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Abstract— This paper studies the problem of real–time

traffic estimation and incident detection by posing it as a

hybrid state estimation problem. An interactive multiple model

ensemble Kalman filter is proposed to solve the sequential

estimation problem, and to accommodate the switching dy-

namics and nonlinearity of the traffic incident model. The

effectiveness of the proposed algorithm is evaluated through

numerical experiments using a perturbed traffic model as

the true model. The supporting source code is available

for download at https://github.com/Lab-Work/IMM_

EnKF_Traffic_Estimation_Incident_Detection.

I. INTRODUCTION

A. Traffic estimation and incident detection as a hybrid state
estimation problem

Traffic incidents are a major safety concern and a cause of
congestion in highway networks. Real–time traffic incident
detection is an effective way to reduce the impacts of a
traffic incident, since prompt actions can be taken to save
lives and recover normal traffic operations. While traffic
estimation techniques have become widely used in recent
decades for traffic monitoring, an estimation technique that
simultaneously provides traffic state estimation and traffic
incident detection is wanting. In this paper, we estimate the
traffic state and traffic incidents in real–time on a freeway
segment using a multiple model nonlinear filter.

The traffic estimation and incident detection problem is
posed as a hybrid state estimation problem. The traffic evo-
lution equations are constructed from a scalar macroscopic
traffic flow model denoted by f , which evolves the traffic
state x

n�1 (i.e. a vector of densities along the roadway) at
discrete time n � 1 to time n. The system evolution and
observation equations of the hybrid system are given by [1]:

x
n

= f (x
n�1, �n) + !
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n
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n
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n

) + ⌫
n

.
(1)

For our specific problem, the model variable � 2 � is
a time varying vector and it denotes the integer number of
lanes open at each discretized location along the freeway
segment during the time period (tn�1, tn], where � is the set
of all possible road operating conditions. The term z

n

is a
vector of speed or density measurements, h

n

is a nonlinear
observation operator that relates the system state with the
measurements, !

n

is the noise associated with the traffic
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model, and ⌫
n

is the measurement noise. We use an additive
noise model for both the evolution and observation equation.

Given the evolution observation system (1), the traffic
estimation and incident detection problem can be posed
as the problem of estimating the traffic state x

n

and the
model �

n

given measurements {z1, · · · , zn}. Because of the
nonlinearity of the traffic model and the switching dynamics
in the system model, we propose an interactive multiple
model (IMM) ensemble Kalman filter (EnKF) to solve the
hybrid state estimation problem.

B. Related work on incident detection
The main challenges for real–time incident detection are

related to sensing and interpretation of the sensor data. Due
to the traditionally high cost of monitoring infrastructure, the
number of sensors on the freeways is limited. If fixed sensors
are located far from each other and a traffic incident occurs
on the roadway between the sensors, it may take a long time
for the effect of the incident to propagate to a sensor, where it
can be registered as an anomaly. This also contributes to the
difficulties in estimating the traffic state between the sensors
since the true location of the incident may not be uniquely
determined.

The traffic incident detection problem has attracted at-
tention in the research community for several decades. A
comprehensive review of incident detection efforts can be
found in the review papers [2], [3]. The most well known
incident detection algorithms are variants of the California
algorithm [4]–[7]. These techniques exploit the idea that an
incident will cause a significant increase in the occupancy
recorded by an upstream loop detector, and a decrease in
the occupancy recorded by a downstream loop detector.
Then, a decision tree structure is used to determine the
existence of an incident by comparing the difference and
relative difference between the upstream and downstream
occupancies. While the algorithms can detect incidents, they
do not provide traffic estimates near the incidents.

The fault detection approach [8] estimates the traffic state
and the traffic incident by using the scalar macroscopic traffic
flow model [9], [10] to predict the traffic state. The work
shows that a traffic incident leads to a drop of the traffic
flow. A fault detection algorithm is exploited to detect the
incident by comparing the estimated residual with a defined
threshold. While this approach is able to predict the traffic
state and estimate the traffic incident, the traffic estimates
are no longer accurate when a traffic incident occurs, since
the algorithm does not include any dynamics to describe the
traffic evolution under incident conditions.
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The technique most related to this work is the dynamic
model [11], which uses the second order macroscopic traffic
model proposed by Payne [12], [13]. Multiple models are
generated by instantiating a new equilibrium fundamental
diagram for each incident severity. Then, a multiple model
(MM) extended Kalman filtering approach is used to select
the most likely model (similarly incident severity) and to
produce filtered traffic states. The main limitation of [11]
is the assumption that sensors are available everywhere to
directly measure the traffic state. While the framework can
certainly support a different observation equation, sparse
measurements can lead to poor performance of multiple
model filtering for traffic incident detection. In this work,
we use the IMM to accommodate the switching dynamics
of the traffic incident model. We show the IMM approach
can detect traffic incidents when sensors are limited, and
it performs better than the MM approach when the traffic
model is not perfect. Moreover, we consider a scalar traffic
model based on the Lighthill–Whitham–Richards (LWR)
partial differential equation (PDE) [14], [15], which is
simpler than the Payne model used in [11]. Due to the non–
differentiability of the discretized LWR model [16], we solve
the sequential estimation problem with ensemble Kalman
filter. Thus, no linearization of the traffic model is needed.

C. Outline and contributions of this article

The contributions of this article are summarized as fol-
lows:

• We formulate the traffic estimation and incident detec-
tion problem as a hybrid state estimation problem and
propose an IMM EnKF algorithm to solve the sequential
estimation problem.

• The IMM EnKF algorithm is evaluated through nu-
merical experiments using a perturbed traffic model as
the true model. The results show that the proposed
algorithm is able to detect traffic incidents with good
accuracy when the remaining lane(s) cannot accommo-
date all the traffic (e.g., when congestion is created).

• The performance of the IMM EnKF and the MM EnKF
are compared. Simulation results show the IMM method
performs better than the MM method, especially when
the traffic model is not perfect.

The remainder of this article is organized as follows. In
Section II, the traffic flow model is introduced. In Section
III, the IMM EnKF is presented. In Section IV, the proposed
method is tested with synthetic traffic incident data. Conclu-
sions are presented in Section V.

II. DESCRIPTION OF TRAFFIC STATE AND INCIDENT
EVOLUTION EQUATIONS

In this section, the traffic evolution equation used for the
hybrid state estimation is described. The scalar traffic model
is parameterized with a model variable that identifies the
location and severity of incidents. An evolution of the model
variable is also provided.

Fig. 1: Relationships between traffic density and flow under
a traffic incident on a three-lane freeway (solid line). The
parameters qmax and ⇢J are the maximum flow and jam
density for one lane, respectively.

A. Traffic evolution equation
The LWR PDE [14], [15] is used to describe the evolution

of the density ⇢(x, t) 2 [0, �(x, t)⇢max] at location x and
at time t on a roadway. The variable �(x, t) denotes the
number of lanes open at location x and time t, and (x, t) 2
(0, D)⇥(0, T ), where D is the road length and T is the time
length. This model expresses the conservation of vehicles on
the roadway, and is given by:

@⇢(x, t)

@t
+

@ (⇢(x, t)v (⇢(x, t), �(x, t)))

@x
= 0 (2)

with the following initial and boundary conditions:

⇢(x, 0) = ⇢0(x)

⇢(0, t) = ⇢
l

(t), ⇢(D, t) = ⇢
r

(t)
(3)

and where ⇢0, ⇢
l

, and ⇢
r

are the initial, left, and right
boundary conditions. To close the model, a constitutive
relationship between density and velocity, denoted by v, must
be specified. One common assumption is [9], [10]:

v(⇢, �) =

⇢
vmax if ⇢  �⇢

c

�w
f

(1� (�⇢max/⇢)) otherwise, (4)

where vmax and w
f

are the maximum velocity and the max-
imum backward propagating wave speed. The parameters ⇢

c

and ⇢max are the critical density and the maximum density
for a single lane respectively. Figure 1 shows the resulting
fundamental diagrams under different traffic incidents for
a three–lane freeway. When a traffic incident occurs, the
capacity and jam density will drop depending on how many
lanes are blocked.

For numerical implementation, (2) is discretized using a
Godunov scheme [17], yielding the Cell Transmission Model
(CTM) [10], [18]. Specifically, the time and space domains
are discretized by introducing a discrete time step �T ,
indexed by n 2 {0, · · · , nmax} and a discrete space step
�x, indexed by i 2 {0, · · · , imax}. The discretized system is
given by:

⇢i
n+1 = ⇢i

n

+
�T

�x
G
�
⇢i�1
n

, ⇢i
n

, �i�1
n+1, �

i

n+1

�

� �T

�x
G
�
⇢i
n

, ⇢i+1
n

, �i

n+1, �
i+1
n+1

�
.

(5)
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In (5), ⇢i
n

denotes the value of the traffic
density at time step n and in cell i. The
numerical flux G

�
⇢i
n

, ⇢i+1
n

, �i

n+1, �
i+1
n+1

�
=

min
�
S
�
⇢i
n

, �i

n+1

�
, R

�
⇢i+1
n

, �i+1
n+1

� 
. The functions S

and R are known as the sending and receiving functions,
which are given by:

S(⇢, �) =

⇢
q(⇢, �) if ⇢ < �⇢

c

q(⇢
c

, �) if ⇢ � �⇢
c

,
(6)

R(⇢, �) =

⇢
q(⇢

c

, �) if ⇢ < �⇢
c

q(⇢, �) if ⇢ � �⇢
c

.
(7)

Here, the function q(⇢, �) = ⇢⇥ v(⇢, �). In order to ensure
numerical stability, the time and space steps are coupled
through the CFL condition [19] : vmax

�T

�x

 1.
The boundary conditions of (5) are given by:

⇢0
n+1 = ⇢0

n

+
�T

�x
G
�
⇢l
n

, ⇢0
n

, �l

n+1, �
0
n+1

�

� �T

�x
G
�
⇢0
n

, ⇢1
n

, �0
n+1, �

1
n+1

�

⇢imax
n+1 = ⇢imax

n

+
�T

�x
G
�
⇢imax�1
n

, ⇢imax
n

, �imax�1
n+1 , �imax

n+1

�

� �T

�x
G
�
⇢imax
n

, ⇢r
n

, �imax
n+1, �

r

n+1

�
,

(8)

where ⇢l
n

, ⇢r
n

, �l

n+1, �
r

n+1 are the traffic density and model
variable boundary conditions.

B. Model variable evolution equations to model incidents
In the problem described by (1), the model variable � is

used to model incidents through changes in the fundamental
diagram. Specifically, the model variable � is defined as an
imax+1 dimensional vector, where the value in each element
denotes the number of lanes open in the corresponding cell.
The variable is modeled as a u-state first-order Markov chain
[1] with transition probabilities defined by:

⇡
kj

= p {�
n

= j|�
n�1 = k} , k, j 2 �, (9)

where the set � = {1, 2, · · · , u} defines all possible incident
conditions. The transition probability matrix is defined as
⇧ = [⇡

kj

], which is a u⇥ u matrix satisfying

⇡
kj

� 0 and
uX

j=1

⇡
kj

= 1. (10)

The model probabilities are defined as:

µ(k) = p {� = k} , (11)

for k 2 U , such that

µ(k) � 0 and
uX

k=1

µ(k) = 1. (12)

Equation (9) indicates the probability of the transition
from one model to another. In the traffic incident detection
problem, it specifies how many lanes will likely be open at
each time step.

The traffic model defined by (5) and (8) define the
evolution operator f in (1), while (9) defines the evolution
of the system models.

C. Observation equation

Since traffic density measurements from inductive loops
and speed measurements from GPS equipped probe vehicles
are assumed to be available, the nonlinear operator h in
(1) needs to be defined to link the system state to the
measurements. The system state at time n is defined by the
vector x

n

= [⇢0
n

, · · · , ⇢imax
n

]. The observation operator h is
given by:

h
n

(x
n

, �
n

) = H
n


x
n

v(x
n

, �
n

)

�
. (13)

The matrix H
n

is constructed based on the locations
where the measurements are acquired. Note, however, that
the observation operator h

n

is in general nonlinear, due to
v. It is time varying because the locations of GPS vehicles are
not fixed, and the number of equipped vehicles may change
over time. The observation noise term in (1),

⌫
n

=

"
⌫density
n

⌫speed
n

#
,

is composed of two parts, ⌫density and ⌫speed, to emphasize
that different error models are assumed for density and speed
measurements.

III. IMM ENKF

The hybrid state estimation problem in (1) is hard to
solve because the traffic model is nonlinear, and the model
contains multiple models that switch between each other.
To accommodate the nonlinearity of the model, a nonlinear
filter is used. In particular, the ensemble Kalman filter has
been applied to solve the traffic estimation problem [16],
where time invariant traffic parameters are assumed. To solve
the estimation problem with multiple switching models, the
IMM method [20] can be applied. In this section, we extend
the EnKF into the IMM framework, and propose an IMM
EnKF algorithm to solve the traffic estimation and incident
detection problem in (1). The proposed algorithm can also
be viewed as a mixture EnKF following the definition by
[21], with the distinction that the models in this work
correspond to incident scenarios while the models in [21]
denote switched linear models that approximate the CTM.

The IMM EnKF algorithm is summarized in Algorithm 1,
where l denotes the ensemble index, M is the total number
of ensembles for each model, µ(�) is the probability of model
�, x(�,l) is the state generated by model � and ensemble l,
⌃(�) is the predicted covariance matrix, K(�)

n

is the Kalman
gain of model � at time n, and L(�) is the likelihood of
each model calculated from the EnKF. The subindex n|n�1
denotes the prior of a variable (before the measurements are
obtained), and the subindex n|n denotes the posterior of a
variable (after the measurements are obtained).

At each time step, the algorithm first determines the
probability of each model �

n

based on the previous system
model �

n�1 and the transitional probability matrix defined
in (9). Then, for each model, we run an EnKF to estimate
the state. The EnKF algorithm first computes the one step
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Algorithm 1 Interactive multiple model ensemble Kalman filter
1. Model–conditioned reinitialization (for all � 2 �):
Predicted model probability: µ(�)

n|n�1 = ⇧
�
�
n�1|n�1

�

2. Model–conditioned EnKF (for all � 2 �):
Predicted state: x(�,l)

n|n�1 = f(x(l)
n�1|n�1, �) + !

(�)
n�1 l = 1, · · · ,M

Predicted covariance: ⌃(�)
n|n�1 = 1
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Updated state: x(�,l)
n|n = x
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⇣
z
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� h
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x
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Updated covariance: ⌃(�)
n|n = ⌃(�)
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(�)
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h
(�)
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⌃(�)
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3. Model probability update (for all � 2 �):
Model likelihood: L(�)

n

= p(z
n

|x(�,l)
n|n ) l = 1, · · · ,M

Model Probability: µ(�)
n|n =

µ

(�)
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(�0)
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4. Model inference (for all � 2 �):
Model selection: �

n|n = argmax
�

⇣
µ
(�)
n|n

⌘

State selection: x(l)
n|n = x

(�n|n,l)

n|n

Note: when the observation equation is nonlinear, the calculation of the covariance in the Kalman gain follows [22]:
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predicted state and covariance. After the measurements are
received, it updates the predicted state and covariance using
the measurements at the current time step and the computed
Kalman gain. The probability of each model �

n

is updated
by considering the model probability µ

n|n�1 and the model
likelihood L

(�)
n

, which indicates how well the state generated
by �

n

matches with the measurements. It is calculated by
using the mean of the estimated state

⇣
⌃M

l=1x
(�,l)
n|n

⌘
/M , the

measurements z
n

, and the noise model ⌫
n

. The model �
n

with the highest probability is used to estimate the true state.

The four steps in Algorithm 1 shows the filtering steps
when only density measurements are obtained. When speed
measurements are available, the observation equation (13)
becomes nonlinear due to v, and the calculation of the
covariance in the Kalman gain is modified according to the
equations at the end of the algorithm.

The main difference between the IMM approach and the
MM approach is that the IMM approach uses a Markov
chain to model the evolution of the model variable, while
the MM approach assumes the choice of the current model
is independent from the previous model. Observe that if there
is no incident at the current time step, it is unlikely to have
an incident in the next time step, and if an incident occurs,
it will likely remain in the next time step. Thus, the choice
of the current model variable depends on the previous model
variable. The IMM approach is able to model this feature,
while the MM approach cannot.

IV. NUMERICAL SIMULATION

The proposed algorithm is tested by using numerical
simulation. The simulation results from a perturbed traffic
model are used as the source of the traffic measurements,
and also the definition of the true state, to be estimated by
the proposed algorithm.

A. Simulation description and assumptions

The parameters used for the discretized LWR model and
noise models within the estimation algorithms and the true
model are summarized in Table I. In the approximate model
used in the filter, the speed limit (vmax), the maximum
flow (qmax), backward propagation speed w

f

, and the left
boundary condition are assumed to be different from the
true model, since a traffic model can never perfectly model
the true traffic evolution in practice. In this simulation, the
speed limit is perturbed by about 12 percent, the maximum
flow and the backward propagation speed are perturbed by
approximately 5 percent. The right boundary condition is
assumed to be in free flow. The initial condition in all cells
are assumed to follow a normal distribution, where the mean
is the average of the density measurements from the inductive
loop detectors located near both ends of the freeway, and
the standard deviation is five percent of the mean. All of the
noise models are specified by a Gaussian distribution.

We make several assumptions on the evolution of the
model variable. First, we assume there is at most one traffic
incident on the freeway at any given time. We make this
assumption to reduce the number of models in the system.
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Traffic model Estimation model True model
Link length (miles) 4 4

Number of cells 11 11
�T (seconds) 20 20
�x (miles) 0.36 0.36
wf (mph) 28 30
vmax (mph) 65 60

qmax (veh/hour/lane) 2000 1900
⇢l (veh/mile/lane) N (5000, 1502) 5000

! N (0, 12)
⌫density N (0, 3.02)
⌫speed N (0, 3.02)

TABLE I: Setup for the traffic models and noise model

In principle, the proposed approach can support the case
when multiple incidents occur simultaneously, with increased
computational cost. Second, we assume there is a one percent
probability for the occurrence of a traffic incident at next time
step, provided the freeway does not have any incidents at the
current time. If an incident occurs, it has an equal probability
to occur anywhere between the two inductive loop detectors
with two possible severities: one or two lanes blocked. Third,
if there is an incident on the freeway at the current time step,
there is a 99% probability for the incident to remain in the
next time step, and a one percent probability for the incident
to be cleared. With these assumptions, the transition matrix
⇧ can be constructed.

The simulation is performed on a four mile long, three–
lane freeway segment for one hour (180 time steps). One
incident is created in cell four, which is 1.36 miles from the
starting point of the freeway segment. The incident occurs
between time steps 60 and 120, and it blocks two lanes. The
density and the system model in the time and space domain
for the true condition are shown in Figures 2a and 2b.

For the proposed IMM EnKF algorithm, the number of
ensembles for each model is set as M =100. Two inductive
loop detectors are assumed available and they are located in
cell one and cell nine. The proposed algorithms are tested by
assuming different penetration rates of GPS vehicles, which
is adjusted by changing the headway between GPS vehicles.

The IMM EnKF algorithm is implemented in Python and
run on a 2.7GHz Intel Core i7 Macbook Pro. Each one hour
numerical experiment can be run in about six minutes, and
thus is suitable for real-time applications.

B. Simulation of GPS vehicle trajectory
In the true model, the trajectory of the jth GPS vehicle

�jth is modeled according to [23]:

�̇
j

(t) = v(⇢(�
j

(t), t), �), (14)

where �
j

(t) denotes the location of the jth vehicle at time
t. We solve this ordinary differential equation by integrating
both sides over �T . Following discretization by the Godunov
scheme [17], the velocity function v and density ⇢ is constant
in each cell. With each time step �T , a GPS vehicle may
travel in at most two consecutive cells depending on its
starting location within the cell. Then, the solution can

(a) Density (veh/mile) (b) Model variable (lanes)

(c) Density (veh/mile) (d) Model variable (lanes)

(e) Density (veh/mile) (f) Model variable (lanes)

Fig. 2: True evolution of the traffic density and the model
variable (first row). Estimate of the IMM EnKF, probe
vehicle headway 40 seconds (second row) and 80 seconds
(third row). The values of the traffic state (left) and model
variable (right) estimate at each time and space domain are
described by the color bar.

be obtained by integrating two velocity functions over the
corresponding time periods that the GPS vehicle stays in
each cell.

C. Estimation results

The algorithm is tested by assuming probe headways of
40 and 80 seconds, and the estimation results are shown in
Figures 2c, 2d, 2e, and 2f. As the result shows, when the
headway is 40 seconds, the algorithm is able to correctly
estimate the incident. In this case, a 40 second headway
means 1.8 % of the vehicles have a GPS device. When
the headway is increased to 80 seconds, the estimate of
the location of the traffic incident is off by one cell, and
the state estimation accuracy also decreases. In particular,
when the probe headway is 40 seconds, the average absolute
density error of the estimation algorithm is approximately 1
veh/mile. When the probe headway decreases to 80 seconds,
the average absolute density error is about 11 veh/mile. The
reason for this is because when the headway is high, there
are fewer measurements from the freeway, and there is not
enough information for the algorithm to correctly estimate
the system model at each time iteration. Thus, the proposed
algorithm requires some measurements from GPS vehicles
to ensure the accuracy of the estimates.

Next, we evaluate the effectiveness of IMM approach by
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(a) IMM EnKF (b) MM EnKF

(c) IMM EnKF (d) MM EnKF

Fig. 3: Comparison of model probabilities between MM
EnKF and IMM EnKF. Maximum flow (qmax) of the true
model is 1900 veh/h (row one). Maximum flow (qmax) of the
true model is 1800 veh/h (row two).

comparing it with the MM approach. The MM approach
assumes the selection of the model variable for the current
time step is independent from the previous selected model.
When the MM approach is applied, the predicted model
probability µ

(�)
n|n�1 in Algorithm 1 is equal for each model �.

The simulations are conducted by assuming probe headways
of 40 seconds and all other parameters are the same as our
previous simulations.

Figure 3 shows a comparison of the IMM and MM
methods. If we compare Figure 3a and 3b, although both ap-
proaches correctly estimate the incident, the IMM approach
is more certain about the correct model when the incident
occurs. Figures 3c and 3d shows the simulation results when
the maximum flow of the true is set as 1800 veh/h, which
means the estimation model is less accurate. In this case, the
IMM EnKF is able to estimate the correct model, while the
MM EnKF cannot.

V. CONCLUSTION

This paper formulates the traffic estimation and incident
detection problem as a hybrid state estimation problem. An
IMM EnKF algorithm is proposed to estimate the traffic state
and to detect the location and severity of traffic incidents.
The algorithm is tested on synthetic traffic incident data
generated by a perturbed traffic model, and the results show
the proposed method is able to detect traffic incidents with
good accuracy compared to a pure multiple model filtering
approach.

One limitation for the IMM EnKF algorithm (as well as
most existing incident detection algorithms) is that when
the inflows are small, the the algorithm is unable to detect
the traffic incident, since the remaining lanes have enough
capacity to accommodate the traffic. Consequently, there is
no congestion on the road, and the measurements from the
sensors are unaffected.

Next steps of this work include additional testing in a
traffic microsimulation software or on experimental field
datasets.
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