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Abstract— Train delay is a critical problem in railroad
operations, which has led to the development of analytical and
simulation based approaches to estimate it. With the recent
advances in sensing and communication technologies, train
positioning information is now available to support new data
driven methods for train delay estimation. In this work, two
data driven approaches are proposed to estimate train delays
based on historical and real time information. A historical
regression model is proposed to estimate future train delays
at each station using only past performance of the train along
the route. Next, several variations of an online regression model
are proposed to estimate delay using delay information of the
trains at earlier stations along the current trip, as well as delay
information of other trains that share the same corridor. The
proposed methods are tested with data collected on 282 Amtrak
trains (the largest US passenger railroad service) from 2011 to
2013, which consists of more than 100,000 train trips. Compared
to prediction based on the scheduled time table, the proposed
historical regression model improves the RMSE estimate of
delay by 12%, while the online proposed model improves the
RMSE estimate of delay by 60%.

I. INTRODUCTION

For a given train, the delay is defined as the difference

between the true running time and the free running time. The

variabilities associated with train operations (e.g., equipment

maintenance, station dwell time, weather) may contribute

to the travel time delay, which consequently impacts the

efficiency of railroad operations [1]. In the US, Amtrak

passenger trains have priority over freight trains, and yet

the average on–time rate of Amtrak is less than 50% [2].

Moreover, the average delay for several trains can reach as

high as 50 minutes (e.g., the Adirondack train at Fort Edward

station in 2013 [2]). In the presence of this variability, it is

important to estimate train delays so that strategies can be

developed to improve the railroad operation efficiency.

The objective of this article is to develop new data driven

methodologies to estimate passenger train delays and to

assess their performance on a large dataset of more than

100,000 trips. In the past, many analytical models and

simulation approaches have been proposed to estimate train

delays. While these approaches have merit due to their

elegance (analytical approaches) and realism (simulation

based approaches), application of either approach constitutes

a major model building or calibration task. For complex sys-

tems, analytical methods require some degree of abstraction

to maintain tractability. Simulation based approaches can
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model the complexity of the realistic train operations, but

require extensive effort to accurately calibrate the model.

With the recent advances in sensing and communication

technology, train positioning data is now available to improve

train delay estimation through data driven methods. For

example, regression models can be constructed to estimate

delay, where the parameters associated with the regression

models are calibrated by learning from historical data. Com-

pared to the analytical methods and simulation methods, data

driven approaches can be easily generalized and deployed to

estimate train delays for any train, as long as training data

is available. Note this necessarily prevents the applications

of these methods for scenario planning, which analytical or

simulation approaches are more appropriate.

The main challenge associated with data driven approaches

for passenger train delay estimation is data availability. First,

accurate data may not be available, or it may be sparse

or incomplete. For example, the Amtrak data considered

in this work does not contain records between stations,

and no information is publicly available about the freight

traffic, which shares the same track. Moreover, the data is

incomplete, and some delays are never recorded. In spite of

these limitations, this work shows standard regression models

can significantly improve passenger train delay estimation

compared to the predictions based on the scheduled time

table. While additional refinements are certainly warranted,

data driven approaches appear promising for delay estima-

tion.

The main contributions of this article are summarized as

follows. This article proposes two data driven approaches

for passenger train delay estimation. A historical regression

model is designed to predict train delays before the current

trip starts, and online regression models are proposed to

provide a more accurate train delay estimate after the trip

begins, using the delay recorded at the upstream station

on the current trip and the delay recorded by other nearby

trains. Data from 282 Amtrak trains (over 100,000 trips),

are used to illustrate and test the proposed algorithms. The

estimation results show the proposed historical regression

model improves the route mean square error RMSE by 12%
and the online regression model improves the RMSE by 60%,

compared to prediction based on the scheduled time table.

The reminder of the article is organized as follows. In

Section II, we review the existing work for train travel time

delays. In Section III, data driven autoregressive approaches

are proposed for train delay estimation. The proposed meth-

ods are implemented and tested with Amtrak data, and

the estimation results of the proposed methods are shown

in Section IV. In Section V, we conclude the proposed
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methods significantly improve delay estimation compared to

the scheduled time table, and note the need for further work

on capturing cascading delays and other delay related factors.

II. RELATED WORK

In this section, we provide a brief review on train delay

estimation, following the excellent and detailed review by

Murali et al. [3].

A. Analytical delay estimation methods

Frank [4] proposed to estimate train travel time by study-

ing the accumulation of trains when traffic exceeds the

capacity. The model assumes that no overtakes are allowed,

the departing times are uniformly distributed, and that the

speed of each train is unique and constant. This work was

later extended by Peterson [5] and Chen et al. [6], where

factors such as overtakes, different speeds, priority systems,

and uncertainties associated with train departure time were

considered. Carey et al. [7] used stochastic approximation to

analyze the effects of headways on knock–on delays of trains,

and the impacts of dispatching strategies on train delays and

passenger waiting time were analyzed by Özekici et al. [8].

Higgins et al. [9] proposed a model to quantify the expected

positive delay for individual passenger trains and track links

in an urban rail network. A stochastic modeling approach

proposed by Yuan [10] estimate train delays and delay

propagation in stations by using probability distributions to

model train events and process times based on empirical data.

While the analytical methods provide explicit mathemati-

cal relationships to estimate delays, the delays caused by the

complex interactions among trains, the variabilities among

train operations, and operating parameters cannot be fully

captured by the mathematical formulations. As a result,

simulation based models that incorporate these aspects have

also been developed for train delay estimation.

B. Simulation methods

Peterson et al. proposed a structured model [11] to simu-

late the movement of trains over the rail line, which supports

arbitrary number of trains with different speeds and priories

on single or multiple tracks rail networks with sidings,

switches and cross–overs. Dessouky et al. [3], [12], [13]

proposed simulation models that are able to simulate train

movements over single and double track lines, junctions, and

terminals and to model rail networks that consist of multiple

trackage configurations and speed limits. Their proposed

simulation model [13] has been tested and validated with the

movements of passenger and freight trains in Los Angeles.

The simulation based models have also been used to

calibrate the parameters of the analytical models for delay

estimation. Hallowell [14] proposed an analytical model to

study the impacts of randomness of departure times and

dispatch policies on delays. The model is calibrated and

validated through rail operating data generated by extensive

Monte Carlo simulations using an optimal meet and passes

planning model.

The main advantage of the simulation models is that they

are capable of incorporating the sophisticated interactions of

trains on complex infrastructure, and the resulting delays can

be easily estimated once the model is calibrated. However,

simulation models are still an approximation to the true rail

operations, and thus are limited to considering the delay

factors which are explicitly modeled. Moreover, simulation

approaches usually require extensive simulations in order to

generate delay distributions of different operating conditions

[3].

C. Data driven methods

Data driven approach becomes an alternative approach for

train delay estimation in the recent decade. Forman [15]

applied linear regression on a first class freight railroad

(BNSF), with the goal to determine the factors contributing to

delay. The model is performed on eight districts with widely

varying traffic patterns and track configurations. Train delays

are estimated for each of the eight districts, and factors such

as horsepower per ton, track geometry, train priorities, meets,

passes, overtakes, train spacing variabilities, are considered.

It is the first work which uses regression models on US

freight rail data for delay prediction. Compared to freight

trains, passenger trains are scheduled traffic and stop fre-

quently in order to pick up and drop passengers. Moreover,

the number of factors considered in the regression is signif-

icantly smaller, since data on passenger trail is significantly

more limited compared to data available (internally) to the

freight railroad.

Kecman and Governed [16] present a microscopic model

to predict train travel time and delay for railroad networks.

Historical track occupation data are used to train the param-

eters in the microscopic model to estimate train delays. The

proposed model are tested on a corridor in Netherlands in

a simulated real-time environment. Another work that uses

data driven approach for train delay estimation is performed

by Hansen et al. [17], where an online model is trained

with historical track occupation data, and implemented on

a segment of Dutch railway corridor. In the US, railroad

track occupation data are not public available. The regression

models proposed in this article use train departure time

records at stations to estimate train delays.

Recently, a tool was created by Google and Amtrak to

track the Amtrak trains and provide arrival time prediction

[18]. However, here are no published results on the algo-

rithms or their accuracy. Thus, this work presents a first

quantitative and data driven study on methods for estimation

of passenger train delays in the US.

III. METHODOLOGY

In this work, we develop two approaches to estimate train

delays. The first method is a historical regression model

developed by assuming delays from one trip to the next

follow an vector autoregressive process. This model predicts

train delays at each station before the current trip starts based

on the delay recorded in the past trips. Next, two variations

of an online regression model are developed, which aims
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at providing accurate train delay estimation by using delay

information of the train at earlier stations long the current

trip, as well as delay information of other trains that share

the same corridor.

A. Historical regression model

Passenger train delay can be assumed to follow a vector

autoregressive process [19] , because passenger trains operate

on a fixed frequency (e.g., daily) and schedule. As a result,

prior delays on previous trips bring information to estimate

the train delay at each station for the current trip. The vector

autoregressive process predicts train delays at each station

along the route simultaneously based on the prior delays on

previous trips. The historical regression model constructed

by a vector autoregressive process of order p is described as
follows:

yit = A1y
i
t−1 + · · ·+Apy

i
t−p + ν + ut, (1)

where yit =
(
yi1,t, · · · , yik,t, · · · , yiK,t

)T

∈ RK denotes the

vector of train delays on trip t for train i. Here, yik,t is a
scalar that denotes the train delay at station k on trip t for
train i, with k = 1, · · · ,K, and K is the total number of

stations on the train trip. The matrix Am ∈ RK×K , with

m = 1, · · · , p, denotes the relationships of delays among
the current and past trips, and among stations. The variable

ν = (ν1, · · · , νK)
T ∈ RK is an intercept term which allows

constant delays. The variable ut = (u1, · · · , uK)
T ∈ RK is

the white noise which denotes the error between the predicted
ŷt and the true yt, where ŷt is given as:

ŷt = A1yt−1 + · · ·+Apyt−p + ν. (2)

Model (1) is also called a vector autoregressive process

with lag p, since the vector yt is computed using only the
system state in the previous p trips. To apply the model,
we first select p, and then train the parameters Am and ν
by using a least squares fit on the historical data. Then, the

vector autoregressive process with the trained parameters can

be used for prediction.

B. Online regression model

The historical regression model can predict train delays

at each station before the current trip starts. After the trip

begins, the accuracy of the train delay estimation at a

station can be further improved if delays of the train at its

upstream stations are known, and if the delays of another

trains that may interact with the current train are known.

In this section, an online regression model is proposed to

incorporate such information for train delay estimation by

using an autoregressive process [20]:

yik,t = a1y
i
k−1,t + · · ·+ apy

i
k−p,t + ck +Φi

k,t + uk,t, (3)

where yik,t is a scalar that denotes the delay of train i at
station k during trip t. The parameters am and ck denote
the relationship of train delays among the current and past

stations. The term uk,t in (3) is a scalar which denotes the

error associated with the model. The predictor ŷik,t is given
as:

ŷik,t = a1y
i
k−1,t + · · ·+ apy

i
k−p,t + ck +Φi

k,t. (4)

The term Φi
k,t denotes the delays of another trains that

may contribute to the delay of train i at station k. This term
is modeled as:

Φi
k,t = Σ(j,k̃,t̃)∈Ωi,k,t

bjy
j

k̃,t̃
, (5)

where Ωi,k,t denotes the set of train–station pairs that con-

tribute to yik,t. The term yj
k̃,t̃
is the delay of train j at station

k̃ during trip t̃. Note that station k̃ is not necessarily the same
station as k since the delay of train j at other stations k̃ may
also influence the delay of train i at station k (e.g., if train
i and train j share the same track, but move in opposite
directions). Moreover, trip t̃ must be distinguished from t
since it is a trip index for train j. The parameter bj is the
factor that indicates how the delay of train j at station k̃ on
trip t̃ impacts yik,t.
The existence of Φ can be interpreted as follows. If two

trains are closely scheduled on a single track line and the

front train is delayed at a station, then it is possible for

the following train to experience knock–on delay. Note that

because Amtrak shares track with freight trains, and freight

train positioning data is not publicly available, the knock–on

delay caused by freight traffic cannot be captured when this

model is implemented with Amtrak data only.

We also consider two variations of the online regression

model (3). The first one is a predictor which is constructed

based on the assumption that the delay of train i at station
k is simply equal to the delay of the same train at station
k − 1. In this case, the model (3) becomes:

yik,t = yik−1,t + uk,t. (6)

The second variation of regression model does not consider

the delays caused by the interactions among trains. The

simplified (interaction free) model is given as:

yik,t = a1y
i
k−1,t + · · ·+ apy

i
k−p,t + ck + uk,t, (7)

As a result, model (6) can be viewed as a baseline approach

where delay is assumed to propagate from the upstream

station to the downstream station. Model (7) captures non–

constant delay relationship between stations by training the

parameters am and ck, while model (3) adds another compo-
nent Φ to incorporate the delay caused by interactions among
trains.

IV. IMPLEMENTATION AND RESULTS

The proposed methods are tested with Amtrak passenger

train data released by AmtrakStatusMaps [2]. The histor-
ical regression model (2), the online baseline model (6),

the online regression non–interacting model (7), the online

regression interacting model (3), and the scheduled time table

are tested and compared using data from 282 Amtrak trains

(or 120 trains in the case of the interacting model (3) since

the other trains have an empty interaction set Ωi,k,t).
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Fig. 1: The figure shows delays for Amtrak train 68 in 2013.

Six of the 17 stations along the route are labeled. The color

in the figure denotes departure delay at each station for each

trip. Missing data are shown in white.

The general procedure to evaluate the models is as follows.

First, structural parameters of each regression model must be

selected (e.g., the lag p and the interaction set Ωi,k,t). Sec-

ond, the available data is partitioned into a training dataset

and a test dataset. Third, the parameters of each regression

model are determined through least squares estimation on

the training dataset. Finally, the model is evaluated on the

test dataset to determine the accuracy of the predictor.

A. Data description and training data selection

Amtrak data is used as an example of passenger train

data to illustrate and test the proposed method. The dataset

contains all Amtrak passenger train arrival and departure data

at each station from 2006 to 2013. The dataset is released

by AmtrakStatusMaps [2] and is publicly available. For each
train and each trip, the following data are recorded: station
code, scheduled arrival day and time, scheduled departure
day and time, actual arrival time, actual departure time and
comments.
After an exploration of the dataset, it is found that the

Amtrak data is coarse and a number of data records are

missing. In particular, most stations do not have records

for actual train arrival times, and some stations do not have

records for scheduled train arrival times. However, nearly all

the stations have records for the scheduled departure time

and the actual departure time. As a result, the time differ-

ence between scheduled departure time and actual departure

time is used to denote travel time delay in the following

experiments.

A year of delay data of a typical train (train 68 in 2013)

is used as an example to visualize the delay (Figure 1). The

train travels daily from Montreal (MTR) to New York, and

stops at 18 stations. In Figure 1, two data patterns can be

observed from the recorded delays. First, some stations are

more likely to experience delay compared to the others (e.g.,

Ticonderoga, NY (FTC) compared to Hudson, NY (HUD)).

Second, once delay occurs on a trip, the delay is likely to last

for several stations. Such data patterns are also commonly

observed on other Amtrak trains.

Data from 282 Amtrak trains from 2011 to 2013 are used

to train and test the proposed algorithms, which consists

of more than 100,000 train trips. For each train, data from

2011 and 2012 are used as training data, while the first 30

trips of 2013 for each train are used as test data. Note that

the first 30 trips may occur over one to several months

depending on the frequency at which the train operates

(e.g., daily, weekly). We also note that AmtrakStatusMaps
contains data for more than 450 Amtrak trains from 2011

to 2013, however a regression model cannot be constructed

for all trains. The vast majority of excluded trains were

subject to a route re-configuration (e.g., adding a station)

during the three year period, meaning that a complete set of

training or test data is not available. A small subset of trains

without schedule reconfigurations were also excluded due to

a large amount of missing data. These are practical issues

that must be addressed before data-driven methods can be

widely deployed.

When models (2), (6) and (7) are tested, data from all

282 Amtrak trains are used as training data. The online

regression interacting model (3) is evaluated on a smaller

subset consisting of 120 trains, where the interacting set

Ωi,k,t is non-empty.

B. Cross validation

In order to test if the results of the proposed methods are

sensitive to the training data, a k–fold cross validation [21] is
used. The training data is partitioned to five sets. Each model

is run five times, and for each run, a district set composed of

four of the five sets are used to construct the training dataset.

Different from the standard k–fold cross validation where the
test dataset is also changed during each fold, the algorithm

is tested with the data in 2013, to avoid the scenario that the

model is trained with data from the future and tested on the

past.

C. Selection of structural regression parameters

We briefly describe how the order p for models (3), (2),
and (7) is selected, and how the set Ωi,k,t is determined when

model (3) is deployed.

When the historical model (2) is implemented, multiple p
values have been tested, and it is found that the historical

model has the overall best performance when the order p is
set as one. Practically, the order p associated with the histor-
ical model for each train can also be determined individually

by minimizing the final prediction error following the criteria

in [19]. When the online regression models (3) and (7) are

implemented, the order p is also chosen as one. Because once
the train delay at the upstream station is known, the delays of

the train from the stations further upstream do not contribute

to the estimation accuracy. This assumption was also tested

by evaluating larger orders p for the model, which caused
slight decreases in the predictive accuracy.

When the online regression interacting model (3) is im-

plemented, the set Ωi,k,t for each station is constructed

according to the following assumption. If train j is scheduled
at a the same or neighboring station k̃ within an hour of
train i at station k, then the delay of train j at station k̃ is
considered as part of the regression. As a final step we prune

any trains that are scheduled at the same station but do not
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Fig. 2: Ranked average MSE associated with scheduled time

table, models (2), (6), and (7) for each train.

share the same track, which is common at major terminals

such as Chicago’s Union Station.

D. Regression results without interactions among trains

In this section, the historical model (2) and the online

models (6) and (7) are trained and tested with the data from

the 282 Amtrak trains.

The average RMSE ei of the proposed models for train i
is computed as follows:

ei =

√√√√(
1

N

N∑
n=1

(
1

T

T∑
t=1

(
1

K

K∑
k=1

u2
n,k,t

)))
, (8)

where N denotes the total number of cross validations and T
denotes the total number of trips to be estimated. The term

un,k,t is the model error of the tth trip for the nth cross

validation for train i. The mean square error is computed
and averaged over the T estimated trips, and then averaged

over the N cross validations. In this simulation, T = 30 and
N = 5.
The ranked average RMSE of the proposed methods and

the scheduled time table for each train are shown in Figure

2. The average RMSE over all trains for each predictor is

summarized in Table I. The historical regression model has

better estimation accuracy compared to the scheduled time

table, since delays from the past trips are incorporated in the

model. Both online algorithms perform significantly better

than the historical model, because online delay information

from the upstream station are used to estimate the delay

for the downstream station. Moreover, the online regression

model (7) performs better than the online baseline model (6),

because it is able to incorporate the potential delay that may

occur between the current station and the next station, by

training the parameters am and ck. In summary, compared
to the scheduled time table, the historical regression model

(2) improves the RMSE by 12%, and the online regression

model (7) improved the RMSE by 60%.

Note it is not possible to compactly display the calibrated

model parameters for each train and for each model within

the space of this manuscript. However, to promote further

development, all supporting source code for the developed

estimation models are open source and are available for

download [22]. In order to provide more details of how

Method RMSE (min) Improvement

Scheduled time table 19.4 N/A

Historical regression model 17.0 12%

Online baseline model 8.4 57%

Online regression model 7.7 60%

TABLE I: Average RMSE of the proposed methods. The im-

provement shown in the table are percentage improvements

of proposed methods compared to the scheduled time table

with respect to RMSE

the regression models perform, we again use train 68 as

an example. The prediction results by the scheduled time

table and historical model (2) of the first 5 of the 30 trips

for train 68 are shown in Figure 3a, and the estimation

results by online models (6) and (7) are shown in Figure

3b. Again, we can conclude the historical model performs

better than the scheduled time table, and the online models

can further improve the delay estimation accuracy compared

to the historical model.

(a) Historical model and time table (b) Online models

Fig. 3: Five trips delay estimation results of train 68 (top to

bottom). The left figure shows the results for the scheduled

time table and the historical regression model. The right

figure shows the results for the online regression models

E. Regression results with interactions among trains

Next, the online regression interacting model (3) is tested.

The online interacting model (3) is compared with the

online non–interacting model (7) to investigate if modeling

the delay caused by interaction among trains may help to

improve the estimation accuracy. It is found that the RMSE

difference between the two models for most of the trains are

less than 2%, and the average RMSE over all trains of the

two models are computed as 7.42 and 7.40 min, respectively.
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The online regression interacting model (3) tends to cap-

ture the knock–on delay effect by including the term Φ.
However, the performance of these two models are very

close. After an investigation on the trained parameters bj , it is
found the values of bj are nonzero and they do influence the
final estimation, however, it does not outperform the online

regression model (7).

One possible explanation is as follows. Once a train

is delayed at a station, it is observed that the delay will

propagate for several stations. As a result, it is usually the

case that both the front train and the following train are

delayed for several consecutive stations on a trip. While it is

true that the following train is delayed due to an interaction

with the leading train, the online regression model (7) is

able to capture this knock–on delay by modeling the delay

propagation from its upstream station for all stations except

the first one, where the delay is initiated. As a result, similar

performance is found for the online regression model (7) and

the online regression interacting model (3).

V. CONCLUSION AND FUTURE WORK

This paper studies the passenger train travel time delay

problem by using data driven approaches. A historical re-

gression model is proposed to predict train delays before

the current trip starts, and an online regression model with

two variations are developed to estimate train delays using

delay information from current trips recorded at upstream

stations and other related trains. The proposed methods are

tested with Amtrak passenger train data. Compared to the

prediction based on the scheduled time table, the historical

regression model (2) improves the RMSE of the delay

estimation by 12%, and the online regression model (7)

improves the RMSE by 60%.

This article is the first work that uses data driven ap-

proaches to study passenger train delays in the US. The paper

shows standard regression models can significantly improve

the travel time delay estimates compared to the scheduled

time table even data are coarse and limited, which lays

the foundation for the development of more sophisticated

algorithms for passenger train delay estimation.

There are several aspects that this work can be further

studied. First, in this work it is found the estimation accuracy

does not improve when the delays caused by the interac-

tions among trains are modeled. Further investigations are

needed to study the knock-on delays for passenger trains.

For example, other criteria can be developed to construct

the interaction set Ωi,k,t. Second, in this work, the potential

delay between the current and previous stations is captured

by a single parameter. Various factors may contribute to

delays, including geometry and weather. As a result, provided

data is available, we can separately model these factors in

the regression model to improve the performance of the

method. Additionally, alternative data driven approaches such

as nonlinear regression models [23] or calibration via robust

least squares [24] can be investigated. Finally, the impact of

rescheduling decisions on train delay prediction [25] should

also be investigated.

REFERENCES

[1] M. Dingler, A. Koenig, S. Sogin, and C. P. Barkan, “Determining the
causes of train delay,” in AREMA Annual Conference Proceedings,
2010.

[2] [Online]. Available: http://dixielandsoftware.net/Amtrak/status/
StatusMaps/

[3] P. Murali, M. Dessouky, F. Ordóñez, and K. Palmer, “A delay estima-
tion technique for single and double-track railroads,” Transportation
Research Part E: Logistics and Transportation Review, vol. 46, no. 4,
pp. 483–495, 2010.

[4] O. Frank, “Two-way traffic on a single line of railway,” Operations
Research, vol. 14, no. 5, pp. 801–811, 1966.

[5] E. Petersen, “Over-the-road transit time for a single track railway,”
Transportation Science, vol. 8, no. 1, pp. 65–74, 1974.

[6] B. Chen and P. T. Harker, “Two moments estimation of the delay on
single-track rail lines with scheduled traffic,” Transportation Science,
vol. 24, no. 4, pp. 261–275, 1990.
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