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Abstract
Purpose When product systems are optimized to minimize
environmental impacts, uncertainty in the process data may
impact optimal decisions. The purpose of this article is to
propose a mathematical method for life cycle assessment
(LCA) optimization that protects decisions against uncertainty
at the life cycle inventory (LCI) stage.
Methods A robust optimization approach is proposed for
decision making under uncertainty in the LCI stage. The
proposed approach incorporates data uncertainty into an opti-
mization problem in which the matrix-based LCI model ap-
pears as a constraint. The level of protection against data
uncertainty in the technology and intervention matrices can
be controlled to reflect varying degrees of conservatism.
Results and discussion A simple numerical example on an
electricity generation product system is used to illustrate the
main features of this methodology. A comparison is made
between a robust optimization approach, and decision making
using a Monte Carlo analysis. Challenges to implement the
robust optimization approach on common uncertainty distri-
butions found in LCA and on large product systems are
discussed. Supporting source code is available for download

at https://github.com/renwang/Robust_Optimization_LCI_
Uncertainty.
Conclusions A robust optimization approach for matrix-
based LCI is proposed. The approach incorporates data
uncertainties into an optimization framework for LCI and
provides a mechanism to control the level of protection
against uncertainty. The tool computes optimal decisions
that protects against worst-case realizations of data uncer-
tainty. The robust optimal solution is conservative and is
able to avoid the negative consequences of uncertainty in
decision making.

Keywords Lifecycleassessment .Mathematicalprogramming .
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1 Introduction

One application of life cycle assessment (LCA) is to improve
the environmental performance of a product system (Azapagic
and Clift 1999a). One option to improve the performance of a
product system is achieved by making choices among func-
tionally equivalent products or processes, with a goal to min-
imize environmental impacts. Because of the inherent uncer-
tainty in life cycle assessment data, a key challenge for this
application of LCA is to make optimal choices that are insen-
sitive to this uncertainty.

This work addresses the above challenge by incorporating
life cycle data uncertainty into optimization problems in LCA,
so that when functionally equivalent products are compared
with a goal to maximize environmental performance, the
optimal solution will be robust to changes or errors in the
data. Mathematical formulations are provided to model a
deterministic life cycle inventory (LCI) optimization problem,
and a robust formulation is introduced to model and solve the
problem when the process data is uncertain.
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1.1 Optimization and LCA

Mathematical programming tools have been applied to opti-
mize product systems over their life cycle. Azapagic and Clift
(1999b) first proposed an optimum LCA performance meth-
odology to identify the best alternative in a product system
with an objective to minimize multiple conflicting environ-
mental and socio-economic objectives. Linear programming
was used to solve the problem and construct a Pareto frontier
of optimal alternatives. Later, Tan (2005) applied symmetric
fuzzy linear programming to solve multi-objective optimiza-
tion problems in LCA.

The results of LCA studies have also been incorporated into
optimization problems for system design, process design, and
supply chain network planning (Hugo and Pistikopoulos 2005;
Guillén-Gosálbez et al. 2008; Carvalho et al. 2011). In these
studies, environmental concerns are modeled as constraints,
and the resulting problems are solvedwithmixed-integer linear
programmingormixed-integer nonlinear programming, due to
various nonlinear features of the systems under consideration.

The problem of making optimal choices with life cycle
consideration was proposed by Tan et al. (2008), which em-
bedded a matrix-based LCA model as a constraint in the opti-
mization problem. The resulting methodology can be used to
identify the best system configuration to minimize environmen-
tal impacts. When multiple objectives are considered in the
optimization problem, fuzzy linear programming is used to
solve the resulting problem. A key feature of the formulation
considered by Tan is that it is consistent with the matrix-based
model of LCA (Heijungs and Suh 2002), and the optimization
is performed over the full product system based on the LCI and
life cycle impact assessmentdata, instead of optimizing over the
final output of the LCA. We will follow a similar matrix-based
LCI approach in the robust formulations proposed in this article.

1.2 Uncertainty in LCA

The sources and types of uncertainty in LCA have been inves-
tigated by several authors (e.g., Fava et al. 1994; US-EPA 1989;
Morgan and Henrion 1990; Huijbregts 2002; Heijungs and
Huijbregts 2004; Lloyd and Ries 2007). Various approaches to
classify sources of uncertainty in LCA exist (e.g., due to model
errors, linearity assumptions, spatial and temporal variability),
see for example the review papers of Heijungs and Huijbregts
(2004) and Lloyd and Ries (2007) for a detailed discussion.

A common theme in each of the categorizations proposed
above is that data uncertainty is inherent and cannot be fully
eliminated. This is especially true when LCA is used to predict
the future environmental performance of a product system,
which includes future processes and technologies that have
not yet been developed.

Because of this inherent uncertainty, several quantitative
approaches have been introduced to assess how uncertainty

in the data and inputs impacts the results of an LCI or LCA.
Monte Carlo analysis (e.g., McCleese and LaPuma 2002;
Sonnemann et al. 2003) can be used to numerically approxi-
mate the distribution of uncertainties in the LCI or LCA due to
uncertainties in the process data. Another approach, based on
intervals, has been used to model uncertain data in LCA
(Chevalier and LeTeno 1996). Solving a set of interval equa-
tions (representing matrix-based LCI with uncertain coeffi-
cients modeled by intervals) provides a set of all possible
environmental outputs under a given uncertainty set, and indi-
cates all possible environmental outputs of the product system.
Fuzzy set theory (Benetto et al. 2006; Tan 2008) was used to
compute upper and lower bounds on emissions of a system
when the input data is described as a fuzzy set. A comprehen-
sive review of approaches to quantitative uncertainty in LCA
can be found in the survey paper of Lloyd and Ries (2007).

1.3 Contributions of the article

While the above quantitative approaches can be used to assess
the uncertainty in LCA and to interpret the influence of
uncertainty on environmental outputs, an approach that ex-
plicitly computes optimal LCA choices that are insensitive to
data uncertainties is wanting. It is well known that optimal
solutions can be extremely sensitive to errors in the model or
data if not explicitly treated in the optimization framework
(Bertsimas and Thiele 2006), and in extreme cases, potentially
lead to optimal decisions that become infeasible under small
errors in the problem data.

Thus, the main contribution of this article is to link LCI
uncertainty and LCI optimization through an approach known
as robust optimization. In Section 2, the matrix-based LCI
model is reviewed and a robust optimization formulation is
proposed, which embeds the matrix-based LCI model as a
constraint. In Section 3, the proposed approach is implement-
ed for a simple numerical example involving electricity gen-
eration. The robust approach is then compared to a Monte
Carlo simulation performed over the choice set. In Section 4,
challenges to implement this approach with common uncer-
tainty distributions and on large-scale commercial problems
are discussed, and conclusions are presented in Section 5.

2 Methodology

2.1 Matrix-based LCI

In this section, we briefly review themathematical formulation
of matrix-based LCI, following the framework of Heijungs
and Suh (2002). Later, this model will be embedded as a
constraint in the proposed robust LCI optimization problem.

A product system is modeled as a set of n processes {p1,p2,
⋯,pn}, where each process is encoded as a vector p. Each
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element in the vector quantifies inputs and outputs of the unit
process with positive (negative) entries representing outflows
(inflows) to the process. The vectors are structured such that
upper entries describe economic flows (e.g., materials, ener-
gy), while the lower entries describe environmental flows
(e.g., emissions to the environment). The product system can
also be arranged in a process matrix P=[p1,p2,⋯,pn]. Because
of the structure of each process vector, the process matrix P
can be partitioned as follows:

P ¼ A
B

� �
;

where A∈ℝv×n represents flows within the economic system,
and is referred to as technology matrix, while B represents the
environmental interventions, and is referred to as intervention
matrix. We let m denote the number of environmental inter-
ventions (e.g., B∈ℝm×n).

The matrix-based LCI model is given as:

As ¼ f
Bs ¼ g;

�

where s∈ℝn is the scaling vector, and f∈ℝv represents the
desired final demand of the product system. Thus, the scaling
vector s encodes the amount of each unit process needed to
produce the desired final demand f. The inventory vector g∈
ℝm describes the total environmental interventions of the
product system, and is often the primary quantity of interest
in LCI. When A is invertible, the scaling vector can be directly
computed as s=A−1f, and the inventory vector can be com-
puted as g=BA−1f.

2.2 Optimization in matrix-based LCI

When the number of processes in the economic system is larger
than the dimension of the material and energy flows, the tech-
nology matrix is no longer invertible. This can occur, for
example, if there are functionally equivalent processes in the
product system, such as multiple suppliers of electricity. The
resulting economic system is underdetermined, which means
there are multiple ways to satisfy the specified final demand.
Heijungs and Suh (2002) proposed to determine a scaling vector
for underdetermined problems through linear programming, for
example by minimizing environmental impact or cost.

To determine the scaling vector s and the inventory vector
g, the following linear problem can be solved:

minimize :
s;g

λT g

subject to : As≥ f
Bs≤g:

ð1Þ

The optimization problem (1) selects the scaling vector such
that the required final demand is satisfied, and a linear objective

function representing weighted environmental output, λTg, is
minimized. The vector λ∈ℝm is a vector of weighting coeffi-
cients and determines the relative importance of the elements in
the inventory vector. If desired, the weighting coefficients can
be chosen such that the optimal decision variables vector s and
g in problem (1) are unique (Franklin 1987).

Freire et al. (2001) also proposed a variant of problem (1),
called the life cycle activity analysis approach, which inte-
grates life cycle balance equations into a linear programming
framework, resulting in a joint consideration of monetary cost
and environmental impacts.

When data uncertainty is considered, the entries in the
process vectors become uncertain. For economic flows, uncer-
tainty indicates the material or energy flows between unit
processes in the system which maybe unknown, have variabil-
ity, or are subject to change. For environmental flows, uncer-
tainty encodes the fact that the environmental impact associat-
ed with each unit process may similarly be unknown or fluc-
tuate. For the jth process vector, pj=[a1j,⋯,avj,b1j,⋯,bmj ]

T,
elements aij and bij are distributions. Often, only limited infor-
mation is available to model the distribution of the inflows and
outflows of each process. If the expected value of the distribu-
tion is known, and the distribution is symmetric with a known
deviation, then symmetric intervals can be used to model the
range of values each entry may take. In this case, we model the
uncertainty set of ith economic flow of the jth process as
aij∈ aij−baij; aij þ baij� �

, where aij is the expected value of the
interval and baij is the maximum deviation. The environmental

flows can be modeled similarly; bij∈ bij−bbij; bij þ bbijh i
.

Since the entries of the technology matrix and environmen-
tal interventions matrix are described by uncertainty sets, so
too, are the matrices themselves.We denote the uncertainty set
of the technology matrix as , and the intervention matrix as
, which are given as:

This will be the uncertainty model used throughout the
remainder of this work. When and , the optimiza-
tion problem (1) is no longer a standard linear programming
problem.

2.3 Robust formulation of matrix-based LCI

The robust formulation of matrix-based LCI for decision
making under uncertainty is described as follows:

ð2Þ
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In this model, the optimal scaling vector s is chosen such
that the final demand is satisfied for all possible realizations of
A, and which minimizes the worst-case emissions created for
any realization of environmental interventions .

One feature of this formulation is that it models alternatives
in the same product system instead of modeling them sepa-
rately in the optimization problem. Since functionally equiv-
alent products may share similar upstream processes, such
modeling will automatically capture the fact that any uncer-
tainty of the shared processes in the supply chain will impact
the performance of all the alternatives simultaneously.

For convenience, we put problem (2) in standard form:

minimize :
x

cT x

subject to : min
K∈K

Kxf g≥ l ð3Þ

It can be verified that problem (3) is equivalent to problem

(2) when K ¼ A 0
−B I

� �
; x ¼ s

g

� �
; l ¼ f

0

� �
; c ¼ 0

λ

� �
,

and Note again that neither

problem (2) or (3) are standard linear programming problems,
since A and B belong to uncertainty sets and .

The formulation (3) models choices at the life cycle inventory
stage only. Extensions to model impact assessment can be de-
veloped by applying characterization factors. Three assumptions
aremade in this formulation. First, data uncertainties exist in both
the technology matrix A and the intervention matrix B, which
means the amount of economic flow and the values of environ-
mental emissions of each process in the product system are not
deterministic. Second, the uncertainty parameters are required to
be specified as symmetric closed intervals. Uncertainty forms
such as the uniform distribution or triangular distribution could
be applied with this approach. Third, the uncertainty associated
with the technology matrix A is assumed independent from the
uncertainty in the interventions matrix B.

2.4 Robust optimization

The proposedmodel problem (3) is a standard form of a robust
optimization problem. Robust optimization is a decision mak-
ing tool, first proposed by Soyster (1973), to address decision
making under uncertainty. When parameters in a problem are
subject to uncertainty, robust optimization solves the problem
by looking at the worst-case realization caused by these un-
certain parameters to ensure the feasibility of the optimal
solution under all perturbations. The approach proposed by
Soyster solves the problem in a way that takes the worst
possible value of each parameter kij of K in their uncertainty
sets. The solution obtained by this approach ensures the
constraint Kx≥ l is always satisfied for any possible value that
Kmay take in K.

The features of robust optimization can be interpreted in
the context of LCA. For the constraint As≥f in the robust
formulation (3), robust optimization ensures that the constraint
As≥f is satisfied when A is subject to any perturbation defined
by the set . If the scaling vector is computed without con-
sidering uncertainty (for example by using only the expected
value of A), the final demand may not be satisfied for some
realizations of the system. The solution computed by robust
optimization will prevent this scenario. It should be noted that
the guaranteed feasibility of the constraints provided by robust
optimization is achieved at the cost of possibly increasing the
value of the objective function at optimality. Considering the
constraint –Bs+g≥0, the robust optimal solutions of s and g
will be determined in a way that guarantees the constraint is
satisfied for all . This constraint encodes that the solution
is made based on the worst-case emissions each unit process
could take for a given s. As a result, the solution by robust
optimization minimizes the worst-case emissions of each al-
ternative product or process in the system.

A criticism of the robust formulation (3) is that it is unlikely
that all uncertain parameters will take their worst-case values
simultaneously, and is therefore too conservative. To address
this concern, Bertsimias and Sim (2004) and Bertsimas and
Thiele (2006), proposed an alternative robust formulation that
offers full control on the degree of conservatism for every
constraint, which we will adopt for our robust LCI formula-
tions. Like Soyster, this robust approach assumes coefficients
kij of K are subject to uncertainty and belong to the symmetric

uncertainty sets specified as kij−bkij; kij þ bkijh i
, where kij is the

estimated nominal value, and the half-length bkij measures the
precision of the estimate. A parameter zij is defined to describe

the deviation of kij from its nominal value kij as:

zij ¼ kij−kijbkij :

Here, bkij is the maximum deviation the nominal value may
take. Parameter zij is called the scaled deviation, and it always
belongs to [−1, 1]. Note that the transformation of the uncer-
tainty into a scaled deviation requires the deviation around the
nominal value to be symmetric. A parameter Γi, called the
budget of uncertainty, controls the degree of conservatism of
constraint i and is related to zij by:

X
j¼1

n ���zij���≤Γ i;∀i:

The budget of uncertainty Γi can be interpreted as the
maximum number of parameters in constraint i that can devi-
ate from their nominal values. When Γi = 0, the decision is
made based on the nominal values of all parameters, while if
Γi= n, the decision is made based on theworst-case realizations
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of all parameters. Intermediate values of Γi∈(0,n) reflect the
degree of conservatism on the ith constraint. For example, if
there are five uncertain parameters in a constraint and Γi = 3,
perturbations to the three parameters which lead to the smallest
Kix are considered. If Γi = 2.5, it means only 50 % of the
uncertainty of the third most influential uncertain parameter is
considered. Note the budget of uncertainty also can be
interpreted in some cases as the probability of violating a
constraint (Bertsimas and Thiele 2006), thus transforming the
worst-case optimization into a problem where the designer has
control over the probability of satisfying the final demand.

When adding a budget of uncertainty, the setK in problem
(3) is redefined as:

K ¼ kij
� 	���kij ¼ kij þ bkijzij;∀i; j; z∈Zn o

;

with

Z ¼ z
��� ���zij���≤1;∀i; j;X

j¼1

n ���zij���≤Γ i;∀i

( )
:

Thus problem (3) becomes:

minimize :
x

cT x

subject to : Ki xþmin
X
j¼1

n bkijx jzij
�����zi∈Zi

( )
≥ li; ∀i: ð4Þ

Problem (4) can be reformulated as a linear programming
problem, called the robust counterpart, by applying strong
duality, yielding:

minimize :
x;v;q;y

cTx

subject to : Ki x−Γ ivi−
X
j¼1

n

qij≥ li; ∀i

vi þ qij≥bkijy j;
−y j≤x j≤y j;
vi; qij≥0;

∀i; j
∀ j
∀i; j

ð5Þ

where v, q, and y are dual variables. The solution x computed
by solving the linear program (5) is the solution to robust
optimization problem (4). A detailed introduction on this

robust optimization method can be found in Bertsimas and
Sim (2004).

3 Numerical example

A simple numerical example is used to illustrate the main
ideas presented in this work. The example involves the com-
parison of two electricity generation strategies, and it is a
robust extension of a problem proposed in Heijungs and Suh
(2002). The objective is to identify the optimal electricity
generation strategy (encoded in the scaling vector) to satisfy
a final demand for electricity while minimizing the total
carbon dioxide emissions, in the presence of data uncertainty.

3.1 Process descriptions

The process data and uncertainties for this example are pre-
sented in Table 1. Data uncertainties are assumed to be uni-
formly distributed, and the final demand is 100 kWh of
electricity. The uncertainty range on the CO2 emissions for
electricity by oil and oil production are modeled as 40% of the
mean while CO2 emissions for electricity by coal and coal
production are modeled as 8.3 % and 20 % of the mean,
respectively. Note the CO2 emissions ranges for the processes
associated with electricity generated by oil are modeled rela-
tively larger compared to coal, to illustrate the main features of
the robust optimization approach in a simple numerical
example.

The technology matrix A, intervention matrix B, final de-
mand vector f, and vector λ are constructed as follows:

A ¼
−2
10
0

100
0
0

0
10
−5

0
0
50

2
4

3
5; B ¼ 10 5 12 1½ �; f ¼

0
100
0

2
4

3
5;λ ¼ 1½ �:

With the range defined by:

bA ¼
0:3
0
0

0
0
0

0
0
0:2

0
0
0

2
4

3
5; bB ¼ 4 2 1 0:2½ �

Table 1 Process data
Process Economic outflows Economic inflows Environmental outflows

Mean value Range Mean value Range

Electricity by oil 10 kWh of electricity 2 l of oil [1.7, 2.3] 10 kg of CO2 [6, 14]

Oil production 100 l of oil – – 5 kg of CO2 [3, 7]

Electricity by coal 10 kWh of electricity 5 kg of coal [4.8, 5.2] 12 kg of CO2 [11, 13]

Coal production 50 kg of coal – – 1 kg of CO2 [0.8, 1.2]
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Accordingly, bkij in problem (4) can be read as the elements

of bK, given by:

bK ¼
0:3
0
0
4

0
0
0
2

0
0
0:2
1

0
0
0
0:2

0
0
0
0

2
664

3
775

The last parameter to be specified is the budget of uncer-
tainty Γi, which reflects the decision maker's attitude towards
uncertainty for each constraint in optimization problem (3).
The effect of this parameter on the solution is detailed next.
After this parameter is set, the solution to the LCA robust
optimization problem (4) is computed by solving the dual
problem (5) with a standard linear program solver.

3.2 Numerical results

When budget of uncertainty values are defined in this case
study, full protection against uncertainty is given for all eco-
nomic flow constraints. This is to ensure that the solution
derived from this optimization problem will always satisfy
material and energy constraints for any possible value of A in
the given uncertainty set . As a result, the analysis of the
level of protection against data uncertainties is focused on
uncertainties in intervention matrix B. Since there are four
uncertain elements in matrix B that correspond to CO2 emis-
sions, the budget of uncertainty Γ∈[0,4]. When Γ is 0, the
solution is computed using the mean value of CO2 emissions,
and when it equals to 4, the decision is made for the case when
all the four processes take the largest CO2 emission values
specified in the range.WhenΓ is set between 0 and 4, it means
the solution is derived based on the intermediate case between
the previous two. In this study, the value of Γ is gradually
increased from 0 to 4, and the resulting optimal generation
strategy (i.e., the amount of electricity generated from oil and
coal) is shown in Fig. 1. In the figure, the value of Γ is scaled
to a level of protection against uncertainty using the formula:
Γ/4×100%.

Figure 1 shows that if the decision maker does not consider
any uncertainty in environmental output data, electricity
should be generated by oil. However, the strategy changes
dramatically when protection against more than 12 % of the
uncertainty is considered. When protecting against more than
68% of the data uncertainty in B, there is a complete switch to
electricity generation by coal. Since there are four uncertainty
parameters in the constraint, an uncertainty budget of 25 %
corresponds to full protection against the most influential
parameter. A switch in the solution occurs when protection
against 12 % of the uncertainty is considered (in other words,
when protection against 50 % uncertainty of the most influ-
ential parameter is considered).

Next, the objective function values (total CO2 emissions)
are compared between the robust optimization approach and a
deterministic approach under different worst-case realizations
of B, parameterized by the budget of uncertainty. For the
robust optimization approach, optimal electricity generation
strategy is displayed in Fig. 1. For the deterministic approach,
the electricity generation strategy is derived using the expect-
ed values of all parameters, which means that oil is always
used to generate electricity. The total CO2 emissions for the
deterministic strategy are computed using the perturbed real-
ization of B. This deterministic approach mimics the worst-
case situation in reality when one optimizes based on nominal
values—the true emissions are computed based on a realiza-
tion of B, which is not a priori known to the decision maker.
The CO2 emissions associated with these two approaches are
shown in Fig. 2. It shows that when B takes a worst-case
deviation more than 12 % of the total data uncertainty in B,
the robust approach will achieve a lower CO2 emissions
compared to the deterministic approach.

3.3 Comparison with Monte Carlo method

The Monte Carlo method is a widely accepted method to
analyze uncertainty in LCA (e.g., McCleese and LaPuma
2002; Sonnemann et al. 2003), and it is implemented in
commercial LCA software such as Simapro. In this study, a
Monte Carlo simulation is performed separately on the two
electricity generation product systems, using 5,000 samples.
A uniform distribution is assumed for data in the uncertainty
set summarized in Table 1. As can be seen from the results in
Fig. 3, electricity derived by oil has much higher emission
uncertainty compared to coal. Thus, although the expected
emissions is lower for electricity generation by oil, coal is a
better choice to protect against possibly high CO2 emissions
due to variability in emissions by oil, which is consistent with
the results obtained by using robust optimization.

0 20 40 60 80 100
0

20

40

60

80

100

120

Budget of uncertainty (%)

E
le

ct
ric

ity
 g

en
er

at
ed

 (
kW

h)

 

 
Electricity by oil
Electricity by coal

Fig. 1 Electricity generation strategy with different uncertainty budget
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Therefore, both the robust optimization approach and
Monte Carlo method could conclude the fact that electricity
generation by coal is a better worst-case choice under uncer-
tainty. However, an important benefit of the robust optimi-
zation approach is that it is computationally cheap compared
to Monte Carlo analysis, especially as the number of alter-
native choices grows large. Specifically, when a decision
across many alternatives under uncertainty is needed, one
would need to enumerate each alternative, perform a Monte
Carlo simulation on each design, and then compare the
uncertainty distributions of each choice. Alternatively, one
could perform a Monte Carlo analysis directly on (1), which
would require solving a linear program for each sample. In
contrast, the benefit of the Monte Carlo method is that it
provides a more complete picture of the performance of the
product systems, while the robust approach only concerns
worse case realizations.

4 Discussion

4.1 Application with common uncertainty distributions
in LCA

One assumption of the proposed robust optimization approach
is that the uncertainty set is defined as a symmetric, closed
interval. The interval must be closed in order to achieve strong
guarantees of a feasible solution under any realization of the
distribution, while the interval is assumed to be symmetric in
order to introduce the concept of an uncertainty budget and to
derive the robust counterpart (5). For practical implementation
in commercial software, it is desirable that the robust optimi-
zation approach can accommodate a wide range of uncertainty
distributions commonly used in LCA.

Characterization of the uncertainty distribution is itself an
active area of research. For example, a survey article by Lloyd
and Ries (2007) identifies the normal, triangle, uniform, and
log normal distributions as common uncertainty models in the
literature. Moreover, these distributions are also used in the
ecoinvent commercial database. Note, only the triangle and
uniform distribution immediately fit the robust optimization
framework without modification.

To implement the approach on normally distributed data,
truncating the distribution at two or three standard deviations
can close the uncertainty set. The truncation would lose the
guarantee of feasibility under all realizations of the original
distribution, but this may not be critical, especially if an
uncertainty budget is later introduced. Implementation on
log normally distributed data is the most challenging, because
the distribution is neither closed nor symmetric. The distribu-
tion can be truncated to close the uncertainty set. However,
because the distribution is not symmetric, the nominal value
(used in the robust optimization when the parameter is not
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allowed to vary) might be quite different from the mean value
of the distribution, possibly resulting in an overly optimistic or
pessimistic analysis. Further work is needed to extend the
approach to non-symmetric data.

A second assumption for our methodology is the indepen-
dence of the uncertainty in A and Bmatrices, which may not
always hold in real product systems. Following the example
presented in Section 3, 4.8 to 5.2 kg of coal is required to
generate 10 kWh of electricity. Part of this uncertainty is due
to fluctuations in the carbon content of the coal, since coals
with higher carbon content provide more energy per kilogram.
Simultaneously, the corresponding CO2 emissions per kilo-
gram of coal also depend on the carbon content. The optimal
solution based on the worst-case technology matrix scenario
(5.2 kg of coal required) is too pessimistic, because the corre-
sponding CO2 emissions/kilogram coal can no longer vary
within the full range, once the required amount of coal is
fixed. While the worst-case guarantees of robust optimization
still holds, the resulting analysis may be overly conservative
when correlations are ignored.

4.2 Challenges for large-scale implementation

A complete product system may involve several thousand
processes in commercial software. For example, the ecoinvent
database indicates about 2,000 processes for each product
system, resulting in a sparse technology matrix. To implement
the robust optimization approach on a product system of this
size, two issues must be addressed.

The first issue concerns the numerical stability of the
optimization problem. As part of our initial experiments, we
extracted data from the ecoinvent database and constructed the
matrix A for several invertible product systems. Each resulting
system was ill-conditioned and numerical errors are intro-
duced when solving the equation s=A−1f. For example, we
constructed the technology matrix for the process of bus
manufacturing based on the ecoinvent database, the largest
discrepancy between the final demand calculated from the
computed scaling vector, and the given final demand, was
on the order of 10−4. To solve this problem, LU factorization
with partial pivoting was applied following the suggestion of
Frischknecht et al. (2007), which reduced the error to the order
of 10−9. Depending on the specific linear programming code
used, the numerical pre-conditioning of the product system
might be necessary to get accurate results from the robust
optimization algorithm.

The second issue concerns the size of the robust counter-
part (5), which is larger than the deterministic problem (1). If
the number of constraints in (1) is m, and the number of
decision variables is n, then the robust counterpart will contain
(m+nm+2n) constraints and (m+nm+2n) variables. This will
generate a large-scale linear programming problem, and com-
mercial optimization software such as CPLEX must be used.

5 Conclusions and recommendations

A robust optimization approach to the matrix-based LCI mod-
el has been proposed. This approach incorporates data uncer-
tainties into the optimization framework of LCA and provides
control over the level of protection against uncertainty. The
proposed approach computes a conservative solution that
protects against worst-case realizations of data uncertainty
and is able to avoid the negative consequences of uncertainty
in decision making. Consequently, under worst-case realiza-
tions of the product system, lower environmental impacts can
be achieved using robust decisions compared to decisions
obtained from deterministic optimization approaches that do
not consider uncertainty.

In the future, this work might be combined with a sensitiv-
ity analysis (Sakai and Yokoyama 2002; Heijungs 2010) to
protect against potential risks in decision making due to
sensitive parameters, in the absence of known distributions
for process data.
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