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1 Introduction
With the emergence of mixed traffic flows now eminent, the problems of modelling, estimat-
ing, and managing mixed traffic streams is now a pressing concern. Unlike human piloted
vehicles, automated vehicles (AVs) have the capability to significantly reduce the headway
between vehicles, potentially adding capacity without increasing the physical infrastructure.
Because the AVs may have significantly different operating characteristics compared to the
human operated vehicles, an open question is how to model and estimate traffic condi-
tions when the flow is composed of a mix of vehicle automation and communication systems
(VACS) and non-VACS vehicles.

A number of studies address various aspects of the modeling the mixed traffic [1–7]. In
contrast, this work concerns the problem of combining real-time data stream with a (macro-
scopic) model of mixed AV and human piloted traffic to generate traffic state estimates.

Classically, both first order models [8, 9] and second order models [10, 11] have been de-
veloped for modeling the macroscopic traffic dynamics, where the second order model allows
more flexibility in adjusting the behavior of the traffic flow depending on the composition
of the traffic. The main question addressed in this work is to what extent the additional
modeling detail provided by second order models can enhance the traffic estimates of mixed
traffic flows.

2 Methods
This presentation summarizes our recent work [12], where two models are proposed for use
within a model based estimator for mixed automated and human piloted traffic. The first and
coarsest model is the seminal Lighthill Whitham Richards (LWR) model [8,9], which assumes
that the total traffic density evolves according to a conservation law and a constitutive model
of the traffic speed as a function of the traffic density. The effects of automated vehicles in
the traffic stream are assumed to be entirely captured by the shape and parameters of the
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fundamental diagram. Consequently, the speed of traffic is determined by only the local
density of all traffic regardless of vehicle types.

The second model uses a variant of the second order Aw Rascle Zhang (ARZ) [10,11] traf-
fic flow model, known as the collapsed generalized ARZ model [13]. Recently, a connection
between second order models and two-class traffic flow models was established [14], thereby
motivating the use of the ARZ model for application for two-class traffic. Recognizing au-
tomated vehicles and human operated vehicles as two separate classes of traffic, the ARZ
modeling framework is a natural modeling approach to predict the evolution of the traffic
state. In this work, the generalized Aw Rascle Zhang (GARZ) [15] is applied to model mixed
traffic. The GARZ allows the fundamental diagram to be further adjusted based on the frac-
tion of AVs in the traffic stream. In principle, AVs may operate with a much smaller spacing
compared to regular traffic, due to the fact that the perception-interpretation-reaction time
of an AV may be significantly reduced compared to humans. As a result, the velocity func-
tion (and therefore the fundamental diagram) depends not only on the density of traffic, but
also the composition of the flow. The larger the fraction of AVs, the smaller the spacing
between vehicles at a given speed, and consequently a larger flow can be maintained.

The second order model GARZ is compared to the classical first order LWR model
within a traffic estimation framework using simulated real-time data streams. A particle
filter [16, 17] is deployed with both models for traffic estimation. The particle filter is a
fully nonlinear Bayesian estimator and is subject only to a Monte Carlo approximation error
instead of Gaussianity or unimodal approximations exploited by minimal variance Kalman-
based estimators.

The estimation comparison is conducted in a micro simulation environment, were a subset
of the vehicles are identified as automated, and consequently their properties are distinct
from the vehicles simulated under typical human operated characteristics.

3 Primary Results
A number of numerical experiments containing a mix of freeflow and congested traffic con-
ditions with both AVs and human-piloted vehicles were conducted in a micro simulation
environment. In each simulation, the inflow penetration rate of AVs is modeled as a random
variable. The evaluation results show the second order model based estimator outperforms
the first order model in terms of the traffic density accuracy when the variability of the
penetration rate increases. At low penetration rate variability, the first order model-based
estimator offers similar performance. This empirical finding is consistent with the fact that
the second order model reduces to a first order model when the fraction of AVs is constant.
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