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This article addresses the problem of modeling and estimating traffic streams with mixed
human operated and automated vehicles. A connection between the generalized Aw Rascle
Zhang model and two class traffic flowmotivates the choice to model mixed traffic streams
with a second order traffic flow model. The traffic state is estimated via a fully nonlinear
particle filtering approach, and results are compared to estimates obtained from a particle
filter applied to a scalar conservation law. Numerical studies are conducted using the
Aimsun micro simulation software to generate the true state to be estimated. The experi-
ments indicate that when the penetration rate of automated vehicles in the traffic stream is
variable, the second order model based estimator offers improved accuracy compared to a
scalar modeling abstraction. When the variability of the penetration rate decreases, the
first order model based filters offer similar performance.

� 2017 Published by Elsevier Ltd.
1. Introduction

The recent viability of vehicle automation and communication systems (VACS) has motivated a growing interest to under-
stand how modern transportation systems will evolve when the technologies are available at scale. Although the dream was
first illustrated by General Motors as early as 1939 at the Highways & Horizons exhibit at the New York World’s Fair, wide-
spread commercial research and development of automated vehicles was brought to fruition following the DARPA Grand
Challenges in the 2000s. An overview of other key historical developments in vehicle automation and communication sys-
tems (e.g., automated highways Fenton and Mayhan, 1991; Bender, 1991, automated vehicle control Shladover et al., 1991)
leading to the state of practice today can be found in the reviews (Shladover, 1995; Ioannou, 2013; Van Arem et al., 2006;
Buehler et al., 2009).

With the emergence of mixed traffic flows now eminent, the problems of modeling, estimating, and managing mixed traf-
fic streams is now a pressing concern. Unlike human piloted vehicles, automated vehicles (AVs) have the capability to signif-
icantly reduce the headway between vehicles, potentially adding capacity without increasing the physical infrastructure.
Because the AVs may have significantly different operating characteristics compared to the human operated vehicles, an
open question is how to model and estimate traffic conditions when the flow is composed of a mix of VACS and
non-VACS vehicles. Studies addressing various aspects of the modeling problem include (Bose and Ioannou, 2003; Li and
Ioannou, 2004; Shladover et al., 2012; Diakaki et al., 2015; Ngoduy, 2012, 2013; Levin and Boyles, 2016). The articles
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(Ngoduy, 2012, 2013) propose a gas-kinetic macroscopic model to describe the operations of cooperative adaptive cruise
control (CACC) traffic flow and adaptive cruise control traffic flow respectively. The work (Delis et al., 2015) contains a
detailed review of the various approaches to model VACS in the traffic stream. Several studies also investigate the stability
of traffic under various automation and connectivity considerations (Talebpour and Mahmassani, 2015; Van Arem et al.,
2006; Davis, 2004; Bose and Ioannou, 2003).

In contrast, this article concerns the problem of combining real-time data streams with a (macroscopic) model of mixed
AV and human piloted traffic to generate traffic state estimates. Classically, such problems for non-VACS traffic are posed as a
sequential state estimation problem based on the state space form of the model and measurement system:
xnþ1 ¼ f xn;xnð Þ
zn ¼ h xn; mnð Þ; ð1Þ
where xn denotes the traffic state at discrete time step n such as a vector of the density of traffic along the roadway, and f is a
traffic flow model that evolves the traffic state from one time step to the next. The model noise xn is a random variable that
represents the one time step prediction error of the model. The function h is known as the observation equation and defines
how the vector of measurements zn received at time n is related to the traffic state variable xn, and mn is a random variable
describing the measurement error.

The problem of estimating the traffic state vector xn using measurements Zn ¼ z1; . . . ; zn
� �

and the system (1) was intro-
duced with the early works of Gazis and Knapp (1971) and Szeto and Gazis (1972) in the 1970s through Kalman filtering and
its extensions applied to data collected on the Lincoln Tunnel in New York City. Beginning in the early 1980s, a modified
version of Payne’s macroscopic model has been used for a variety of Kalman-based estimators (Cremer and Papageorgiou,
1981; Papageorgiou, 1983; Wang and Papageorgiou, 2005; Wang et al., 2009). Nonlinear variants of Kalman filtering
(Blandin et al., 2012; Work et al., 2010; Sun et al., 2004; Sun and Work, 2014; Mihaylova et al., 2006; Jabari and Liu,
2013) and particle filtering (Mihaylova and Boel, 2004; Mihaylova et al., 2007; Sau et al., 2007; Polson and Sokolov, 2014;
Chen et al., 2011; Wang et al., 2016) have also been applied to modifications of the Lighthill Whitham Richards (LWR) partial
differential equation (PDE) and its discretization (Lighthill and Whitham, 1955; Richards, 1956; Daganzo, 1994, 1995).

Compared to human operated traffic without connectivity, filtering based approaches for traffic containing connected or
automated vehicles is still relatively unexplored. The most closely related approaches are works of Bekiaris-Liberis et al.
(2015, 2016) and Roncoli et al. (2016), which design a traffic state estimator under two key assumptions on mixed VACS
and human operated vehicle flows. First, a scalar traffic flow model is used in the traffic evolution equation in which the
velocity field along the roadway is treated as a known time-varying parameter, and is assumed to be provided by the con-
nected vehicles in the traffic stream.

A second important assumption is that the velocity measurements from the automated vehicles are assumed to be rep-
resentative of the velocity of all vehicle types. This assumption is motivated by the fact that in free flow, both vehicle types
will have the same average speed (e.g., as established by the speed limit), and in congestion, the VACS are obstructed by
other (human operated) vehicles and consequently adapt the same speed due to the difficulty of overtaking. This assumption
is a critical one, and will be exploited in the present work to establish the connection of mixed automated and human oper-
ated traffic flow with a generalization of the Aw Rascle Zhang (ARZ) (Aw and Rascle, 2000; Zhang, 2002) model.

Under the two assumptions above, the state-space model and its observability is analyzed in Bekiaris-Liberis et al. (2015,
2016), and numerical experiments are performed using the macroscopic METANET model describing average density and
speeds as the true state. Experiments validated on field data under various penetration rates are explored using the NGSIM
dataset in Roncoli et al. (2016). Such a validation is appropriate if the mixed traffic stream is composed of VACS which drive
at similar speeds and spacings as human operated vehicles, as is potentially the case for many connected vehicle systems.
Other estimation approaches (Yuan et al., 2012; Seo et al., 2015) exploit additional sensor data available from some VACS
to improve the traffic state estimates.

In the same general theme of Roncoli et al. (2016), Bekiaris-Liberis et al. (2015, 2016), in this work we compare two dif-
ferent models to predict the traffic state within an estimator when traffic is composed of human piloted and automated vehi-
cles. One approach uses the classical LWR model, which specifies that vehicles are conserved and the speed of traffic is
related to the total density of human and automated vehicles in the traffic stream. The second model uses a variant of
the second order ARZ traffic flow model, known as the collapsed generalized ARZ model (Fan and Seibold, 2013). Note these
models are more accurately referred to as 2 � 2 systems of conservation laws, but we adopt the common name ‘‘second
order” in this article. Recently, a connection between second order models and two-class traffic flow models was established
(Fan and Work, 2015), thereby motivating the use of the ARZ model for application for two-class traffic. Recognizing auto-
mated vehicles and human operated vehicles as two separate classes of traffic, the ARZ modeling framework is a natural
modeling approach to predict the evolution of the traffic state. Other multi-class traffic flow models, such as Van Lint
et al. (2008), Ngoduy and Liu (2007), Benzoni-Gavage and Colombo (2003) may be appropriate if overtaking is determined
to be a critical feature of the mixed human and AV flow.

The main question addressed in this article is to what extent the additional modeling detail provided by two-class (equiv-
alently ARZ) models can enhance the traffic estimates of mixed traffic flows. The estimation comparison is conducted in a
micro simulation environment, where a subset of the vehicles are identified as automated, and consequently their properties
are distinct from the vehicles simulated under typical human operated characteristics. Note in the present work we focus
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only on automated vehicles, and do not explore connectivity between vehicles in the traffic stream. Connectivity can create
non-local effects in the traffic stream (e.g., advanced warning of slow downs) that are treated, for example in the works
Helbing et al. (2001) and Guériau et al. (2016). In this work, automated vehicles are assumed to use only local information
to operate the vehicle, thereby eliminating non-local effects.

The contributions of this article are summarized as follows:

� The applicability of the second order traffic flow model for modeling mixed human and automated traffic is established
under the assumption of limited overtaking between traffic flows.

� The estimation performance of the second order traffic model and the first order traffic model are compared by imple-
menting a particle filter on mixed human and automated traffic generated in a micro simulation environment. It is shown
that when the variability of the penetration rate increases, the second order model based estimator offers superior esti-
mation performance. At lower rates, well calibrated first order model abstractions offer similar estimation performance.

The reminder of the article is organized as follows. In Section 2, both the first and the second order traffic flowmodels are
reviewed. In Section 3, we introduce the particle filter, which is used as the nonlinear traffic state estimation algorithm in
this work. Numerical experiments are performed in Section 4, where the estimation performance of the first and second
order traffic models are compared. Conclusions are summarized in Section 5.
2. Macroscopic traffic models

In this section, two models are proposed for use within a model based estimator for mixed automated and human piloted
traffic. The first and coarsest model is the seminal LWRmodel (Lighthill andWhitham, 1955; Richards, 1956), which assumes
that the total traffic density evolves according to a conservation law and a constitutive model of the traffic speed as a func-
tion of the traffic density. The effects of automated vehicles in the traffic stream are assumed to be entirely captured by the
shape and parameters of the fundamental diagram. A more refined second order traffic flow model known as the generalized
Aw Rascle Zhang (GARZ) (Fan et al., 2014) is also applied to model mixed traffic. The GARZ allows the fundamental diagram to
be further adjusted based on the fraction of AVs in the traffic stream, as will be explained in detail.
2.1. First order traffic model

We briefly review the LWR model (Lighthill and Whitham, 1955; Richards, 1956), which is a conservation law governing
the evolution of the traffic density q v; tð Þ 2 ½0;qmax� at location v and at time t on a roadway:
@q v; tð Þ
@t

þ @ q v; tð Þv q v; tð Þð Þð Þ
@v ¼ 0;

v; tð Þ 2 0; Lð Þ � 0; Tð Þ:
ð2Þ
The initial and (weak) boundary conditions are specified as follows:
q v;0ð Þ ¼ q0 vð Þ; q 0; tð Þ ¼ ql tð Þ; q L; tð Þ ¼ qr tð Þ; ð3Þ
where q0;ql, and qr are the initial, left, and right traffic density boundary conditions.
The LWRmodel requires a closure assumption that the velocity of traffic v is a function of the density of traffic only. Under

this assumption, an empirical relationship between the velocity and density is constructed and used to complete the model.
While many velocity functions are available, in this work the following quadratic–linear function proposed by Smulders
(1990) is adopted:
v qð Þ ¼
vmax 1� q

b

� �
if q 6 qc

vmaxqc qm�qð Þ b�qcð Þ
qb qm�qcð Þ otherwise:

8<
: ð4Þ
In (4), the variable vmax denotes the maximum speed that vehicles can travel on the road. The parameter b determines the
curvature of the velocity function for the free flow regime. In particular, it determines how the average vehicle speed will
change when the traffic density increases from zero to the critical density qc . The critical density is the traffic density when
the highway has the maximum traffic flow. The variable qm denotes the jam density, which corresponds to the traffic density
when the road is completely congested. The critical density and jam density influence the shape of the velocity function for
the congested regime.

When applied to model mixed human and automated traffic, the LWR model tracks only the total density of vehicles on
the roadway, independent of the vehicle type (e.g., human or VACS). It assumes that the speed of traffic can be determined by
only examining the local density of all traffic.
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2.2. Second order traffic model

2.2.1. Generic framework of a second order traffic model
A generalized ARZ model (Fan et al., 2014) that fits into the framework of the generic second order model (GSOM)

(Lebacque et al., 2007) is proposed to describe the evolution of mixed human and automated traffic on the highway. In con-
servative form, the model reads:
@q
@t

þ @ qv q;wð Þð Þ
@v ¼ 0;

@y
@t

þ @ yv q;wð Þð Þ
@v ¼ 0;

v; tð Þ 2 0; Lð Þ � 0; Tð Þ;

ð5Þ
wherew is known as a property. The second equation indicates that the total property y ¼ qw is conserved, along with vehicle
conservation as specified in the first equation. The function vð�; �Þ denotes the velocity function for the second order traffic
model, which is parametrized both by the density (as in the first order model), and by the property.

The weak boundary conditions of (5) are given by:
q v;0ð Þ ¼ q0 vð Þ; q 0; tð Þ ¼ ql tð Þ; q L; tð Þ ¼ qr tð Þ;
y v;0ð Þ ¼ y0 vð Þ; y 0; tð Þ ¼ yl tð Þ; y L; tð Þ ¼ yr tð Þ; ð6Þ
where the variables y0; yl, and yr are the initial, left, and right boundary conditions for the total property y.
To motivate the interpretation of w as a property, it is convenient to rewrite (5) in a non-conservative form as follows:
@q v; tð Þ
@t

þ @ q v; tð Þv q v; tð Þ;w v; tð Þð Þð Þ
@x

¼ 0;

@w v; tð Þ
@t

þ v q v; tð Þ;w v; tð Þð Þ @w v; tð Þ
@x

¼ 0;

v; tð Þ 2 0; Lð Þ � 0; Tð Þ:

ð7Þ
In (7), the second equation indicates that w is advected with vehicles at the speed of v, and thus the property is conserved
along vehicle trajectories. Depending on the application, further interpretations of the property variable w have been pro-
posed for human piloted traffic, such as ‘‘aggressivity” (Fan et al., 2014), ‘‘desired spacing” (Zhang et al., 2009), or equilibrium
‘‘perturbations” (Blandin et al., 2011).

In this work, we propose to define the property w 2 ½0; 1� as the fraction of automated vehicles in the traffic stream
(equivalently the penetration rate of AVs). In principle, AVs may operate with a much smaller spacing compared to regular
traffic, due to the fact that the perception-interpretation-reaction time of an AV may be significantly reduced compared to
humans. As a result, the velocity function (and therefore the fundamental diagram) depends not only on the density of traffic,
but also the composition of the flow, as indicated by w. The larger the fraction of AVs, the smaller the spacing between vehi-
cles at a given speed, and consequently a larger flow can be maintained.

By defining w as the fraction of AVs, conservation of qa ¼ y ¼ wq as specified in the second equation of (5) denotes con-
servation of the automated vehicles. Let qh and qa denote the density of human piloted and automated vehicles respectively,
where q ¼ qh þ qa and w ¼ qa=q. Under these definitions the model (5) becomes:
@q
@t

þ @ qv q;qa=qð Þð Þ
@v ¼ 0;

@qa

@t
þ @ qav q;qa=qð Þð Þ

@v ¼ 0;

v; tð Þ 2 0; Lð Þ � 0; Tð Þ;

ð8Þ
which expresses conservation of all vehicles and conservation of the automated vehicles.
By subtracting the second Eq. (8) from the first, we find the human piloted vehicles qh must also be conserved. As a result,

(8) is equivalent to:
@qh

@t
þ @ qh~v qh;qað Þð Þ

@v ¼ 0;

@qa

@t
þ @ qa~v qh;qað Þð Þ

@v ¼ 0;

v; tð Þ 2 0; Lð Þ � 0; Tð Þ:

ð9Þ
where the velocity function ~v is defined as follows:
~v qh;qað Þ ¼ v qh þ qa;
qa

qh þ qa

� �
: ð10Þ
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The model (9) establishes equivalence for the GARZ model (5) (Lebacque et al., 2007) as a two-class conservation law model
for human driven and automated traffic. From (9), it is noted that both vehicle classes choose the same speed when the com-
position of traffic (i.e., the density of automated and human driven vehicles) is fixed. It is therefore also equivalent to the
generic two class model proposed by Zhang and Jin (2002).

The model above makes explicit the overtaking assumptions stated in Bekiaris-Liberis et al. (2015, 2016), Roncoli et al.
(2016). In light traffic, both vehicle classes travel at the same speed given a fixed density of each vehicle class because
the velocity of traffic is effectively governed by the speed limit. In congested traffic, the speed of each vehicle class is fixed
based on the average speed of the traffic surrounding the vehicles. Large rates of overtaking by one class is not possible in
congestion without dedicated lanes for a preferred vehicle class, which is assumed to be unavailable.

Another motivation for (10) to depend on both class densities is as follows. Given a fixed speed of traffic, the main dif-
ference is the spacing (equivalently density) of the two vehicle types. When the total density is composed primarily of
human piloted vehicles, the average spacing will be larger (i.e., the density is smaller) than when the total density is com-
posed of primarily automated traffic.

Interestingly, if the fraction of AVs in the traffic flow is constant in space and time, the model reduces to the LWR PDE
(Lighthill andWhitham, 1955; Richards, 1956), where the velocity depends only on total density (i.e., the fractionw becomes
a parameter). Thus, the LWR PDE can be viewed as a special form of the GARZ, with a uniform fraction of AVswðv; tÞ ¼ �w (i.e.,
v qð Þ ¼ v q; �wð Þ). This further motivates the use of the LWR model (2) as a forward model in an estimation framework when
the penetration rate of AVs is approximately constant. This intuition is verified in the numerical experiments in Section 4.

The velocity function v (or ~v) needs to be specified to complete the mixed human and automated traffic model. Different
types of velocity functions have been used based on the assumptions on the property quantity w. The models proposed by
Aw and Rascle (2000) and Zhang (2002) and the GARZ (Fan et al., 2014) allow the driver property to influence the velocity
function both in the freeflow and congested regimes. However, in this work, a quadratic–linear velocity function developed
based on the collapsed GARZ (CGARZ) (Fan, 2013) is deployed, in which the composition of the flow does not influence the
free flow speed:
v q;wð Þ ¼
vmax 1� q

b

� �
if q 6 qc wð Þ

vmaxqc wð Þ qm�qð Þ b�qc wð Þð Þ
qb qm�qc wð Þð Þ otherwise:

8<
: ð11Þ
The velocity function (11) is a second order extension of the first order velocity function (4), and again the variables vmax

and b determine the shape of the velocity function for the free flow regime. The fact that the velocity function in the free flow
regime does not depend on the fraction of AVs defines the model as a collapsed GARZ model whose well posedness is estab-
lished in Fan (2013). All vehicles are assumed to drive near the free flow speed regardless of their property w. The variables
qc and qm are the critical density and jam density for the second order traffic model, and determine the shape of the second
order velocity function in the congested regime. Note the critical density is different depending on the fraction of AVs, so the
parameter qc depends on the fractionw. Assuming the human piloted and autonomous vehicles have the same average vehi-
cle length and average minimum gap (i.e., minimum front bumper to lead vehicle rear bumper distance), then the jam den-
sity of traffic does not depend on the composition of AVs in the traffic stream.

For integration in an online estimator, the continuum flow models are discretized according to a Godunov scheme as
detailed in the Appendix.
3. Traffic estimation

In order to compare the performance of the first and second order traffic models for traffic estimation, a standard particle
filter (Ristic et al., 2004; Doucet and Johansen, 2009) is deployed with both models. The particle filter is a fully nonlinear
Bayesian estimator and is subject only to a Monte Carlo approximation error instead of Gaussianity or unimodal approxima-
tions exploited by minimal variance Kalman-based estimators.

In this work, the model parameters in the fundamental diagram are calibrated offline, and consequently only the state
estimation problem is considered. An alternative approach is to jointly estimate the parameters with the state variables
online, for example following an approach similar to Wang and Papageorgiou (2005). However, due to the structure of
the ARZ model, some fundamental diagram parameters may not be observable depending on the observation equation,
which may result in parameter divergence. Consequently in this work we study the simplified setting of offline model cal-
ibration and online state estimation.
3.1. Particle filter

The sequential state estimation problem for the state space model (1) is formulated using the Bayesian approach (Kaipio
and Somersalo, 2005). This approach estimates the posterior probability density function p xnjZnð Þ, where xn is the system
state and Zn are the measurements from time step one to time step n. In the first order model, the system state is the vector

of the total density in each cell, xn ¼ qn
1; . . . ;qn

imax

h iT
. For the second order model the state is the total density and the density
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of automated vehicles, x ¼ q1; . . . ;qn
imax

; qað Þn1; . . . ; qað Þnimax

h iT
. In either system, the state vector xn is recursively updated

according to:
p xnjZn�1
� �

¼
Z

p xnjxn�1
� 	

p xn�1jZn�1
� �

dxn�1
;

p xnjZnð Þ ¼ p zn jxnð Þp xn jZn�1ð Þ
p zn jZn�1ð Þ :

ð12Þ
The first equation of (12) describes the state propagation step from time n� 1 to time n, where p xn�1jZn�1
� �

is the pos-

terior distribution at time n� 1 and p xnjZn�1
� �

is the prior distribution at time n. In this problem, the system state evolution

p xnjxn�1
� 	

is determined by the traffic flow model f. In the case of the first order model based estimator, it is the CTM (18),
while for the second order model based estimator, it is the 2CTM (22). The second equation is the measurement processing
step. When the measurements at time n; zn, become available, they are used to determine the posterior distribution of the

system state x at time n. Here, the term p znjZn�1
� �

is a normalizing constant and p znjxnð Þ is the likelihood function, which is

determined by comparing how well the predicted system state matches with the measurements. Construction of the likeli-
hood function exploits the observation equation in (1). Typically in traffic monitoring applications, the observation equation
is straightforward to construct and depends on the type of measurements to be collected (e.g., velocity, density, flow), it’s
relationship to the state variable (e.g., density), and the location of the measurement.

The particle filter approximates the probability densities in (12) with samples, and uses a Monte Carlo integration to com-
pute the prior distribution at time n given the posterior at time n� 1. A pseudo-code and summary of a standard formulation
of the particle filtering algorithm is provided in the Appendix.
4. Numerical simulation

To assess the accuracy of the models when used within an estimator, we conduct a series of numerical experiments based
on micro simulated traffic containing a mix of human piloted and automated vehicles. The overview of the numerical sim-
ulations is as follows. First, we describe the roadway setup and vehicle parameter settings used to generate mixed traffic
flow. Then, the process of calibrating the first order and second order traffic flow models for mixed traffic is presented. Next,
a traffic scenario is carefully constructed to contain a mix of freeflow and congested traffic conditions, and the performance
of the estimators is quantified. Note that by construction, first and second order models are expected to perform similarly in
free flowing traffic far from any congestion due to the collapsed nature of the fundamental diagram (i.e., the light traffic
velocity depends only on the total density and is independent of w).

The numerical simulation is conducted in Aimsun, which is a microscopic traffic simulation software. A three-mile seg-
ment of a two-lane freeway is modeled in Aimsun for the experiment. The speed limit of the roadway is assumed to be 70
miles per hour. The simulation time step used within Aimsun to resolve the vehicle trajectories is set at 0.2 s. Aimsun has
previously been used to simulate adaptive cruise control vehicles (e.g., laterally automated vehicles) in Ntousakis et al.
(2015). In this work, we adopt a simpler approach, where the automated vehicles are assumed to drive sufficiently like
humans, only with enhanced capabilities (e.g., reduced perception reaction time, desired time headway, etc.).

Two classes of vehicles are simulated, namely, human piloted vehicles and AVs. The AV class is created in Aimsun based
on the car class with the following parameters changed to mimic a plausible behavior of AVs. The first parameter is the reac-
tion time, which determines the reaction time of a vehicle to the speed change of its preceding vehicle. The reaction time
directly affects the headway in accelerating traffic (e.g., clearance of a queue). In this work,the reaction time of AVs is mod-
ified to be 0.2 s while the reaction time of humans is 0.8 s, which are slightly larger values used in Ntousakis et al. (2015)).
The second parameter is the minimum headway, which should not to be confused with the headway. The minimum head-
way is used in the deceleration component of a following vehicle to guarantee a safe time gap to its preceding vehicle. The
minimum headway of AVs is specified as 0.8 s while the minimum headway of human piloted vehicles is specified as 2 s.

These modified microscopic parameters indeed result in reasonable change in macroscopic characteristics (e.g., an
increase in capacity is observed when penetration rate of AVs increase), which is consistent with (Ntousakis et al., 2015).

Finally, the human-related stochasticity of parameters are removed from the AVs by setting the standard deviation of the
appropriate parameters to 0. Such parameters include the speed acceptance and the minimum stopping distance. The nom-
inal values of such parameters are set at the mean values of the car class and are described in more detail in the supporting
source code and Readme (https://github.com/Lab-Work/AIMSUN_with_AVs). Higher fidelity micro simulation models of
automated traffic (Ntousakis et al., 2015; Talebpour and Mahmassani, 2015; Rajamani and Shladover, 2001; Li and
Ioannou, 2004) may be added to modify the capabilities of the automated vehicle flow in the simulation.

http://https://github.com/Lab-Work/AIMSUN_with_AVs
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4.1. Fundamental diagram calibration

In this section, the calibration procedure to determine the fundamental diagram parameters for both the first order model
(2) and the second order model (7) is described. Given the velocity function (11), the fundamental diagram for the second
order model is written as:
q q;wð Þ ¼ vmax q� q2

b

� �
if q 6 qc wð Þ;

cðwÞðq� qmÞ otherwise:

(
ð13Þ
In formulation (13), qðq;wÞ is assumed to be a quadratic function in freeflow and a linear function in congestion where
cðwÞ ¼ �vmaxqcðwÞ b� qcðwÞð Þð Þ= b qm � qcðwÞð Þð Þ denotes the maximum backward propagation speed of a shock wave given
a traffic streamwith a fraction of automated vehicles specified byw. The first order fundamental diagram is constructed sim-
ilarly, with the simplification that the parameters do not depend on w.

To determine the parameters of the fundamental diagram, traffic data is collected from detectors in Aimsun with a detec-
tion interval 20 s, at different penetration rates of AVs in the inflow, i.e.,w 2 f0:01; 0:1; . . . ;0:9; 0:99g. The data is collected by
simulating a variety of free flowing and congested traffic conditions. This data mimics a historical sensor dataset that may be
used for calibration, which would be commonly available in a field deployment.

In the free flow regime, the parameter b is first selected as 600 veh/mile to approximate the quadratic function to a linear
function. Then the parameter vmax is obtained by a least squares regression on the free flow data collected for all penetration
rates of AVs. For the congested flow regime, the jam density is analytically computed by assuming mean minimum stopping
distance and average vehicle length as qm ¼ 644 veh/mile, regardless of the penetration rate of AVs. Then the maximum
backward shock wave propagation speed cðwÞ is obtained by a linear regression on the congested flow data collected for each
penetration rate of AVs w. The critical density qcðwÞ and the maximum flow qmaxðwÞ are obtained by computing the inter-
section between the collapsed quadratic function in the free flow regime and the linear function in the congested flow
regime for each w.

The first order fundamental diagram is assumed to share the same parameters vmax and b with the second order funda-
mental diagram (13) in the free flow regime. The jam density is analytically computed as qm ¼ 644 veh/mile as in the second
order model. The parameter c in the first order fundamental diagram does not depend onw, but is recalibrated for simulation
scenario. For example, if the penetration rate of AVs in the inflow in a simulation scenario is expected to vary in 0–30%, then
the data points with w 2 ½0:0; 0:3� previously collected for calibration are used to determine c by a least squares regression.
In other words, we assume the historical data used to fit the fundamental diagram parameters in the first order model is
representative (with respect to the variability of the AV penetration rate) of the traffic conditions for which the estimator
is applied. In other scenarios with different ranges of expected penetration rate of AVs, the parameter c is updated with
the corresponding calibration dataset. The calibration of c determines the critical density and the capacity of the first order
fundamental diagram.

4.2. Simulation description

Numerical simulations are conducted to evaluate how the estimators perform for traffic with different variability of the
penetration rate of AVs. In total, five simulation scenarios are evaluated, with the penetration rate of AVs in the upstream
inflow sampled from uniform distributions Uð0; 0Þ;Uð0; 0:25Þ;Uð0; 0:5Þ;Uð0; 0:75Þ;Uð0; 1Þwhere the variability of the pen-
etration rate (i.e., the range of the uniform distribution) are respectively 0%;25%;50%;75%;100%. Each replication simu-
lates 60 min traffic on the three-mile freeway.

For each simulation, the upstream traffic flow is set by a piecewise constant function with 12 five-minute intervals. The
fraction of AVs in each interval is randomly sampled from a uniform distribution specified by the scenario. Then the
upstream flow in each interval is set close to the maximum capacity, ranging from 3600 to 6600 veh/h depending on the
penetration rate of AVs. The inflow is selected as a function of the AV penetration rate so that congestion is always obtained
in each simulation. In each simulation, the roadway is initially empty. On the downstream boundary of the domain, conges-
tion is induced through a downstream bottleneck which reduces the outflow of the estimation domain. More precisely, a
time varying speed limit is set downstream such that the outflow for the first 20 min is limited to approximately
300 veh/h, which triggers a congestion wave in the estimation domain. Then during 20–40 min, the outflow increases to
approximately 3000 veh/h which represents a clearance phase of the congestion. Finally, after 40 min, the downstream bot-
tleneck completely removed. The resulting heavy traffic grows until the congestion clearance phase, and an expansion wave
begins to dissipate the congestion from the front of the bottleneck. Eventually the congestion dissipates and the traffic flow
returns to a freeflow condition. An example of the aggregated traffic conditions when the fraction of AVs in the inflow is sam-
pled from Uð0; 0:5Þ is shown in Fig. 1. Fig. 1 plots the true total traffic density q and penetration rate w, and exhibits the
growth and clearing of the congestion that results in a nontrivial traffic state for the estimator to recover.

The above setup is designed to include the relevant effects of the bottleneck inside the estimation domain. Specifically,
the true traffic state includes the following: (i) the transition of traffic from free flow to congestion (i.e., the back of the
queue); (ii) the traffic state in the queue caused by the bottleneck; and (iii) the transition from congestion to freeflow when
the bottleneck is removed (i.e., the dissipation wave from the front of the queue). The state far downstream from the bot-



Fig. 1. An example of the simulated true total traffic density q (veh/mile) with the penetration rate of AVs sampled from Uð0; 0:5Þ.
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tleneck will be in free flow assuming no further restrictions in capacity, which is not particularly interesting from an esti-
mation standpoint. Consequently, the current simulation provides a good range of traffic conditions that reflect the challeng-
ing transitions for the estimation problem.

The true total density (q), and the true fraction of AVs (w) of the simulated traffic are computed from the Aimsun trajec-
tory data. The aggregated quantities are defined on time-space grid with Dv ¼ 179 m and DT ¼ 5 s based on Edie’s defini-
tions (Edie, 1965) as follows:
q ¼
P

jsj
DvDT ; ð14Þ
w ¼
P

jsjIðjÞP
jsj

; ð15Þ
where sj is the time spent by the vehicle j in each time space cell, and the sums are over the vehicle trajectories that appear
in the cell. The indicator function I in (15) is defined as:
I jð Þ ¼ 1 if jth vehicle is AV;
0 otherwise:



ð16Þ
From Aimsun, a limited measurement data is extracted and made available to the estimator to emphasize the differences
between the first and second order models used within the estimator. Specifically, the measurements are collected by four
traffic detectors deployed on the freeway at a one mile spacing. The detectors measure the traffic flow and speed which are
then processed to obtain the density measurement. The vector of density measurements result in a linear observation Eq. (1).
At the boundaries, the density and property measurements are used as inputs to the state space model.

To determine the performance of the estimator on a given true state realization, the standard mean absolute error is used
as the metric and computed for each simulation scenario. Let qn denote the vector of true total density state at time n as
computed by (14), and let q̂n denote the estimate of the true density state according to the particle filter applied to the first
or second order traffic model. The mean absolute error is computed as:
e ¼ 1Pnmax
n¼0

Pimax
i¼0

Xnmax

n¼0

Ximax

i¼0

qn
i � q̂n

i

�� ��: ð17Þ
All simulations are performed using Aimsun 8.0.9 on a desktop with a quadcore Intel i7-4770 3.4 GHz processor. Ten
replications of microscopic traffic conditions are simulated for each variability scenario, where the fraction of AVs in the
inflow (divided into 12 intervals) of each micro simulation replication is drawn from the corresponding distribution (e.g.,
Uð0; 0:25Þ). Each microsimulation takes approximately 15 min to run the simulation and extract the true state, resulting
in a total of 12 h of micro simulation and data extraction time. For each micro simulation, two particle filtering traffic esti-
mators (one scalar model, and one second order model) are run ten times each. Because the particle filter is a stochastic filter,
multiple runs are necessary to get an assessment of the average performance of the PF. The total number of estimation runs
is (five penetration rate variabilities) � (10 simulations per penetration rate variability) � (two estimators per penetration
rate) � (10 particle filter runs per estimator) = 1000 particle filter runs. The particle filtering algorithm runs faster than real
time on this network, and the 1000 runs finish in about eight hours on a machine with an eight-core Intel i7-6900k

3.7 Ghz processor. The total computation time required (micro simulation, data extraction, and estimation) is about 20 h



R. Wang et al. / Transportation Research Part C 78 (2017) 95–110 103
for all steps of all presented runs. In addition, the total amount of data generated supporting the presented results is approx-
imately 100 GB. The computational cost of the experiments motivates the exploration of the performance on a simplified
geometry, although the algorithms are suitable for more complicated network traffic estimation applications.
4.3. Results

The first order model only estimates the total traffic density while the second order model also estimates the fraction of
AVs w, and is expected to provide more accurate traffic density estimation. Figs. 2 and 3 compare the difference between the
first and second order models, in two extreme simulation scenarios, where the fractions of AVs in the inflow are sampled
from Uð0; 0Þ and Uð0; 1:0Þ. The true total densities for two simulation scenarios are plotted in Fig. 4.

Fig. 2 shows the estimation results for the first order model (Fig. 2(a)) and the second order model (Fig. 2(b)) when the
fraction of AVs is sampled from Uð0; 0Þ (i.e., is constant). Two models perform similarly and both recover the true total den-
sity (Fig. 4(a)) accurately. This result is expected by recalling that the second order model reduces to the first order model
given constant fraction of AVs.

In comparison, Fig. 3 shows the estimated total density when the fraction of AVs in the inflow is sampled from Uð0; 1:0Þ.
The second order model (Fig. 3(b)) captures the extent of the congestion (particularly the expansion wave area) more accu-
rately than the first order model (Fig. 3(a)). The better performance of the second order model can be attributed by its capa-
bility to estimate the fraction of AVs, as shown in Fig. 5. By also examining the true fraction of AVs shown in Fig. 4, Fig. 5
shows the second order model can more accurately adjust the fundamental diagram of each cell over the entire time horizon.
It should be noted that the erroneous estimate of the fraction of AVs at the initial time (first three minutes) is the warm-up
period of the micro simulator and the initialization period of the filtering algorithm, and is neglected in the computation of
the error metric for both the first and second order models.

In the next set of experiments, ten replications are simulated for the scenarios with the fraction of AVs in the inflow sam-
pled from distributions:Uð0; 0Þ; Uð0; 0:25Þ; Uð0; 0:5Þ; Uð0; 0:75Þ; Uð0; 1:0Þ. More specifically, theUð0; 0Þ distribution pro-
duces inflows with 0% AVs and no variability, while the Uð0; 1:0Þ distribution produces inflow with a 50% mean penetration
rate of AVs and a standard deviation of 29%.

Fig. 6 shows the overall mean estimation error as a function of the variability of the penetration rate of AVs for the first
order model estimator (red dash line) and the second order model (blue solid line). Fig. 6 illustrates that the second order
model estimator generally outperforms the first order model estimator. This is expected since the average model parameter
values in the first order model approximate the true model parameters less accurately when the variability of the penetra-
tion rates of AVs is large. In comparison, the parameters of the second order model vary depending on the composition of the
traffic w, resulting in more accurate tracking of the propagation of the congestion.

Next, the normalized improvement of the estimation performance of the second order model over the first order model is
also explored. Precisely, in each replication, the normalized improvement of performance is computed as the difference of
estimation error between the second order model and the first order model, divided by the estimation error of the first order
model. Then, the mean percent improvement is averaged across the ten replications for each scenario, and plotted in Fig. 7. It
is shown that the second order model estimator outperforms the first order model estimator by up to 17% for the scenario
corresponding to Uð0; 0:75Þ.

Finally, a sensitivity analysis is conducted to evaluate the robustness of two estimators. The fundamental diagram param-
eters vmax;qm are perturbed one at a time by �5%. The critical densities for the first order and second order fundamental
diagram are perturbed by �5%;þ10%, and þ20%, as initial experiments indicated increasing critical densities resulted in
lower estimation error for both models.
Fig. 2. Estimation results with the fraction of AVs in the inflow sampled from Uð0; 0Þ. (a) Density estimate by the first order model and (b) density estimate
by the second order model.



Fig. 3. Estimation results with the fraction of AVs in the inflow sampled from Uð0; 1:0Þ. (a) State estimate by the first order model and (b) state estimate by
the second order model.

Fig. 4. True total density in two simulation scenarios: (a) when the fraction of AVs in the inflow sampled from Uð0; 0Þ, (b) when the fraction of AVs in the
inflow sampled from Uð0; 1:0Þ, (c) the true fraction of AVs in the scenario Uð0; 0Þ, and (d) the true fraction of AVs in the scenario Uð0; 1:0Þ.
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The procedure of the sensitivity analysis is as follows: (i) perturb one parameter while keeping other parameters
unchanged; (ii) run the first order model and second order model using the perturbed set of parameters for ten simulation
replications, each with ten particle filter runs; and (iii) compute the average estimation error of the perturbed set of
parameters.

Because of the heavy computational load, the sensitivity analysis was performed for a single penetration rate scenario,
Uð0; 0:75Þ. The estimation error is plotted in Fig. 8. The x-axis labels denote the perturbed parameter, e.g., vþ5

m denotes
the set of fundamental diagram parameters where vm is perturbed by +5%. Baseline represents the unperturbed set of
parameters.



Fig. 5. Estimated fraction of AVs by the second order model estimator: (a) when the fraction of AVs in the inflow is sampled from Uð0; 0Þ; (b) when the
fraction of AVs in the inflow is sampled from Uð0; 1:0Þ. Each estimator is initialized with w ¼ 0:5, which takes less than 5 min to clear the computational
domain.

Fig. 6. Mean estimation errors for the first order model and second order model in simulation scenarios with different variability of the fraction of AVs.

Fig. 7. Mean normalized improvement of the performance of the second order model estimator over the first order model estimator at different variability
of the fraction of AVs.
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The performance improvement of the second order model over the first order model for all perturbed set of parameters is
shown in Fig. 9. As confirmed in the sensitivity analysis, the perturbation of the fundamental diagram parameters indeed
varies the performance of the first and second order model estimators. However, regardless of the variation of the estimation
error, the second order model consistently outperforms the first order model by 9–18%.



Fig. 8. Average estimation error with perturbed set of fundamental diagram parameters.

Fig. 9. The performance improvement of the second order model over the first order model.
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5. Conclusion

This work explored a connection between the second order traffic flow models and two–class traffic to model flows com-
posed of human piloted and automated vehicles. Based on this connection, a second order model based traffic estimator was
compared to a scalar modeling abstraction. For each model, a fully nonlinear particle filter is used to estimate the mixed traf-
fic state generated in a micro simulation environment.

A variety of mixed human and automated traffic scenarios were simulated to evaluate the performance of the estimators.
The evaluation results showed the second order model consistently outperformed the first order model in terms of the traffic
density accuracy when the variability of the penetration rate increases. At low penetration rate variability, the first order
model-based estimator offers similar performance. This empirical finding is consistent with the fact that the second order
model reduces to a first order model when the fraction of AVs is constant.

There are several interesting areas for further exploration. First, the present article assumes that the AVs do not overtake
the human piloted traffic, but instead follow the lead vehicle with a smaller average spacing. An open question how human
drivers will respond to AVs driving with smaller spacings compared to human piloted traffic. Moreover, the assumption of
overtaking may be relaxed if the AVs are extremely aggressive (in which case, they become an overtaking class), or passive
(in which case they will be passed). Several multi-class traffic flow models which permit overtaking may be appropriate
depending on how the AVs are designed to behave in mixed traffic streams.

A second interesting area of further study is the problem of jointly estimating the model parameters and the traffic state
online, as was done in Wang and Papageorgiou (2005). The general difficulty of the online joint parameter and state estima-
tion problem stems from the potential non-observability of the parameters given the observation/measurement equation in
the system. If the parameters are observable, it is not necessary to perform the model calibration step offline as was done in
the present work.
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Appendix A. Appendix

A.1. Cell transmission model

For numerical implementation in the estimator, (2) is discretized using the standard Godunov scheme (Godunov, 1959),
(equivalently Cell Transmission Model (CTM) (Daganzo, 1994, 1995; Lebacque, 1993)). Specifically, the time and space
domains are discretized by introducing a discrete time step DT , indexed by n 2 f0; . . . ; nmaxg and a discrete space step Dv,
indexed by i 2 f0; . . . ; imaxg. The discretized system is given by:
qnþ1
i ¼ qn

i þ
DT
Dv G qn

i�1;q
n
i

� 	� G qn
i ;q

n
iþ1

� 	� 	
: ð18Þ
In (18), qn
i denotes the total traffic density at time step n and in cell i. According to Eq. (18), the traffic density at a cell in

the next time step is determined by the traffic density at the cell in the current time step, plus the traffic flow G qn
i�1;qn

i

� 	
that

enters from the upstream cell, and minus the traffic flow G qn
i ;qn

iþ1

� 	
that exits to the downstream cell. The flow (flux) that

crosses the cell boundaries is represented by the numerical flux function G, which is calculated as the minimum of the traffic
flow that can be sent from the upstream cell indicated by S, and the traffic flow that can be received by the downstream cell
indicated by R:
G qn
i ;q

n
iþ1

� 	 ¼ min S qn
i

� 	
;R qn

iþ1

� 	� �
: ð19Þ
The sending function S and receiving function R are given by:
S qn
i

� 	 ¼ q qn
i

� 	
if qn

i < qc

q qcð Þ if qn
i P qc;

(
ð20Þ
and
R qn
i

� 	 ¼ q qcð Þ if qn
i < qc

q qn
i

� 	
if qn

i P qc;

(
ð21Þ
where the flow q qð Þ ¼ q� v qð Þ is the fundamental diagram. To ensure numerical stability, the time and space steps are cou-
pled through the CFL condition (LeVeque, 1992): vmax

DT
Dv 6 1.

A.1.1. Second order cell transmission model
Many approaches are available to discretize second order and multi-class traffic flow models, see for example (Fan et al.,

2017; Wong and Wong, 2002; Zhang et al., 2003; Van Wageningen-Kessels et al., 2010). In this work we follow a standard
Godunov approach (Fan et al., 2017), which requires slightly more care than when it is applied to a first order model. Specif-
ically, a Riemann solver to the PDE (8) is required so the Gudonov fluxs at the cell boundaries can be computed correctly,
resulting in a scheme which approximates the correct weak solution. The solution to the Riemann problem is more compli-
cated than the Riemann problem for the LWR model due to the existence of an intermediate state in the solver (Zhang et al.,
2009). In Lebacque et al. (2005), a Riemann solver for the GOSM is constructed through the supply demand framework,
which is consistent with the original solver derived by analyzing elementary waves (Aw and Rascle, 2000; Zhang, 2002)).
This results in a second order cell transmission model (2CTM) (Fan et al., 2017) analogous to the first order CTM. Here, we
briefly summarize the scheme as applied to (7) (equivalently (8)).

To simplify notation, the scheme is presented in the variables of the GARZ. Recall again that the variables of the GARZ are
related to the mixed traffic variables as y ¼ qa and w ¼ qa=q. The 2CTM (Fan et al., 2017) is given as:
qnþ1
i ¼ qn

i þ DT
Dv Gq qn

i�1;qn
i ;w

n
i�1;w

n
i

� 	� Gq qn
i ;qn

iþ1;w
n
i ;w

n
iþ1

� 	� 	
;

ynþ1
i ¼ yni þ DT

Dv Gy qn
i�1;qn

i ;w
n
i�1;w

n
i

� 	� Gy qn
i ;qn

iþ1;w
n
i ;w

n
iþ1

� 	� 	
;

ð22Þ
where wn
i ¼ yni =qn

i ¼ 0.
The first equation provides the evolution of the total density and is identical to the CTM (18) with the exception that the

flux function Gq depends both on the upstream and downstream densities, and additionally the composition of the traffic as
indicated by the penetration rate of AVs w in the upstream and downstream cells. The second equation describes the evo-
lution of the automated vehicle traffic stream yni ¼ qn

i w
n
i , and differs from the first system by a flux function Gy describing the

flow of AVs into and out of the cell over the time step.
An important property of the flow model (7) relates the numerical fluxes Gq and Gy. Specifically, since the composition of

the flow is advected with the total flow, the flow functions are related by:
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Gy qn
i�1;q

n
i ;w

n
i�1;w

n
i

� 	 ¼ wn
i�1Gq qn

i�1;q
n
i ;w

n
i�1;w

n
i

� 	
:

This allows the following simplification of the evolution Eqs. (22) that depend only on the flux function Gq:
qnþ1
i ¼ qn

i þ DT
Dv Gq qn

i�1;qn
i ;w

n
i�1;w

n
i

� 	� Gq qn
i ;qn

iþ1;w
n
i ;w

n
iþ1

� 	� 	
;

ynþ1
i ¼ yni þ DT

Dv wn
i�1Gq qn

i�1;q
n
i ;w

n
i�1;w

n
i

� 	�wn
i Gq qn

i ;q
n
iþ1;w

n
i ;w

n
iþ1

� 	� 	
:

ð23Þ
Recall the flow function for the second order model is given as q q;wð Þ ¼ q� v q;wð Þ. Unlike the first order flowmodel, the
property variable w is an input to the velocity function and the flow function. As a result, the numerical flux is still specified
as the minimum of the flow that can be sent and received by the adjacent cells:
Gq qn
i ;q

n
iþ1;w

n
i ;w

n
iþ1

� 	 ¼ min S qn
i ;w

n
i

� 	
;R qn

iþ1;w
n
i ;w

n
iþ1

� 	� �
;

but the sending and receiving functions are more complicated.
The sending function is structurally similar to that in the first order model, and depends on the upstream total density qn

i

and the fraction of AVswn
i , which are both inputs to the fundamental diagram and consequently the sending function. Specif-

ically, they are both needed to determine the maximum flow in the sending function, even when a collapsed velocity func-
tion is used (i.e., velocity independent of w in light traffic). The receiving function not only depends on the downstream total
density qn

iþ1, but it also depends on the downstream flow composition wn
iþ1 and the upstream flow composition wn

i , as will be
explained in more detail subsequently. The general form of the sending and receiving functions are:
S qn
i ;w

n
i

� 	 ¼ qn
i v qn

i ;w
n
i

� 	
if qn

i < qc wn
i

� 	
qc wn

i

� 	
v qc wn

i

� 	
;wn

i

� 	
if qn

i < qc wn
i

� 	
;

(
ð24Þ

R qn
iþ1;w

n
i ;w

n
iþ1

� 	 ¼ qc wn
i

� 	
v qc wn

i

� 	
;wn

i

� 	
if qM < qc wn

i

� 	
qM wn

i ;w
n
iþ1

� 	
v qM;w

n
i

� 	
if q P qc wn

i

� 	
;

(
ð25Þ
where qM is an intermediate total traffic density. For the collapsed velocity function (11) where the free flow velocity does
not depend on the traffic composition, the intermediate density can be calculated as:
qM ¼ argminq v qiþ1;wiþ1
� 	� v q;wið Þ� 	

; ð26Þ

where the time index n is dropped for brevity.

Roughly, the intermediate density qM can be interpreted as the average (total) density of traffic when traveling at the
speed of traffic vðqn

iþ1;w
n
iþ1Þ defined in the downstream cell, with the same penetration rate of AVs wn

i as in the upstream
cell. This interpretation is a result of the fact that the composition of traffic w is advected with the flow and therefore is
defined by the upstream cell, and the speed of traffic is defined from the downstream cell because overtaking does not occur.
It is logical that the amount of vehicles that can be received downstream should depend both on the downstream traffic
composition as well as the intermediate density, which captures the composition of the entering vehicles.

A final note is required to address the special case when the total density qn
i ¼ 0 in a cell. Because the density of auto-

mated vehicles yni is also 0, the variable wn
i ¼ yni =qn

i is undefined. In order for the correct cell boundary flow to be computed
(i.e., the one consistent with the solution to the Riemann problem for (7)), the value of w should be set as 1. This allows the
sending flow out of the ith cell (on the downstream boundary) to be correctly computed as zero in (24). It also allows the
receiving function (25) into the ith cell (on the upstream boundary) to be maximal, and the maximum flow which can be
sent from the i� 1th cell will determine the inflow.

A.2. Particle filter

A summary of the particle filter is presented in Algorithm 1 (Ristic et al., 2004; Doucet and Johansen, 2009). Let M denote
the number of particles used in the filter, which are indexed by l. Let fl denote the weight of particle l. In the initial time step,
a number of particles are generated based on the initial knowledge of the highway traffic state. Next, the particles are
evolved forward in time to compute the predicted traffic states for the next time step. The predicted traffic states xnl are
known as the prior distribution. Then, after the measurements zn are received, the measurements from the field (i.e., density
measurements) are used to determine the likelihood of each predicted traffic state. The particles are weighted according to
the computed likelihood at the current time step and their previous weights. The weights of the particles are normalized so
that the sum of the particle weights equals to one. Finally, resampling is performed so that the samples with high weights are
kept and duplicated and the samples with low weights are removed from the sample set. The output of a particle filter is the
posterior distribution of the system state x at each time step n, which is the estimated traffic state at each time step.
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Algorithm 1
Particle filter (Ristic et al., 2004; Doucet and Johansen, 2009).

Initialization (n ¼ 0): generate M samples x0l and assign equal weights f0l ¼ 1=M, where l ¼ 1; . . . ;M
for n ¼ 1 to nmax do

State State prediction: xnl ¼ f xn�1
l

� 	þxn�1 for all l
Measurement processing:
calculate the likelihood: p znjxnl

� 	
for all l

update weights: fnl ¼ fn�1
l p znjxnl

� 	
for all l

normalize weights: f̂nl ¼ fnl =
PM

l¼1f
n
l for all l

Resampling: multiply (suppress) samples xnl with high (low) importance weights f̂nl
Output: posterior distribution of xn

Reassign weights: fnl ¼ 1=M for all l
n ¼ nþ 1

end for
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