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Abstract— This work studies the information update of the
Kalman filter under a threshold-based event-triggered sensor
scheduler designed to reduce the sensor-to-estimator commu-
nication cost while preserving estimation accuracy. For each
sensor, when its normalized innovation is below a threshold
required for data transmission (i.e., the sensor does not send
measurements to the estimator), existing filtering algorithms
extract this implicit information to update the estimation error
covariance. However, when the low normalized innovations are
insufficient indicators of the overall estimation accuracy, the
state estimate may still need to be corrected. This occurs for
example when the sensors directly measure only a subset of the
full state vector.

We propose a filtering algorithm to correct the state estimate
in addition to the error covariance without requiring additional
data transmission. The estimator performs the correction using
synthetic measurements with bounded error compared to the
true measurements, which are generated by the estimator.
By correcting the estimate with synthetic measurements, the
proposed filter can further reduce the estimation error at
a small cost of error covariance inflation. We first show
that the proposed filter is an approximate minimum mean
square error estimator when the synthetic measurement is
given. Second, the estimation error dynamics of the proposed
filter is shown to be input-to-state stable, indicating that the
estimation error is also small if the disparity between the syn-
thetic and true measurements is small. Numerical experiments
illustrate the evolution of the estimation error given by the
proposed filter, and show the filter can improve the overall
estimation accuracy. Supplementary source code is available at
https://github.com/yesun/KFSMecc2016.

I. INTRODUCTION

The pervasiveness of wireless sensor networks has revo-
lutionized real-time monitoring systems. However, in many
remote estimation problems, the cost of data transmission
between sensors and the estimator (e.g., energy and channel
bandwidth costs) becomes a design concern. An approach to
solve the remote estimation problem has been through sensor
scheduling techniques, which determine when the sensor
data is most informative for state estimation and transmit
it accordingly (e.g., see [1] and references therein). Such
schemes enable satisfaction of estimation accuracy while
meeting the communication budget constraints.

In a centralized sensor scheduling scheme [2]–[6], the
optimal sensor selection strategies are developed from the
estimator perspective, assuming that the estimator can obtain
data at any time from any sensor it queries. Comparatively, in
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Fig. 1. Remote estimation with an event-triggered sensor scheduler, shown
for a single sensor i.

a decentralized sensor scheduling scheme, data transmission
decisions are made locally at the sensors. For example, in
delta sampling (e.g., [7]), a new measurement is transmitted
when it moves away from the previously transmitted data
by a distance delta. Relevant sampling is proposed in [8]
which triggers an event to send relevant measurements to
the estimator (i.e., measurements that contribute to reducing
the estimator uncertainty and the estimation error). Data
transmission decisions can also be computed by minimizing a
cost function consisting of the expected estimation error and
the data transmission cost (e.g., [9], [10]), or by integrating
physical constraints on the sensors [11], [12]. In [9]–[11],
[13]–[15], the event that triggers transmission of sensor
measurements is the fact that the gap between the true and
predicted measurements exceeds a threshold, which is very
close to the sensor scheduling criteria applied in this work.

This article considers a remote estimation problem com-
posed of a central estimator and multiple remote sensors,
with the communication topology for a single sensor il-
lustrated in Figure 1. It is assumed that for the sensors,
transmitting data is costly, while receiving data is relatively
cheap. This is partially motivated by the fact that the power
amplifier applied when sending data is the dominant source
of energy consumption in many wireless communication
technologies [16]. The resources on the central estimator’s
side are considered to be sufficient, while energy at the sensor
nodes is limited. Hence, the budget on sensor-to-estimator
communications needs to be smartly allocated.

The target to be tracked evolves as the following linear
time-varying system

xk+1 = Akxk + wk, xk ∈ Rn, (1)

where wk is the white Gaussian model noise following
distribution wk ∼ N (0, Qk), with a positive definite error
covariance matrix Qk > 0. It is assumed that the total
number of possible matrices Ak and Qk are finite. Let S
be the total number of sensors in the system. For i ∈ S =
{1, · · · , S}, the sensor measurement yik from sensor i at time
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k is modeled by the following linear observation equation

yik = Hixk + vik, yik ∈ Rm
i

, (2)

where Hi is the time-invariant1 observation matrix of sensor
i, and vik ∼ N (0, Ri) is the white Gaussian measurement
noise with covariance Ri > 0, and is independent of the

model noise. Construct H =
(
H1>, · · · , HS>

)>
as the

observation matrix of the entire sensor set. For all k ≥ 0,
the matrix pairs (Ak, Qk) and (Ak, H) are assumed to be
controllable and observable, respectively. For i ∈ S , denote
as xik|k the state estimate of xk after the information from
sensor i at time k (either the sensor measurement or the
fact that data transmission did not occur) is processed by the
estimator, and Γik|k the error covariance associated with xik|k.
Denote as xk|k−1 the estimate of xk before any information
obtained at time k from the sensors is processed, and Γk|k−1
the error covariance of xk|k−1. At each time step k, the
scheduler at sensor i makes a transmission decision based
on the normalized disparity between Hixi−1k|k (the predicted
measurement of sensor i given xi−1k|k ) broadcast from the
estimator and yik measured at sensor i. If the normalized dis-
parity exceeds a given threshold, sensor data yik is transmitted
to the central estimator. The decision variable γik ∈ {0, 1}
indicates if yik is sent (γik = 1) or not sent (γik = 0).

Sensor schedulers provide additional implicit information
to the central estimator when no data is sent. The state-of-
the-art filtering algorithms [17]–[21] developed to solve the
remote estimation problem illustrated in Figure 1 leverage
this implicit information and update the estimate recursively
according to the following framework:

Time update:{
Update the state estimate xSk−1|k−1 → xk|k−1
Update the error covariance ΓSk−1|k−1 → Γk|k−1, (3)

Information update:

Let x0k|k = xk|k−1 and Γ0
k|k = Γk|k−1

For i = 1 to S do
Sensor scheduler i computes sensor decision γik
If γik = 1

Update xi−1k|k → xik|k and Γi−1k|k → Γik|k
by the standard Kalman filter

Else
Set xik|k = xi−1k|k
Update the error covariance Γi−1k|k → Γik|k.

(4)

In summary, when a sensor does not send data, only the
error covariance is updated when the estimator processes
the information from this sensor, and the precise update

1The time-invariance of the observation equation for each sensor is
motivated by the practical concern that information transmission from the
sensors to the estimator is expensive. When the observation equation is time-
varying, even if sensor data yik is not sent, sensor i still needs to send costly
information on Hi

k and Ri
k to the estimator at each time step k (so that the

estimator can update the estimation error covariance), which conflicts with
the original goal of sensor scheduling to reduce communication costs.

formula depends on the sensor scheduler. The state estimates,
however, are not updated.

A. Motivation

Although framework (3)-(4) is proposed to minimize
the volume of the non-transmission region of the sensor
measurements [17] or the mean square error [18]–[21], the
information update in (4) shows the state estimate is not
corrected when data transmission is declined. As a conse-
quence, the error of the state estimate cannot be reduced
(although the estimation error covariance is reduced), unless
the true state converges asymptotically to zero. However,
in many applications, the sensors altogether measure only
a subset of the state variables, thus the sensor schedulers
may not serve as a sufficient indicator of the estimation
accuracy. For example, consider a physical system tracked
by a set of sensors which are distributed sparsely compared
to the dimension of the state. Even if the disparity between
the sensor measurement and the predicted estimate is below
the threshold required for data transmission, the estimate of
the full state vector may be inaccurate and benefit from a
measurement correction in the information update.

Given the above concerns, this article proposes a filter
which always corrects the state estimate, even without data
transmission. When yik is not sent, the state estimate is
corrected via a synthetic measurement ỹik (generated based
on the estimated distribution of the true measurement) as
follows:

xik|k = xi−1k|k + K̃i
k

(
ỹik −Hixi−1k|k

)
, (5)

where K̃i
k is the synthetic gain associated with ỹik. When

data transmission is triggered, the state estimate is corrected
by the true measurement in the information update. Conse-
quently, the update framework studied in this work reads:

Time update: See (3)
Information update:

Let x0k|k = xk|k−1 and Γ0
k|k = Γk|k−1

For i = 1 to S do
Sensor scheduler i computes sensor decision γik
If γik = 1

Update xi−1k|k → xik|k and Γi−1k|k → Γik|k
by the standard Kalman filter

Else
Generate synthetic measurement ỹik
Update xi−1k|k → xik|k via ỹik based on (5)
Update the error covariance Γi−1k|k → Γik|k,

(6)

Under information update (5), the estimation error can
continue to decrease even when no data is sent. Even if
the synthetic measurement is not close enough to the true
measurement, the presence of measurement feedback itself
outperforms no feedback at all. This is due to the fact that the
disparity between the synthetic and the true measurements is
designed to be within a bound set by the sensor scheduler. To
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justify the effectiveness of the synthetic measurements, we
compare numerically the performance of the proposed filter
with various filters designed under framework (3)-(4), under
the same sensor-to-estimator communication rate defined by:

r =
1

K|S|

K∑
k=1

∑
i∈S

γik, (7)

where K is the total number of time steps, and |S| is the
total number of sensors.

To the best of our knowledge, this framework has not
been studied in the existing literature. Although [17] also
propose to compute xik|k according to (5) based on a virtual
measurement as a supplement to the true measurement when
γik = 0, the proposed virtual measurement is deterministic
and is set as ỹik = Hixi−1k|k . This implies that there is
no difference between the virtual measurement and the
predicted measurement given the latest estimate xi−1k|k , thus
the resulting xik|k computed from (5) is exactly the same
as xi−1k|k . Consequently, the proposed estimator in [17] fits
framework (3)-(4).

B. Contributions

In this work, a Kalman filter with synthetic measure-
ments (KF-SM) is designed and analysed which updates
the estimate according to (3) and (6), with the scheduling
scheme chosen to be a deterministic threshold-based sensor
scheduler (the threshold applied in the sensor scheduler is
predefined and known by the estimator). Explicitly, when
sensor i does not send data yik (i.e., γik = 0), we propose
a synthetic measurement generation algorithm that extracts
the implicit information provided by the sensor scheduler
and outputs a synthetic measurement ỹik. Hence, the state
estimate is corrected according to (5) (Section III). The
synthetic measurement ỹik and the gain K̃i

k are chosen such
that the estimation error dynamics as well as the estimation
error covariance of the KF-SM are stable. When the true
measurement yik is sent, the information update is the same
as the standard Kalman filter (KF). The properties of the
KF-SM introduced in this article include:

1) The KF-SM is an approximate MMSE estimator when
the synthetic measurement is given (Section IV-A).

2) The estimation error dynamics of the KF-SM is input-
to-state stable when treating the synthetic measurement
noise (with respect to the true measurement) as an
input to the estimation error dynamics, thus the error
dynamics is ultimately bounded (Section IV-B).

The advantages of the KF-SM in reducing the estimation
error are verified numerically in Section V.

II. PRELIMINARIES
A. The Sequential Processing Form of the Kalman Filter

Recall from Section I-A that γik ∈ {0, 1} is the decision
variable indicating if sensor data yik will be transmitted to
the estimator. Denote as γk =

(
γ1k, · · · , γSk

)>
the decision

variables at time k, and yk the vector with elements yik
for i ∈ Jk, where the set Jk = {i|γik = 1, i ∈ S}

defines the set of sensors that transmit data at time k. The
information set containing the decision variables and sensor
measurements up to time k − 1 is denoted by Ik−1 =
{γ0, · · · , γk−1, y0, · · · , yk−1}, which is available only to the
central estimator. Furthermore, define the information set
obtained by the estimator at time k based on data from the
first i sensors and all the past data as

Iik =

{
Ii−1k ∪ {γik} if γik = 0,
Ii−1k ∪ {γik, yik} if γik = 1,

for i ∈ S with I0k = Ik−1, where I−1 = ∅.
The central estimator computes the state estimate given

the past information transmitted from the sensors. The prior
estimate and posterior estimate of the state at time k can
be expressed as xk|k−1 = E[xk|Ik−1] and xk|k = E[xk|Ik],
respectively. When the estimator conducts sequential pro-
cessing of the sensor data (i.e., the measurements from
multiple sensors are processed one sensor at a time within
the same time step k), the intermediate estimates are defined
as xik|k = E[xk|Iik] for i ∈ S , and the posterior estimate
is then given by xk|k = xSk|k. The estimation errors and
the estimation error covariance matrices associated with the
corresponding estimates defined above are given by{

ηk|k−1 = xk|k−1 − xk
Γk|k−1 = E

[(
xk|k−1 − xk

) (
xk|k−1 − xk

)>∣∣∣ Ik−1] ,
ηik|k = xik|k − xk

Γik|k = E
[(
xik|k − xk

)(
xik|k − xk

)>∣∣∣∣ Iik] , for i ∈ S,{
ηk|k = xk|k − xk
Γk|k = E

[(
xk|k − xk

) (
xk|k − xk

)>∣∣∣ Ik] ,
where the initial estimates on the state and the error covari-
ance are given by x0|−1 and Γ0|−1, respectively.

Recall that when γik = 1 for all i ∈ S and k ≥ 0,
the standard KF is obtained, which recursively computes
xk|k from xk−1|k−1. The reader is referred to [22] for the
following form of the KF, where the estimate is updated
sequentially over the sensor data in the information update:

Time update:{
xk|k−1 = Ak−1xk−1|k−1
Γk|k−1 = Ak−1Γk−1|k−1A

>
k−1 +Qk−1,

(8)

Information update:

Let x0k|k = xk|k−1, and Γ0
k|k = Γk|k−1,

For i = 1 to S do

xik|k = xi−1k|k +Ki
k

(
yik −Hixi−1k|k

)
Γik|k = Γi−1k|k −K

i
kH

iΓi−1k|k

where Ki
k = Γi−1k|k H

i>
(
Ri +HiΓi−1k|k H

i>
)−1

,

xk|k = xSk|k.

(9)
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B. Kalman Filter with a Deterministic Threshold-based Sen-
sor Scheduler

In the deterministic threshold-based sensor scheduler pro-
posed in [18], [19], the sensor decision variable is computed
as a function of the innovation zik = yik−Hixi−1k|k as follows:

γik =

{
0 if φ(zik) < ζi

1 if φ(zik) ≥ ζi, (10)

where ζi is a pre-determined deterministic threshold, and the
function φ(zik) is defined by the following equations:

φ(zik) =
∥∥∥(Gik)> zik∥∥∥∞ = ‖εik‖∞, (11)

where

Gik =
(
Ri +HiΓi−1k|k H

i>
)− 1

2

, (12)

and εik =
(
Gik
)>
zik is defined to be the normalized innova-

tion. The essence of a deterministic threshold-based sensor
scheduler is that it assesses how much new information
sensor data yik can provide to the estimator by comparing the
normalized innovation with a deterministic threshold, thus
determining if yik should be transmitted to the estimator.

Note that given the scheduling policy (10) where ζi is
deterministic and known by the estimator, it holds that
P(xk = x, yik = y|Ii−1k , γik = 0) = 0 when φ(y−Hix) ≥ ζi.
This indicates that P(xk = x|Ii−1k , γik = 0) is not Gaussian
since yik = Hixk + vik as stated in (2). The exact MMSE
estimator under the scheduling policy (10) is presented in
[18], which is a nonlinear filter (since the sensor scheduler
is a nonlinear function of the measurement), and is known
to be computationally intractable [23]. Hence, the following
Gaussian approximation2

P(xk = x|Ii−1k , γik = 0) ' N (xik|k,Γ
i
k|k), for i ∈ S

(13)

is widely used (see [18] and references therein) to reduce the
problem of tracking the evolution of a general probability
density function (PDF) to that of tracking its mean xik|k and
covariance Γik|k, and to derive a recursive filtering algorithm.
It is shown in [18] that under approximation (13), the
normalized innovation follows εik ∼ N (0, Imi) before the
sensor scheduler decides if yik is transmitted to the estimator,
where Imi is the identity matrix with dimension mi. When
the sensor scheduler decides not to send sensor data yik, even
though the measurement is not received, the estimator obtains
additional information that ‖εik‖∞ < ζi, and the distribution
of εik is updated from a normal distribution to a truncated
normal distribution as follows:

P
(
εik = ε

∣∣‖εik‖∞ < ζi
)

=

{
1
pζi

P(ξ = ε) if ‖ε‖∞ < ζi

0 otherwise,
(14)

2The error covariance Γi
k|k in (13) is computed given the fact that γik =

0, with its explicit formula provided in (15).

where ξ ∼ N (0, Imi) and pζi = Pr
(
‖ξ‖∞ < ζi

)
. In [18]

and [19], the Kalman filter with a deterministic threshold-
based sensor scheduler is derived based on the updated
distribution (14), and is shown to be an approximate MMSE
estimator, with the update equations given in the following
definition.

Definition 1. The Kalman filter with a deterministic
threshold-based sensor scheduler (KF-DT)3 applies sensor
scheduler (10)-(11), with update equations given by

Time update: See (8),
Information update:

Let x0k|k = xk|k−1, and Γ0
k|k = Γk|k−1

For i = 1 to S do
Sensor scheduler i computes γik based on (10)
If γik = 1

Compute xik|k and Γik|k according to (9)
Else
xik|k = xi−1k|k
Γik|k = Γi−1k|k −K

i
kH

iΓi−1k|k

where Ki
k = χ

(
ζi
)

Γi−1k|k H
i>(Ri +HiΓi−1k|k H

i>)−1,

xk|k = xSk|k,

(15)

with 0 < χ(ζ) < 1 given by

χ(ζ) =

√
2

π
ζ exp

(
−ζ

2

2

)
(1− 2Q (ζ))

−1
, (16)

where Q(ζ) =
∫∞
ζ

1√
2π

exp
(
− t

2

2

)
dt.

III. KALMAN FILTER WITH SYNTHETIC
MEASUREMENTS

For the KF-DT, state estimate xik|k is not corrected in the
information update when γik = 0. In this section, we propose
a filtering algorithm that corrects both the state estimate and
the estimation error covariance in the information update
when data transmission does not occur. We apply sensor
scheduler (10), which enables the estimator to draw synthetic
measurements whose error with respect to the true measure-
ments is guaranteed to be upper bounded by a function of
the deterministic threshold ζi.

The same Gaussian assumption (13) is made for the KF-
SM. Based on this assumption, the normalized innovation
follows distribution (14) when γik = 0. The KF-SM aims
to construct a feedback loop to update the state estimate
by the linear information update (5), where the synthetic
measurement ỹik is consistent with γik = 0 (i.e., the sensor
scheduler would not trigger data transmission if the true
measurement is ỹik).

Given (5), one may note that if ỹik = Hixi−1k|k , the
information update (5) is equivalent to letting xik|k = xi−1k|k
when yik is not sent, resulting in no correction on the state

3In [18], [19], the filter defined in Definition 1 is referred to as an
approximate MMSE under the incorporated sensor scheduler, while the
abbreviation “KF-DT” is introduced in this article to simplify the name.
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estimate as described in framework (3)-(4). To reduce the
probability that ỹik and Hixi−1k|k are close, the standard normal
distribution εik ∼ N (0, Imi) is translated by a nonzero
vector ε̄ik which satisfies ‖ε̄ik‖∞ < ζi, before imposing
the condition ‖ε̃ik‖∞ < ζi in the synthetic measurement
generation algorithm presented in Algorithm 1. There are
various ways to generate input ε̄ik, and one straightforward
option is to draw ε̄ik from distribution (14).

Algorithm 1 Synthetic Measurement Generation
Input: threshold ζi, matrix Gik defined in (12), vector

Hixi−1k|k and ε̄ik 6= 0 such that ‖ε̄ik‖∞ < ζi

Output: synthetic measurement ỹik
1. Draw ε̃ik from the distribution P(εik + ε̄ik = ε) (i.e., the

PDF of N (0, Imi) after translated by ε̄ik)
2. while ‖ε̃ik‖∞ ≥ ζi do
3. Redraw ε̃ik from P(εik + ε̄ik = ε)
4. end while
5. Compute the synthetic innovation z̃ik =

(
Gik
)−1

ε̃ik
6. return synthetic measurement ỹik = z̃ik +Hixi−1k|k

One may note that based on Algorithm 1, it holds that
0 <

∥∥E [ε̃ik]∥∥∞ <
∥∥ε̄ik∥∥∞ < ζi. Denote as uik = ỹik −

yik the disparity between the synthetic and true measure-
ments. When ‖ε̃ik‖∞ < ζi, the disparity satisfies

∥∥uik∥∥ <

2ζi
∥∥Gik∥∥−1 (mi)

1
2 . The KF-SM is defined below.

Definition 2. The Kalman filter with synthetic measurements
applies sensor scheduler (10)-(11), with update equations
given by

Time update: See (8),
Information update:

Let x0k|k = xk|k−1, and Γ0
k|k = Γk|k−1

For i = 1 to S do
Sensor scheduler i computes γik based on (10)
If γik = 1

Compute xik|k and Γik|k according to (9)
Else

Generate ỹik according to Algorithm 1

xik|k = xi−1k|k + K̃i
k

(
ỹik −Hixi−1k|k

)
Γik|k = Γi−1k|k −K

i
kH

iΓi−1k|k

where Ki
k = χ

(
ζi
)

Γi−1k|k H
i>(Ri +HiΓi−1k|k H

i>)−1

and K̃i
k = Ki

k,
xk|k = xSk|k,

(17)

where χ(·) is given in (16), and K̃i
k is the gain associated

with synthetic measurement ỹik.

In the KF-SM, the choice K̃i
k = Ki

k is made to stabilize
the filter, as shown later in Section IV.

Remark 1. Note that the error covariance update of the
KF-SM in (17) neglects an additional term caused by the
randomness of the synthetic measurement. As a consequence,

the KF-SM is a MMSE estimator conditioned on the synthetic
measurement (as stated in Proposition 1). We show that the
estimation error dynamics of the KF-SM is still input-to-state
stable (i.e., the filter will not be destabilized by dropping the
extra term and being over-confident on the estimation accu-
racy). In addition, we illustrate in the numerical experiments
that the error covariance inflation caused by the synthetic
measurement is in fact small.

IV. PERFORMANCE ANALYSIS OF THE KF-SM

A. Approximate MMSE Estimator

Based on the error covariance update equation in (17),
a necessary condition to minimize the trace of the error
covariance is K̃i

k = 0. However, the synthetic measurement
does not help update the state estimate if K̃i

k = 0. Hence,
as shown in the next theorem, the error covariance with the
minimum trace is derived under the condition that K̃i

k is
assumed to be given first (i.e., the gain K̃i

k is not treated as
a variable to be optimized to obtain the MMSE estimator).

Proposition 1 (Approximate MMSE estimator). Under
Gaussian assumption (13). The KF-SM is an approximate
MMSE estimator conditioned on any pair of ỹik and K̃i

k.

Proof. When γik = 1, the information update of the KF-SM
is the same as the standard KF, which is a MMSE estimator.
Hence, we prove for the case when γik = 0.

The update of the state estimate given the synthetic
measurement ỹik can be written as

xik|k = xi−1k|k + K̃i
k

(
ỹik −Hi

kx
i−1
k|k

)
= xi−1k|k + K̃i

k

(
Gik
)−1

ε̃ik.

Also note that conditioned on Ii−1k , γik = 0, ε̃ik and K̃i
k,

E
[
xk + K̃i

k

(
Gik
)−1

ε̃ik

∣∣∣Ii−1k , γik = 0, ε̃ik, K̃
i
k

]
= E

[
xk

∣∣∣Ii−1k , γik = 0, ε̃ik, K̃
i
k

]
+ K̃i

k

(
Gik
)−1

ε̃ik

= E
[
xk
∣∣Ii−1k , γik = 0

]
+ K̃i

k

(
Gik
)−1

ε̃ik
= xi−1k|k + K̃i

k

(
Gik
)−1

ε̃ik,

(18)

where the second equation is derived since ε̃ik is drawn
independently of xk and xk does not depend on K̃i

k, and the
third equation is due to the fact that xik|k = xi−1k|k without
ε̃ik (i.e., without the application of synthetic measurements)
when γik = 0. Hence, the trace of the estimation error
covariance of the KF-SM reads

tr
(

Γik|k

)
= tr

(
Cov

(
xk

∣∣∣Ii−1k , γik = 0, ỹik, K̃
i
k

))
= tr

(
Cov

(
xk + K̃i

k

(
Gik
)−1

ε̃ik

∣∣∣Ii−1k , γik = 0, ε̃ik, K̃
i
k

))
= tr

(
E
[(
xi−1k|k − xk

)(
xi−1k|k − xk

)> ∣∣Ii−1k , γik = 0

])
,

where the second equation holds since Gik is deterministic
given Ii−1k , and the third equation is derived from (18) and
the fact that xk does not depend on ỹik or K̃i

k. Notice that
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the last equation coincides with the trace of the estimation
error covariance of the KF-DT in (15). Since the KF-DT is
an approximate MMSE estimator under Gaussian assumption
(13), the KF-SM is also an approximate MMSE estimator,
for any pair of ỹik and K̃i

k.

Since the information update of the estimation error co-
variance in the KF-SM is the same as the KF-DT, the stability
result (Proposition 2 in [19]) also applies to the KF-SM
(i.e., a critical threshold exists, such that the estimation error
covariance is bounded if the applied threshold is less than
the critical threshold). While [19] considers a linear time-
invariant system, it can be extended to the time-varying
system given the following assumptions listed in Section I-
A: (i) The total number of possible matrices Ak and Qk
across all k are finite; and (ii) the total number of sensors S
is finite. Under the above assumptions, the technique in [24]
to show the stability of the KF for an arbitrary switching
sequence can be applied to show the boundedness of the
error covariance. Consequently, the error covariance of the
KF-SM in a time-varying system is also bounded if the
thresholds applied in the sensor schedulers are below the
critical threshold. Also note that all the results shown later
in this work use the fact that the error covariance is bounded.

B. Input-to-state Stability of the KF-SM

This subsection shows that the estimation error dynamics
of the KF-SM is input-to-state stable, if we treat the error
from the synthetic measurements (with respect to the true
measurements) as an input to the system. Because the KF-
SM is input-to-state stable (ISS), the estimation error of the
KF-SM is guaranteed to be bounded if the disparity between
the synthetic and the true measurements is bounded.

When γik = 0, the estimate xik|k and the estimation error
ηik|k after processing the ith information update step reads

xik|k = xi−1k|k + K̃i
k

(
yik −Hixi−1k|k

)
+ K̃i

k

(
ỹik − yik

)
,

ηik|k =
(
I − K̃i

kH
i
)
ηi−1k|k + K̃i

ku
i
k + K̃i

kv
i
k.

Combining the above equation with time update (8) and the
S recursion steps stated in (17), the error dynamics of ηk|k
is written as (recall that in the KF-SM the synthetic gain is
chosen as K̃i

k = Ki
k when γik = 0)

ηk|k =
∏S−1
i=0

(
I −KS−i

k HS−i)Ak−1ηk−1|k−1
+
∑
i∈J ck

∏S−i−1
l=0

(
I −KS−l

k HS−l)Ki
ku

i
k

+
∑S
i=1

∏S−i−1
l=0

(
I −KS−l

k HS−l)Ki
kv
i
k

−wk−1

(19)

where J ck is the complement of Jk (i.e., J ck is the set of
sensors that do not send measurements at time k). Note that
the perturbations from the model and measurement noise
(i.e., the last two terms in the right hand side of (19)) are
zero-mean, and will not destabilize the error dynamics (19).
Hence for the remainder of this work, we study the following

unperturbed error dynamics given by the KF-SM:

ηk|k =
∏S−1
i=0

(
I −KS−i

k HS−i)Ak−1ηk−1|k−1
+
∑
i∈J ck

∏S−i−1
l=0

(
I −KS−l

k HS−l)Ki
ku

i
k,

(20)

where the second term in the right hand side is not zero-mean
and can potentially destabilize the system. Consequently, it is
considered as an input to the error dynamics (20) rather than
perturbation. Also note that (20) is treated as the evolution
equation of ηk|k conditioned on J ck . Hence, if (20) is shown
to be ISS under all J ck , the ISS of the estimation error
dynamics given by the KF-SM is obtained.

For all J ck , the unforced system of (20) (i.e., system (20)
after setting uik = 0 for all i and k) reads

ηk|k =

S∏
i=1

(
I −Ki

kH
i
k

)
Ak−1ηk−1|k−1. (21)

We need to show that the unforced system (21) is globally
exponentially stable (GES). Due to Lemma 4.6 in [25], the
global exponential stability of the unforced system (21) is a
sufficient condition of the ISS of the system (20).

To show the GES of (21), it suffices to prove that a
Lyapunov function of the estimation error given in (21) exists
such that its one-step change is negative definite. However,
the conventional Lyapunov function candidate V (k, ηk|k) =
η>k|kΓ−1k|kηk|k is not applicable since the information update of
Γk|k in the KF-SM is different from the standard KF. Hence,
we construct a virtual filtering process, namely an auxiliary
KF (KF-AUX), which has the same estimation error and as
the unforced system (21) for all k. Hence, showing the error
dynamics (21) is GES is equivalent to showing the GES of
the error dynamics given by the KF-AUX. It is shown in
Proposition 2 that constructing a Lyapunov function for the
error dynamics of the KF-AUX is straightforward.

Definition 3. The KF-AUX associated with the KF-SM is
constructed as

Time update:
{
x̆k|k−1 = Ak−1x̆k−1|k−1
Γ̆k|k−1 = Ak−1Γ̆k−1|k−1A

>
k−1 +Qk−1,

Information update:

Let x̆0k|k = x̆k|k−1, and Γ̆0
k|k = Γ̆k|k−1

For i = 1 to S do
Let γik be the transmission decision of the KF-SM

associated with sensor i at time k

x̆ik|k = x̆i−1k|k + K̆i
k

(
yik −Hi

kx̆
i−1
k|k

)
Γ̆ik|k = Γ̆i−1k|k − K̆

i
kH

i
kΓ̆i−1k|k

Where if γik=1

K̆i
k = γikΓ̆i−1k|k H

i
k
>
(
Rik +Hi

kΓ̆i−1k|k H
i
k
>
)−1

Else

K̆i
k = Γ̆i−1k|k H

i
k
>
(
R̆ik +Hi

kΓ̆i−1k|k H
i
k
>
)−1

x̆k|k = x̆Sk|k,

where R̆ik = 1
χ(ζik)

(Rik +Hi
kΓ̆i−1k|k H

i
k
>

)−Hi
kΓ̆i−1k|k H

i
k
>. The

initial guesses are set as η̆0|−1 = η0|−1 and Γ̆0|−1 = Γ0|−1.
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Proposition 2 (ISS of the KF-SM). The estimation error
dynamics of the KF-SM is input-to-state stable.

Proof. As discussed earlier, it suffices to prove that system
(21) is GES. One may note that by construction, in the
unforced system (21) and the KF-AUX, Ki

k = K̆i
k for all

i ∈ S ∪ {0} and k, hence Γik|k = Γ̆ik|k and xik|k = x̆ik|k for
all i ∈ S∪{0} and k. Therefore, showing the GES of (21) is
equivalent to showing the GES of the error dynamics given
by the KF-AUX:

η̆k|k =
∏S
i=1

(
I − K̆i

kH
i
k

)
Ak−1η̆k−1|k−1

=
(
I − K̆kH

)
Ak−1η̆k−1|k−1,

where K̆k = Γ̆k|k−1H
>(R̆k + HΓ̆k|k−1H

>)−1 is the
Kalman gain with simultaneous processing of the sensor
data, and R̆k = diagi∈S

(
γikR

i
k + (1− γik)R̆ik

)
.

Consider the following Lyapunov function candidate

V̆ (k, η̆k|k) = η̆>k|kΓ̆−1k|kη̆k|k, (22)

and let F̆k = I−K̆kHk, the one step-change of the Lyapunov
function candidate (22) is given by

V̆ (k + 1, η̆k+1|k+1)− V̆ (k, η̆k|k)

= −η̆>k|k
(

Γ̆−1k|k −A
>
k F̆
>
k+1Γ̆−1k+1|k+1F̆k+1Ak

)
η̆k|k,

= −η̆>k|k
(

Γ̆−1k|k −A
>
k (AkΓ̆k|kA

>
k + W̆k)−1Ak

)
η̆k|k,

where W̆k = Qk + Γ̆k+1|kH
>R̆−1k HΓ̆k+1|k, and the last

equation is due to Lemma 2 in [26]. Following the arguments
of Lemma 3 in [26] where the matrix inversion lemma is
applied to show the negative definiteness of one-step change
of the Lyapunov function candidate, we obtain

Γ̆−1k|k −A
>
k (AkΓ̆k|kA

>
k + W̆k)−1Ak > 0.

Therefore the error dynamics of the KF-AUX is GES, which
means that equivalently the original unforced system (21) is
GES. Hence, the system (20) is input-to-state stable for all
J ck , thus the estimation error dynamics of the KF-SM is
input-to-state stable.

Corollary 1 (Ultimate boundedness of the KF-SM). The
estimation error of the KF-SM in the unperturbed error
dynamics (20) is ultimately bounded.

Proof. Since the error covariance Γk|k is bounded for all
k, it follows that Ki

k and Gik are bounded for all i and k.
Also recall from Section III that

∥∥uik∥∥ < 2ζi
∥∥Gik∥∥−1 (mi)

1
2 ,

where mi is the dimension of sensor data yik. Hence, there
exists L > 0 such that the second term in (20) satisfies∥∥∥∥∥∥

∑
i∈J ck

S−i−1∏
l=0

(
I −KS−l

k HS−l)Ki
ku

i
k

∥∥∥∥∥∥ < Lρ0 (ζmax) ,

(23)

where ζmax = maxi∈S ζ
i, and ρ0(·) is a class K∞ function.

Given the exponential stability of the unforced system (21),
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Fig. 2. (a) The 2-norm of the average estimation error ‖η̄k|k‖ given by the
KF-SM and KF-DT; (b) The variance of the estimation error σk|k given by
the KF-SM and KF-DT; (c) The sum of the 2-norm and the variance of the
estimation error ‖η̄k|k‖ + σk|k given by the KF-SM and KF-DT; (d) The
2-norm of the estimation error ‖ηk|k‖ given by the KF-SM and KF-DT
for a single run, where the vertical lines indicate the time steps when the
sensor data is sent (with dashed and dotted vertical lines representing the
KF-SM and KF-DT, respectively).

the estimation error (20) of the KF-SM satisfies

‖ηk|k‖ ≤ abk‖η0|0‖+
ρ
(

sup0≤κ≤k

∥∥∥∑i∈J cκ

∏S−i−1
l=0

(
I −KS−l

κ HS−l)Ki
κu

i
κ

∥∥∥) ,
where a > 0, 0 < b < 1, and ρ(·) is a class K function.
Substituting (23) in the above equation, we obtain

‖ηk|k‖ ≤abk‖η0|0‖+ ρ (Lρ0 (ζmax)) .

Hence for all c > ρ (Lρ0 (ζmax)), there exists T (‖η0|0‖, c)
such that ‖ηk|k‖ < c when k > T (‖η0|0‖, c), which yields
the ultimate boundeness of the estimation error.

V. NUMERICAL EXPERIMENTS
This section illustrates the capability of the synthetic

measurements to improve the overall estimation accuracy
compared to the KF-DT, and shows that the error covariance
inflation caused by the synthetic measurements can be small.

The target to be estimated is a two-dimensional system,
where

A =

(
1.05 0
0.1 0.9

)
, H = (0 1) ,

with Q = diag (0.01, 1), and R = 1. In this experiment, the
KF-SM and KF-DT are run for 100 times. For each run, the
sensor-to-estimator communication rate is defined in (7). We
investigate the estimation error provided by the KF-SM and
KF-DT for a low communication rate r̄ = 0.125, where r̄ is
the average of r among 100 runs. To meet the required com-
munication rate, the (time-invariant) deterministic threshold
ζ is chosen to be 0.7 and 0.6 for the KF-SM and KF-DT,
respectively. The initial state x0 = (2 1)>, and the initial
estimate is set to be x0|−1 = (10 1.05)> + w0|−1 with
w0|−1 ∼ N (0, 100I2).

Figure 2a-c plot the evolution of ‖η̄k|k‖, σk|k, and ‖η̄k|k‖+
σk|k given by the KF-SM and KF-DT, where η̄k|k =
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1
100

∑100
τ=1 η

τ
k|k, with ητk|k the estimation error given by the

τ th run at time k, and σk|k =
√

1
100

∑100
τ=1 ‖ητk|k − η̄k|k‖2

quantifies the spread of the estimation error among different
runs. After time step 50, the error covariance for the two
filters converges to their fixed values, hence in the deter-
ministic sensor scheduler, the innovation will be normalized
by a fixed value (see (11)), and compared with a threshold
which is fixed as well. Therefore, data transmission for the
KF-SM and KF-DT will be stopped by the sensor schedulers
when the estimation error reaches a fixed value (i.e., around
‖ ηk|k ‖= 2 for the KF-DT as shown in Figure 2d). For the
KF-DT, it is impossible for the estimation error to further
decrease when the sensor stops sending data. Comparatively,
the estimation error of the KF-SM can continue to decrease,
because the estimation error can still decrease even when
the sensor data is not sent due to the feedback provided
by the synthetic measurements (as shown in Figure 2d).
Consequently, the KF-SM in Figure 2a has a smaller average
estimation error ‖η̄k|k‖ compared to the KF-DT.

Figure 2b shows that the variances σk|k of the estimation
error of the KF-SM is slightly larger than the KF-DT. The
randomness of the estimation error for the KF-DT is given
by the modeling error and measurement noise, while for the
KF-SM it is given by the modeling error, measurement noise,
and the synthetic measurement. Hence, the KF-SM trades
the variance σk|k in favor of reducing the average estimation
error η̄k|k. Nevertheless, the reduction on ‖η̄k|k‖ for the KF-
SM can dominate the increase of σk|k, which is shown in
Figure 2c.

VI. CONCLUSIONS

In this article, we propose an information update strat-
egy for the KF under a deterministic threshold-based sen-
sor scheduler, where synthetic measurements are generated
based on the sensor scheduler and fed back into the state
estimate to promote the reduction of the estimation error
when data transmission is not triggered. We prove that
under the Gaussian assumption of the state estimate, the
proposed KF-SM is an approximate MMSE estimator when
the synthetic measurement is given. We also show the error
dynamics of the estimate is input-to-state stable, and the esti-
mation error of the KF-SM is ultimately bounded. Numerical
experiments show an advantage of the KF-SM on reducing
the estimation error compared to the case without synthetic
measurements. The theoretical analysis of the advantage of
synthetic measurements on improving the estimation quality,
as well as the error covariance inflation caused by the
randomness of the synthetic measurements will be studied
in our future work.
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