optimization program” does not provide a systematic solution

to engineering problems. In particular, without an appropriate

choice of numerical scheme for the problem formulation,

two things can happen: (i) overshoots or undershoots of

numerical schemes (even if the schemes are very accurate)

or (ii) systematically make optimization programs infeasible

if some of the constraints are active where the overshoot

happens.
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