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Abstract. In large scale deployments of traffic flow models, estimation of

the model parameters is a critical but cumbersome task. A poorly calibrated
model leads to erroneous estimates in data–poor environments, and limited

forecasting ability. In this article we present a method for calibrating flow
model parameters for a discretized scalar conservation law using only veloc-

ity measurements. The method is based on a Markov Chain Monte Carlo

technique, which is used to approximate statistics of the posterior distribu-
tion of the model parameters. Numerical experiments highlight the difficulty

in estimating jam densities, and provide a new approach to improve perfor-

mance of the sampling through re-parameterization of the model. Support-
ing source code for the numerical experiments is available for download at

https://github.com/dbwork/MCMC-based-inverse-modeling-of-traffic.

1. Introduction.

1.1. Motivation. This article is motivated by a practical problem encountered
when deploying flow models at the scale of cities, states, or countries, for traffic
monitoring and prediction (e.g. [25, 26]). When the models are deployed at large
scales, it is necessary to load the network topology from commercial or open source
maps, from which we can easily obtain properties of the roadways, such as speed
limits, and the number of lanes. This information is used to construct prior esti-
mates for the flow model parameters. However, any errors in the map database,
especially on the number of lanes, can cause significant error in the ability of the
flow model to correctly predict the future evolution of traffic. Because the maps are
usually constructed for navigation purposes, and not for building network traffic
flow models, these errors can go undetected until after the flow model is deployed.
Thus, there is a real need to be able to compute an accurate posterior distribution
for the parameters using traffic observations, which will reduce the sensitivity of
the flow model traffic predictions on any errors in the map database.

As GPS data becomes ubiquitous, the coverage of systems that utilize traffic flow
models can be dramatically increased. The proliferation of GPS data has enabled
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private companies and research institutes to collect large amounts of GPS data,
but little research has gone into developing effective methods to perform offline
calibration of flow models using these data archives.

1.2. Problem statement. In this work we address the problem of determining the
parameters of a traffic flow model using observations obtained from GPS data. The
traffic dynamics are encoded in a mathematical model f which evolves the traffic
state xn (e.g. the traffic density or velocity) at time n, given some time–invariant
model parameters θ. The traffic evolution and measurement generation is given by
the following evolution–observation system,{

xn+1 = f (xn, θ)

yn = gn(xn)

where yn is a vector of measurements, and gn is a time-varying observation operator,
which maps the traffic state to the observed measurements.

Letting y =
((
y1
)T
,
(
y2
)T
, · · · ,

(
yN
)T)T

denote the concatenated measurement

vector, we define the forward model, h as the function which maps the model pa-
rameters to the observations,

y = h(θ)

Solving the forward problem requires evolving the observation evolution system
forward in time for a given model parameter vector θ.

We define the inverse problem (also called the calibration or parameter estimation
problem) as the task of estimating the flow model parameters θ given the measure-
ments y. In general, as well as in the specific problem investigated in this work, the
inverse problem is ill–posed. For example, this can occur when the measurements
are insufficient to uniquely determine the parameters, or because too many mea-
surements lead the problem to be overdetermined. Thus, we formulate the inverse
problem using Bayesian formalism [13], in which the solution of the inverse problem
is the posterior probability density of the model parameters θ given observations y.

Because the posterior density contains a numerical solution of a flow model,
we cannot write analytical expressions for the mean value and covariance of the
posterior distribution. Instead we generate samples from the posterior density and
use Monte Carlo techniques to estimate these statistics. The approach used in this
work is based on Markov Chain Monte Carlo (MCMC) sampling of the posterior
probability density [10].

In this work we restrict ourselves to the problem of estimating time–invariant
parameters of the traffic flow model in consideration. However, time varying pa-
rameters can also be addressed through the proposed MCMC approach, provided an
evolution equation for the parameters is specified. This is an important extension
in practice, as unknown boundary conditions can be treated as time-varying pa-
rameters to be estimated. The accurate recovery of boundary condition parameters
is also important to achieve good forecasts from the traffic model.

1.3. Related work and contributions of this article. To our best knowledge
this is the first attempt to solve the time–invariant parameter estimation problem
using only speed observations, by embedding a flow model in the inversion. This
is in contrast to earlier methods [8, 18, 20, 21] in which the parameter estima-
tion is performed directly on the fundamental diagram (i.e. flux function), using
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constrained least squares fitting or machine learning techniques, without the flow
model. Unlike the problem of estimating flow model parameters from fixed sensors,
the temporal and spatial varying nature and the sparsity of the GPS measurements
prevents inversion directly on the flux function, and motivates our approach. In
cases where it is possible to obtain high resolution GPS data, the fundamental
diagram can be directly calibrated using regression methods [7]. Nonlinear pro-
gramming has also been used to calibrate traffic flow model parameters [6]. In [1], a
repeated calibration of flow model parameters using nonlinear least squares method
was used to improve model predictive control.

A class of online state and parameter estimation problems which work directly on
the flow model has also been considered [2, 12, 17, 27, 29] in the presence of speed
and density data from inductive loop detectors. In these works, the traffic state
and the flow model parameters are estimated using an extended Kalman filter. The
approaches show good performance when inductive loop detector data is available.

From a computational perspective, we also discuss the problem generating good
samples from the posterior density using a Markov Chain Monte Carlo approach
and our specific choice of a traffic flow model. We demonstrate that a variable
change on the parameters to be estimated can significantly improve the posterior
exploration, and the performance of the method.

The remainder of the article is organized as follows. In Section 2 we present the
specific traffic evolution dynamics considered in this work. In Section 3 we review
the construction of the posterior density and give the Markov Chain Monte Carlo
algorithm used to estimate the flow model parameters. In Section 4 we describe
the setting for our numerical experiments. We also discuss improvements to the
MCMC method for the flow model considered in this work. In Section 5 we give
the results of the simulations and in Section 6 we give conclusions and suggestions
for future work.

2. Traffic flow model. The traffic flow model employed in this work is the velocity
evolution equation proposed in [28]. Here we repeat the essential parts of the model.

We model traffic flows using the Lighthill-Whitham-Richards (LWR) [16, 22]
partial differential equation (PDE), which is a nonlinear hyperbolic conservation
law that describes the evolution of the traffic density ρ on a stretch of highway of
length L over a time horizon T . The LWR PDE can be written as:

∂ρ(x, t)

∂t
+
∂ (ρ(x, t)Vθ (ρ))

∂x
= 0, (x, t) ∈ (0, L)× (0, T ) (1)

with initial and boundary conditions given by{
ρ(x, 0) = ρ0(x)

ρ(0, t) = ρl(t), ρ(L, t) = ρr(t)

and where ρ0(·), ρl(·) and ρr(·) are the initial, left, and right boundary data.
A velocity function Vθ(·) is defined to link the density to the average speed of

traffic, thereby closing the LWR model. In this work we assume the Smulders [23]
velocity function, which can be written as follows:

Vθ(ρ) =

vmax

(
1− ρ

ρmax

)
if ρ ≤ ρc

−wf
(

1− ρmax

ρ

)
otherwise
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The parameters of the Smulders velocity function, θ = (ρmax, vmax, wf )T, are the
maximum density ρmax, the maximum velocity vmax, and the maximum negative
wave speed wf . For continuity of the flux function, the critical density ρc is defined
as

ρc =
ρmaxwf
vmax

Note that the Smulders velocity function is invertible, and the mapping from
velocity v to density ρ can be written as

ρ = V −1
θ (v) =


ρmax

(
1− v

vmax

)
if v ≥ vc

ρmax

(
1

1+ v
wf

)
otherwise

(2)

where vc = Vθ(ρc) is the critical velocity.
As shown in [28], we can obtain a discrete velocity evolution equation, called

the Cell Transmission Model for velocity (CTM-v), by applying a Godunov [11, 14]
scheme directly to (1) and then applying a velocity inversion. The discretized
evolution can be written as follows:

vn+1
i = Vθ

(
V −1
θ (vni )− ∆T

∆x

(
G̃θ(v

n
i , v

n
i+1)− G̃θ(vni−1, v

n
i )
))

(3)

where ∆T is the discrete time step indexed by n ∈ {0, . . . , nmax}, ∆x is the discrete
space step indexed by i ∈ {0, . . . , imax}, vni is the traffic velocity in the ith cell at
time step n.

In (3), G̃θ(·, ·) is the Godunov velocity flux, which is given by

G̃θ(v1, v2) =



v2ρmax

(
1

1+
v2
wf

)
if vc ≥ v2 ≥ v1

vcρmax

(
1− vc

vmax

)
if v2 ≥ vc ≥ v1

v1ρmax

(
1− v1

vmax

)
if v2 ≥ v2 ≥ vc

min
(
V −1
θ (v1)v1, V

−1
θ (v2)v2

)
if v1 ≥ v2

The velocity evolution of the first and last cells in the domain vn0 and vnimax
is

governed by the following equations:

vn+1
0 = Vθ

(
V −1
θ (vn0 )− ∆T

∆x

(
G̃θ(v

n
0 , v

n
1 )− G̃θ(vnl , vn0 )

))
vn+1
imax

= Vθ

(
V −1
θ (vnimax

)− ∆T

∆x

(
G̃θ(v

n
imax

, vnr )− G̃θ(vnimax−1, v
n
imax

)
))

where vnl and vnr are given by the prescribed left and right boundary conditions
defined in terms of velocity. Extension of the model to networks is given in [28].

An important feature of the velocity dynamics assumed in this work (i.e. the
Smulders velocity function) is that the wave speed s of a shock on a homogeneous
roadway is not a function of the jam density. This can be shown as follows. The
speed of a shock connecting the two states v1 and v2 is given by the Rankine–
Hugoniot relation:

s =
V −1
θ (v1)v1 − V −1

θ (v2)v2

V −1
θ (v1)− V −1

θ (v2)
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By writing the velocity inversion function (2) as V −1
θ (v) = ρmaxZθ(v) where

Zθ(v) =

{
1− v

vmax
if v ≥ vc

1
1+ v

wf

otherwise

the shock speed reduces to

s =
Zθ(v1)v1 − Zθ(v2)v2

Zθ(v1)− Zθ(v2)
(4)

which does not depend on the jam density.
Moreover, at the boundary of two links with changing parameters, conservation of

vehicles across the junction is imposed by the Rankine–Hugoniot junction condition:

s = V −1
θ1

(v1)v1 − V −1
θ2

(v2)v2 = 0

where θ1 and θ2 denote the velocity function parameters of the incoming link and
outgoing link. Defining α as the ratio of the jam densities, α = ρmax,1/ρmax,2, the
junction condition can be written as:

s = αZθ1(v1)v1 − Zθ2(v2)v2 = 0 (5)

Thus, as long as the ratio of the jam densities between adjacent links satisfies (5),
the Rankine–Hugoniot condition between links will be satisfied.

From (4) and (5) above, we can draw the following conclusions. First, within a
link, the shock wave speed does not depend on ρmax. Second, when a discontinuity
occurs at a link boundary, the jump is a function of the jam density ratio α, but
not directly the jam density. From the perspective of estimating the value of the
jam density on each link, this will significantly increase the degree of difficulty in
generating good jam density samples from the posterior parameter distribution.

Note that for other choices of a velocity function, for example the California
model [9], may introduce dependencies in (2) on the specific values of the jam
densities. Regardless, examining the dependency of jump condition on the model
parameters may be helpful for identifying other efficient sampling strategies. This
is because parameter estimates which generate incorrect shock speeds are easily
rejected in our proposed MCMC algorithm.

2.1. Simulation of vehicle trajectories. We model the evolution of GPS equipped
vehicles as passive Lagrangian tracers, which evolve according to the macroscopic
(average) velocity field. Hence, the jth vehicle moves with the local traffic speed
and updates its position χj according to:

χ̇j(t) = Vθ (ρ (χj(t), t)) (6)

Problems of the form (1) and ordinary differential equation (ODE) (6) have
been studied in [4, 5], and a numerical method for approximating solutions on net-
works via an extension of the Godunov scheme was developed in [4]. The numerical
method can be understood by recognizing the Godunov scheme as a reconstruct
evolve average (REA) scheme [15]. In an REA scheme, the first step is to recon-
struct a piecewise constant approximation of the density field. In the second step,
the reconstructed density field is evolved exactly up to time ∆T by application of
the Riemann solvers at each cell boundary. Finally, at time ∆T, the density in each
cell is averaged, so that a piecewise constant density function can be reconstructed
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and the process is repeated. The key idea in [4] is to update the vehicle position im-
mediately after the evolve step but before the average step in the Godunov scheme,
instead of updating the position after the average step has occurred.

To simulate vehicle trajectories in our numerical experiments, we implement the
trajectory simulation scheme for the Godunov method [4] for the specific case of the
Smulders velocity function on a linear network. We use a time step of ∆T = 1 sec for
the coupled ODE PDE system (1) and (6) to simulate the vehicle trajectories. The
speed reported by the vehicle is assumed to be the space mean speed, computed by
dividing the distance traveled during the time step, by the time step. This is done
because in practice, instantaneous GPS speed measurements are typically averaged
over some distance or time to reduce the noise of the reported speeds. Finally,
a Gaussian measurement noise with standard deviation of 2 mph is added to the
speed to create the synthetic measurements. The complete algorithm for the vehicle
tracking scheme applied to the Smulders diagram is detailed in Appendix A.

3. Bayesian estimation of model parameters. In the Bayesian setting, the
solution to our flow model parameter estimation problem is a posterior density of
the parameters, conditioned on the observed GPS measurements. In this section,
we construct the parameter observation model and the posterior density for the un-
known model parameters. Because of the nonlinearity of the observation operator,
which itself contains a nonlinear flow model, we are unable to write an analytical
expressions for quantities such as mean value of the posterior and its covariance.
To circumvent this difficulty encountered in the estimation process, we propose a
Markov Chain Monte Carlo (MCMC) method to explore the posterior density and
generate random samples from it. This approach allows us to compute properties
of the posterior distribution of the flow model parameters (e.g. moments of the dis-
tribution) using sample approximations, which can then be used as the calibrated
flow model parameters and their uncertainty estimates.

3.1. Construction of the posterior density. The observations used in our flow
model parameter estimation problem are GPS speeds corrupted by measurement
noise, which are obtained from vehicles traveling through the computational domain.

Let y ∈ Rm denote the vector of these observations. The observation model is
assumed to be an additive noise model, which is written as

y = h(θ) + ε (7)

where θ ∈ Rd is the vector of unknown model parameters. The additive noise ε ∈ Rm
is assumed to be Gaussian, ε ∼ N (0,Γε) and independent of the parameters θ. For
simplicity, we assume that the locations at which the measurements are obtained is
known.

Unlike the sequential state estimation methods based on variants of Kalman or
particle filtering [3, 12, 19, 27, 29], (7) is an off-line, stationary estimation problem.
Embedded within the parameter observation operator h is the forward evolution of
the velocity field governed by the CTM-v (3), which is mapped onto the location
where GPS measurements are obtained.

Using the above observation model we can write the likelihood function as:

p(y|θ) ∝ exp

(
−1

2
(y − h(θ))

T
Γ−1
ε (y − h(θ))

)
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The posterior density of the model parameters is written using Bayes rule as

p(θ|y) ∝ ppr(θ)p(y|θ)
where ppr(θ) is the prior probability density for the unknown parameters.

The prior probability density on the model parameters represent our initial beliefs
about the unknown model parameters. Because the flow model parameters have
physical interpretations, the prior distribution can be defined as a distribution of
physically allowable values. For example, a prior distribution on the jam density
ρmax can be obtained by considering the minimum and maximum number of vehicles
which can be stored on a lane, given a minimum and maximum vehicle length.
Engineering references such as the Highway Capacity Manual [24] can also be used
to help construct the priors. The prior distributions on the parameters chosen for
our flow model are described in Section 5.

3.2. Exploring the posterior using a Markov Chain Monte Carlo method.
We use a Markov Chain Monte Carlo method to generate an ensemble of samples
from the posterior density. Using these samples we can compute estimates for the
unknown model parameters such as conditional mean values. More specifically, we
use a method called Metropolis–Hastings (MH) to generate the samples. Another
popular MCMC technique is called Gibbs sampler, see for example [10].

The Metropolis–Hastings algorithm is a well known method for generating sam-
ples from the posterior, which can be summarized using following four steps [13]:

1. Select an initial parameter value θ1 ∈ Rd and set k = 1.
2. Draw z ∈ Rd from the (not necessarily symmetric) proposal density q(θk, z)

and calculate the acceptance ratio

λ(θk, z) = min

(
1,
p(z|y)q(z, θk)

p(θk|y)q(θk, z)

)
.

3. Draw u ∼ U [0, 1], where U is the uniform distribution.
4. If λ(θk, z) ≥ u, set θk+1 = z, else θk+1 = θk. If k equals the desired sample

size K, stop, else k ← k + 1 and go to step 2.

For practical implementation of the algorithm, we choose the proposal density
to be Gaussian:

q(θ, z) ∝ exp

(
−1

2
(θ − z)TΓ−1

w (θ − z)
)
.

where Γw is assumed to be of the form: diag(γ), γ ∈ Rd. In other words, the
random step from θ to z is distributed as white noise,

w = z − θ ∼ N (0,Γw).

Note that the above proposal density is symmetric, which simplifies the computation
of the acceptance ratio (also called the acceptance probability) λ(θ, z). By choosing
the proposal density as Gaussian, we obtain a simple random walk model called
Random Walk Metropolis–Hastings algorithm which is summarized in Algorithm 1
[13].

3.3. Mixing of the chain. In Algorithm 1, the diagonal elements of matrix Γw
control the step length of the random walk on the parameter vector. The choice
of these values affects the acceptance rate (how many samples are rejected versus
accepted) and the mixing of the chain. Mixing refers to the speed at which the chain
moves around the support of p(θ|y). Large steps lead to few accepted samples
because large steps tend to propose moves from the body of the density to the
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Algorithm 1 Random walk Metropolis–Hastings

Pick initial value θ1

Set θ = θ1

for k = 2 : K do
Calculate p(θ|y)
Draw w ∼ N (0,Γw) and set z = θ + w (proposal step)
Calculate p(z|y)
Calculate λ(θ, z) = min(1, p(z|y)/p(θ|y))
Draw u ∼ U [0, 1]
if u ≤ λ(θ, z) then

Accept: Set θ = z, θk = θ
else

Reject: Set θk = θ
end if

end for

tails of the density, resulting in small acceptance ratios. Such a chain will not
move frequently and thus results in slow mixing. On the other hand, a small step
length means that the process explores the posterior density slowly but with a
high acceptance rate. A good step length should avoid both of these extremes.
Techniques for step length selection have been proposed for example in [10].

4. Description of the numerical experiment. In this section, we describe a
numerical experiment which we use to assess the potential of the MCMC approach
for estimating flow model parameters. We consider a two–mile stretch of road,
which consists of three links, each with an unknown number of lanes. The link
lengths are given as l1 = 0.62 mi, l2 = 0.49 mi, and l3 = 0.89 mi. We assume
the maximum velocity vmax and the maximum backwards shock wave speed wf is
constant across the domain, but that the number of lanes on each of the links may
vary. Because the number of lanes has a strong influence on the road capacity and
the jam density ρmax, we assume the jam density on each link is modeled with a
separate parameter.

We generate synthetic data by forward simulation of the CTM-v, assuming the
true values of the parameters are as follows. We assume the shock wave speed
wf = 16 mph and vmax = 77 mph. The number of lanes in link 1 is five and the
jam density ρmax,1 is 5 × 180 veh/mi. Link 2 has four lanes and the jam density
ρmax,2 is 4× 170 veh/mi. The number of lanes in link 3 is five and the jam density
ρmax,3 is 5× 160 veh/mi. The initial velocity is assumed to be 77 mph on all links,
and the velocity boundary conditions are time varying, as shown in Figure 1.

The time step ∆T used in the Godunov scheme when creating the synthetic data
is set to 1 second in order to achieve CFL number ≤ 0.5. Each link is discretized
in space such that link 1 contains 14 cells, link 2 contains 11 cells, and link 3
contains 20 cells. This choice of discretization guarantees the numerical stability of
the model up to a maximum velocity of 80 mph, which is important since the CFL
condition for numerical stability is a function of an unknown parameter (vmax) to
be estimated.

The velocity field obtained using the above parameters is shown in Figure 2,
over a period of 17 minutes. The noise free vehicle trajectories simulated using this
velocity field. A vehicle enters the domain at postmile 0 every 30 seconds, and the
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Figure 1. Upstream (solid) and downstream (dashed) velocity
boundary conditions (mph) versus time (minutes) used in the
model.

position of the vehicle is updated using the model described in Section 2.1. We
assume that we obtain a GPS velocity and postmile reading every 2 seconds as long
as vehicle is in the domain. The trajectories obtained using this method are shown
in Figure 2. We add Gaussian noise to the GPS velocities with a standard deviation
of 2 mph. We assume that there is no error in the postmile of the vehicle so that we
know exactly in which cell of the computational domain the vehicle is at any given
time. In the sequel, we call these noisy GPS velocities measurements.
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Figure 2. Left: True velocity field (mph) used to simulate vehicle
trajectories. Right: Noise-free trajectories simulated using the true
velocity field. Time is in minutes.

After data simulation we can proceed to the parameter estimation. We assume
that the initial velocity and boundary conditions of the model are known during
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the inverse modeling step. Clearly, estimation of the boundary conditions is also
an important part of calibrating a flow model, but in this work we focus on the
problem of estimating the flow model parameters, which is challenging even when
the initial and boundary conditions are assumed to be known.

It is also important to notice that we use the same CTM-v model (including space
discretization) and choice of flux function in the parameter estimation (inversion)
as in the data simulation. This setting is referred to as an inverse crime [13], which
represents a best case performance of the method.

The time step in the CTM-v model which is used in the parameter estimation is
set to 2 seconds. This is done in order to avoid using the same time discretization
as in the data generation and, thus, reducing the inverse crime.

Furthermore, we assume that the model predicted GPS velocity measurements
h(θ) are obtained every 2 seconds as the average speed of the cell given by the CTM-
v model. This means that the model predicting the GPS measurements during
parameter estimation is different than the accurate model used to generate the
synthetic data in Section 2.1. This setting also helps to reduce the inverse crime.

Despite the overly optimistic results which can be generated when inverse crimes
are introduced into computational experiments, we purposefully use this setting
to highlight the findings related to the efficient sampling of jam densities and the
general solvability of the inverse problem.

4.1. Sample generation. In order for the MCMC methods to be effective, they
should have a fast mixing time. The parameters that typically affect the mixing
of the chain are the step length γ and the covariance of the measurement noise
Γε. Appropriate values for γ can be obtained, for example, using a trial and error
method.

In [10], it is noted that posterior correlations also affect the mixing of the chain.
Namely, strongly correlated model parameters in the posterior distribution can
cause a lot of bad proposals thus preventing mixing of the chain.

Keeping our specific flow model application in mind, as we will demonstrate be-
low, adjustments are needed in the selection of the model parameters which we
estimate. Namely, one factor that affects the mixing in our application is the pro-
posal related to the shock wave speed. This is because even small deviation from
the true shock wave speed causes large discrepancy between the GPS measurements
and the predicted measurements. This will further cause the value of the likelihood
to be very small and thus the sample will most likely be rejected. In practice, the
dependence of the solution on the ratio α makes the sampling difficult. Namely,
unless the samples are drawn from the isoline ρmax,1 = αρmax,2, the shock wave
speed will be wrong and the samples get easily rejected.

In order to improve the mixing in Algorithm 1, we draw one value ρmax and
the ratios α for the remaining links instead of using random walk for all ρmax,i i ∈
{1, 2, 3}. In our tests, this leads to significant improvement in the mixing of the
chain.

5. Results. We present results for three different numerical experiments. In the
first scenario, the parameters to be estimated include the jam densities on each link,
and the resulting simulation suffers from the problem of poor mixing. In the second
example, we show that improved mixing can be achieved by estimating ratios of jam
densities instead of the jam densities directly. The third example shows that we can
recover correct values for the model parameters although we do not use the same
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(three–link) configuration in the parameter estimation as in the previous estimation
cases and data simulation. Specifically, we will incorrectly split link l3 into two links
in our estimation algorithm, and we will recover the correct jam density ratio (one)
between the two new links.

The common parameter values in both cases are: the measurement error covari-
ance matrix Γε = (σε)

2 × I, where σε = 3 mph, I is the identity matrix, step length
for maximum density γρmax = 10, step length for ratios γα = 0.000075, step length
for shock wave speed γwf = 0.05 and step length for maximum velocity γvmax = 0.1.

We set the prior density for ρmax,2 to be the uniform density U [110× 4, 250× 5],
which is constructed assuming a prior of ρmax ∈ [110, 250] veh/mi per lane using
jam density values observed in [8].

In order to ensure that we do not exceed the maximum velocity permitted by
the CFL condition, 80 mph, we could set a prior for vmax, for example U [70, 80].
However, in our numerical experiments, we do not encounter problems with the
sampling of vmax and, thus, omit the specification of the prior for vmax in this work.
Also, for the shock wave speed, the construction of prior distribution is not needed
in this study.

5.1. Three jam densities. The initial values for the Markov chain are: vmax = 75
mph, wf = 17 mph, ρmax,i = 150×5 veh/mi, i ∈ {1, 2, 3}. The boundary conditions
and the initial velocity are assumed to be known, and thus we use the same values
as used in the measurement generation process. Furthermore, we assume the same
configuration of the link lengths l1, l2, and l3 as in the data simulation.

Figure 3 shows the results of the parameter estimation when all jam densities are
drawn using random walk procedure. In other words the state vector θ is of form

θ =


ρmax,1

ρmax,2

ρmax,3

vmax

wf


From the figure, two interesting conclusions can be made. First, we observe that
the mixing is very poor. In this simulation, the acceptance ratio was close to zero
after just 20,000 samples. In other words, the chain spends a lot of time stuck on a
parameter realization, and new proposals are not accepted. Note, that although our
parameter vector contained ρmax,1 and ρmax,3 explicitly, in Figure 3 we deliberately
show the ratios of the jam densities.

The second observation is that the chain converges to correct values of jam density
ratios, and parameters vmax and wf quickly. However, the component of the chain
corresponding to ρmax,2 shows very little movement, and the area near true value
(gray line) is not sampled at all, despite the inverse crime setting.

The particular feature of our model, that the shock wave speed between links
depends only on the ratio of jam densities, not the absolute values of them, suggested
that the chain should not get stuck to some particular value of ρmax,2 but rather
cover the posterior density more thoroughly.

5.2. One jam density and two ratios. In the second parameter estimation case,
we estimate the maximum density ρmax,2, the ratios α1,2 = ρmax,1/ρmax,2 and α3,2 =
ρmax,3/ρmax,2, the maximum velocity vmax and the shock wave speed wf . Thus the
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Figure 3. Example of poor mixing with Metropolis–Hastings al-
gorithm. Upper left: Markov chain of estimated maximum density
ρmax,2 (veh/mi) of the second link (black) and true value (gray).
Upper right: estimated ratio (solid black) and true value (solid
gray) for ρmax,1/ρmax,2. Estimated ratio (dashed black), true value
(dashed gray) for ρmax,3/ρmax,2. Lower left: Markov chain for es-
timated shock wave speed (black) in mph and true value (gray).
Lower right: Markov chain for estimated maximum velocity (black)
in mph and true value (gray).

parameter vector θ can be written as

θ =


α1,2

ρmax,2

α3,2

vmax

wf


The initial values for the Markov chain are: vmax = 75 mph, wf = 17 mph, ρmax,2 =
150×5 veh/mi and ratios α1,2 = α3,2 = 1. The boundary conditions and the initial
velocity are assumed to be known. We run the chain until we have 200,000 samples
and we discard 100,000 first samples as the burn-in period. Furthermore, we assume
the same configuration of the link lengths l1, l2, and l3 as in the data simulation.
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The results are shown in Figure 4. As can be seen, the parameter values are
recovered with good accuracy, except for the ρmax,2. The high uncertainty regarding
ρmax,2 reflected in our prior density is also visible in the diagnostics of the Markov
chain. This suggests that when using GPS velocities as measurements, stronger
priors may be needed in order to reduce the uncertainty in the estimates of the
maximum densities.
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Figure 4. Upper left: Markov chain of estimated maximum den-
sity ρmax,2 (veh/mi) of the second link (black) and true value
(gray). Upper right: estimated ratio (solid black) and true value
(solid gray) for ρmax,1/ρmax,2. Estimated ratio (dashed black), true
value (dashed gray) for ρmax,3/ρmax,2. Lower left: Markov chain for
estimated shock wave speed (black) in mph and true value (gray).
Lower right: Markov chain for estimated maximum velocity (black)
in mph and true value (gray).

The computed mean values and standard deviations are summarized in Table
1 with the true values. Also, the absolute value of the error in the velocity field
obtained using the mean values from Table 1 as flow model parameters is shown
in Figure 5. Due to the accurate recovery of the ratios α1,2, α3,2, vmax and wf ,
the overall discrepancy between the predicted velocity field and the true state is
small, in spite of the poor estimate of the jam densities. However, it is worth noting
that the use of a different time step in the synthetic data generation and parameter
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estimation causes a noticeable error near the backward propagating shock wave
boundary.

Table 1. Mean values, standard deviations and true values for the
estimated parameters in the case of three links when ratios are
sampled.

Parameter True value Mean value Standard deviation
α1,2 1.32 1.32 0.001
ρmax,2 680 830 230
α3,2 1.18 1.18 0.0005
vmax 77.0 76.7 0.03
wf 16.0 15.9 0.02
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Figure 5. The absolute value of the error in the velocity field
obtained using the posterior mean values as parameters. Time is
in minutes. The unit of velocity error is mph.

5.3. One jam density and three ratios. In order to further test our method, we
divide the domain into four links. We keep the links l1 and l2 the same as above but
we split the link l3 into two separate (but equal length) links l3 and l4. Hence, we
do not change the length of the computational domain. In other words we assume
a different link discretization than what is used in the generation of the true state.
The lengths of the links are as follows: l1 = 0.62 mi, l2 = 0.49 mi, l3 = 0.445, and
l4 = 0.445 mi. Since the true value of the ρmax,3 = ρmax,4 = 5 × 160 veh/mi, we
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should recover that the ratio α4,3 = ρmax,4/ρmax,3 is 1. Thus the parameter vector
θ can be written as

θ =


α1,2

ρmax,2

α3,2

α4,3

vmax

wf


The initial values for the Markov chain are: vmax = 75 mph, wf = 17 mph, ρmax,2 =
150×5 veh/mi and ratios α1,2 = α3,2 = 1 and α4,3 = 1.1. The boundary conditions
and the initial velocity are assumed to be known. We run the chain until we have
200,000 samples and we discard 100,000 first samples as the burn-in period.

From Figure 6 it is seen that the method recovers the value of ratio α4,3 accu-
rately. This illustrates that it is possible to have redundancy when choosing the
parameters for the estimation and the method can still recover the correct values
for the ratios. As in the previous three–link-case, the value of ρmax,2 shows high
uncertainty.

The high uncertainty in the values of the maximum density makes it difficult to
interpret the lane configurations from GPS speed data through parameter estima-
tion of a flow model. However, from a purely traffic velocity simulation point of
view it is not necessary to know the true values in order to obtain good forward
simulation accuracy. Instead, knowing the ratios between the maximum densities
plays a crucial role.

The computed mean values and standard deviations are summarized in Table 2
with the true values.

Table 2. Mean values, standard deviations and true values for the
estimated parameters in the case of four links when ratios are sam-
pled.

Parameter True value Mean value Standard deviation
α1,2 1.32 1.32 0.001
ρmax,2 680 750 230
α3,2 1.18 1.17 0.002
α4,3 1.00 1.00 0.001
vmax 77.0 76.7 0.04
wf 16.0 15.9 0.04

6. Conclusions and future work. In this paper we presented a calibration method
for fundamental diagram parameters. The work serves as a first step toward a larger
goal which is to be able to utilize GPS data in the calibration of flow models op-
erating on a realistic road network. Our work focused on main line parameters.
Our proposed Markov Chain Monte Carlo recovers important fundamental diagram
parameters and enables accurate forward simulations of the traffic flow model.

The estimation of the true value of jam density remains a challenging task with
GPS data alone. Without strong priors or additional data sources there is lot
of uncertainty with respect to the physical value of the jam density. However,
the value of the jam density does not play a crucial role in the forward simulation
accuracy. Instead we showed that estimating the ratios of the jam densities between
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Figure 6. Upper left: Markov chain of estimated maximum den-
sity (veh/mi) of the second link (black) and true value (gray).
Upper right: estimated ratio (solid black) and true value (solid
gray) for ρmax,1/ρmax,2. Estimated ratio (dashed black), true value
(dashed gray) for ρmax,3/ρmax,2. Estimated ratio (dash-dotted
black), true value (dash-dotted gray) for ρmax,4/ρmax,3 Lower left:
Markov chain for estimated shock wave speed (black) in mph and
true value (gray). Lower right: Markov chain for estimated maxi-
mum velocity (black) in mph and true value (gray).

the consecutive road segments is sufficient for speed evolution prediction. Thus, the
sensitivity of the flow model to errors in the number of lanes in a map database
stems from the fact that these errors create incorrect estimates of the ratios of the
jam densities between links.

Testing the method with experimental data is part of our future work. To com-
plete the calibration in an network scale, our future work also includes the calibra-
tion of the parameters related to merging and diverging traffic. These parameters
include quantities such as on-ramp flows and flow splitting ratios in the junctions.
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Appendix A. Numerical scheme for simulating vehicle trajectories. We
explicate a numerical scheme for integrating vehicle trajectories for linear networks
with the Smulders velocity function. Our implementation is inspired by the algo-
rithm proposed in for the Greenshields velocity function in [4].

We define the absolute position of the vehicle at discrete time n as χn, and
assume i∆x ≤ χn < (i+ 1)∆x. The vehicle position update scheme is of the form

χn+1 = χn + d
(
vni , v

n
i+1

)
(8)

where vni and vni+1 are the velocities computed by (3). The function d determines
the distance traveled by the vehicle in the time step ∆T , and is computed by
integrating the vehicle through the speed field obtained by solving a Riemann prob-
lem between cells i (running from x ∈ [i∆x, (i + 1)∆x)) and i + 1, (running from
x ∈ [(i+ 1) ∆x, (i + 2)∆x)) (i.e. at the cell boundary located at x = (i+ 1) ∆x).
Because the vehicle speeds are always at least as large as the characteristic speed
for a given density, we only need to concern ourselves with interactions between the
vehicle and waves emanating from the cell boundary in front of the vehicle. More-
over, if the time step ∆T is chosen to satisfy ∆T

∆x vmax ≤ 1
2 , then it is not necessary

to consider interactions of waves emanating from x = (i+ 1) ∆x with waves from
x = (i+ 2) ∆x.

A.1. Riemann problem and solution on a linear network. This work con-
siders the case of a linear network (one incoming link and one outgoing link at each
junction), where the parameters θ of the flux function qθ (ρ) = ρVθ (ρ) are allowed
to change between links. Therefore, the Riemann problem between the left link
x ∈ (−∞, (i+ 1) ∆x) and right link x ∈ (−∞, (i+ 1) ∆x) can be written as:{

∂ρ
∂t +

∂qθl (ρ)

∂x = 0 (x, t) ∈ (−∞, (i+ 1) ∆x)× (0, T )
∂ρ
∂t +

∂qθr (ρ)
∂x = 0 (x, t) ∈ ((i+ 1) ∆x,∞)× (0, T )

(9)

with initial data given by:

ρ0(x) =

{
ρl if x < (i+ 1) ∆x

ρr if x > (i+ 1) ∆x
(10)

where ρl and ρr are the left and right initial densities. An admissible solution to
(9) and (10) can be obtained with the introduction of new or internal states ρ̃l and
ρ̃r given by:

ρ̃l ∈

{
{ρl} ∪ (τl (ρl) , ρmax,l] if ρl ≤ ρc,l
[ρc,l, ρmax,l] if ρl ≥ ρc,l

(11)

and

ρ̃r ∈

{
[0, ρc,r] if ρr ≤ ρc,r
{ρr} ∪ [0, τr (ρr)) if ρr ≥ ρc,r

(12)
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where the subscript l and r on the parameters are used to distinguish the change
in the parameters on the left and right side of (i+ 1) ∆x. The function τ is defined
such that q (τ (ρ)) = q (ρ), and τ (ρ) 6= ρ for all ρ 6= ρc.

The maximal flow across the junction at (i+ 1) ∆x, denoted q̃, can be computed
as

q̃ = min {Sθl (ρl) , Rθr (ρr)}
where Sθl and Rθr are the sending and receiving functions:

Sθl (ρ) =

{
qθl (ρ) if ρ ≤ ρc,l
qmax,l if ρ ≥ ρc,l

Rθr (ρ) =

{
qmax,r if ρ ≤ ρc,r
qθr (ρ) if ρ ≥ ρc,r

The unique values of the internal states can be computed by inverting the relations

qθl (ρ̃l) = q̃, qθr (ρ̃r) = q̃

on the sets given by (11) and (12). When internal velocity states are desired, they
can be obtained according to ṽl = Vθl (ρ̃l) and ṽr = Vθr (ρ̃r).

With the internal states defined, the solution to (9) and (10) is separated into two
cases, depending the type of connection between the states ρr and ρ̃r. If ρ̃r < ρr,
the states are connected by a shock, while if ρ̃r > ρr, the states are separated
by an expansion fan. By the structure of the Smulders flux function, all waves in
congestion travel at the same speed wf , which simplifies the connections between
ρl and ρ̃l. The solution is given as follows.

• Case 1. If ρ̃r ≤ ρr,

ρ(x, t) =


ρl if x− (i+ 1) ∆x < s1t

ρ̃l if s1t < x− (i+ 1) ∆x < 0

ρ̃r if 0 < x− (i+ 1) ∆x < s2t

ρr if s2t < x− (i+ 1) ∆x

(13)

where s1 is the speed of the wave connecting ρl and ρ̃l when the wave exists,
and zero otherwise:

s1 =

{
qθl (ρl)−qθl (ρ̃l)

ρl−ρ̃l if ρl 6= ρ̃l

0 if ρl = ρ̃l
(14)

The wave speed s2 is defined similarly in terms of ρr and ρ̃r:

s2 =

{
qθr (ρ̃r)−qθr (ρr)

ρ̃r−ρr if ρr 6= ρ̃r

0 if ρr = ρ̃r

• Case 2. If ρ̃r ≥ ρr,

ρ(x, t) =



ρl if x− (i+ 1) ∆x < s1t

ρ̃l if s1t < x− (i+ 1) ∆x < 0

ρ̃r if 0 < x− (i+ 1) ∆x < s3t
1
2ρmax,r

(
1− x−(i+1)∆x

tvmax,r

)
if s3t < x− (i+ 1) ∆x < s4t

ρr if s4t < x− (i+ 1) ∆x

(15)
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where s1 is given by (14). The terms s3 and s4 are the speeds of the waves
separating the states ρ̃r and ρr with the expansion fan when the wave exists,
and zero otherwise. Recalling the characteristic speeds for the Smulders flux

function when ρ < ρc are given by vmax

(
1− 2ρ

ρmax

)
, s3 and s4 can be computed

as:

s3 =

{
vmax,r

(
1− 2ρ̃r

ρmax,r

)
if ρ̃r 6= ρr

0 if ρ̃r = ρr

and

s4 =

{
vmax,r

(
1− 2ρr

ρmax,r

)
if ρ̃r 6= ρr

0 if ρ̃r = ρr

A.2. Vehicle trajectory evolution equations. The position of a vehicle χ(t)
traveling at the speed Vθ (ρ(x, t)) with ρ(x, t) defined by (13) and (15), is governed
by the following ordinary differential equation:

• Case 1. If ṽr ≥ vr,

χ̇ =


vl if χ− (i+ 1) ∆x < +s1t

ṽl if s1t < χ− (i+ 1) ∆x < 0

ṽr if 0 < χ− (i+ 1) ∆x < s2t

vr if s2t < χ− (i+ 1) ∆x

(16)

with s1 and s2 defined in terms of velocities as:

s1 =


V −1
θl

(vl)vl−V −1
θl

(ṽl)ṽl

V −1
θl

(vl)−V −1
θl

(ṽl)
if vl 6= ṽl

0 if vl = ṽl

and

s2 =


V −1
θr

(ṽr)ṽr−V −1
θr

(vr)vr

V −1
θr

(ṽr)−V −1
θr

(vr)
if vr 6= ṽr

0 if vr = ṽr

• Case 2. If ṽr ≤ vr,

χ̇ =



vl if χ− (i+ 1) ∆x < s1t

ṽl if s1t < χ− (i+ 1) ∆x < 0

ṽr if 0 < χ− (i+ 1) ∆x < s3t
1
2

(
vmax,r + χ−(i+1)∆x

t

)
if s3t < χ− (i+ 1) ∆x < s4t

vr if s4t < χ− (i+ 1) ∆x

(17)

with s3 and s4 defined in terms of velocities as:

s3 =

{
2ṽr − vmax,r if ṽr 6= vr

0 if ṽr = vr

and

s4 =

{
2vr − vmax,r if ṽr 6= vr

0 if ṽr = vr

By integrating the ODE (16) or (17) forward in time with the initial condition
χ(0) = 0, the distance d in (8) is given by d(vl, vr) = χ (∆T ). To compute the
solution, the times and positions of the vehicle interactions with the waves in (16)
and (17) need to be computed. We detail these calculations next.
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A.3. Computation of vehicle–wave interactions. Let us first consider case 1
given by (16). There are three possible interactions a vehicle located at χn <
(i + 1)∆x could have with different waves in case 1. The first interaction occurs
with the wave with speed s1 at the point (xa, ta):

xa = χn + vlta = (i+ 1) ∆x+ s1ta (18)

The interaction time ta is given by:

ta =
(i+ 1) ∆x− χn

vl − s1
(19)

The second interaction occurs with the boundary, at the point given by:

xb = xa + ṽl (tb − ta) = (i+ 1) ∆x (20)

The interaction time with the boundary is given by:

tb =
(i+ 1) ∆x− xa + ṽlta

ṽl
(21)

The third interaction occurs with the wave s2, at the point given by (xc, tc):

xc = xb + ṽr (tc − tb) = (i+ 1) ∆x+ s2tc (22)

The interaction time tc is given by:

tc =
ṽrtb

ṽr − s2
(23)

Let us now consider case 2 given by (17). There are four possible interactions a
vehicle could have with different waves in case 2. The first and second interactions
occur with a wave traveling at speed s1 at (xa, ta), and the cell boundary at (xb, tb),
which are computed by (18), (19), (20), and (21). The third interaction occurs with
the left side of the expansion fan at (xc, tc), given by:

xc = xb + ṽr (tc − tb) = (i+ 1) ∆x+ s3tc (24)

and

tc =
ṽrtb

ṽr − s3
(25)

The fourth interaction occurs when the vehicle exits the expansion fan at (xd, td),
given by:

xd = x (td) = (i+ 1) ∆x+ s4td (26)

where
x(t) = c1

√
t+ tvmax,r + (i+ 1)∆x (27)

and c1 is a constant of integration. Applying x (tc) = xc gives:

c1 =
xc − tcvmax,r − (i+ 1) ∆x√

tc
(28)

Thus, the time the vehicle exits the expansion fan can be obtained by solving

c1
√
td + tdvmax,r = s4td (29)

for td.
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Algorithm 2 Vehicle position update for Smulders velocity function

Find the cell index i such that i∆x ≤ χn < (i+ 1)∆x
Set vl = vni and vr = vni+1

Calculate internal states ṽl and ṽr
Calculate xa and ta according to (18) and (19)
if ta ≥ ∆T then

χn+1 = χn + vl∆T
else

Calculate xb and tb according to (20) and (21)
if tb ≥ ∆T then

χn+1 = xa + ṽl (∆T − ta)
else

if ṽr > vr (case 1) then
Calculate xc and tc according to (22) and (23)
if tc ≥ ∆T then

χn+1 = xb + ṽr (∆T − tb)
else

χn+1 = xc + vr (∆T − tc)
end if

else (case 2)
Calculate xc and tc according to (24) and (25)
if tc ≥ ∆T then

χn+1 = xb + ṽr (∆T − tb)
else

Solve (29) for td
if td ≥ ∆T then

χn+1 = x(∆T )
else

χn+1 = x (td) + vr (∆T − td)
end if

end if
end if

end if
end if

A.4. Summary of the algorithm. The algorithm for updating the vehicle po-
sitions is summarized in Algorithm 2. After determining the current cell of the
vehicle, and computing the internal states ṽl and ṽr, it remains to compute the
distance traveled by the vehicle during the interval ∆T . This is achieved by inte-
grating (16) or (17) from 0 to ∆T , which requires computation of the interaction
times with the waves described in A.3.
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