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Abstract— This work proposes a distributed local Kalman
consensus filter (DLKCF) for large-scale multi-agent traffic
density estimation. The switching mode model (SMM) is used
to describe the traffic dynamics on a stretch of roadway, and
the model dynamics are linear within each mode. The error
dynamics of the proposed DLKCF is shown to be globally
asymptotically stable (GAS) when all freeway sections switch
between observable modes. For an unobservable section, we
prove that the estimates given by the DLKCF are ultimately
bounded. Numerical experiments are provided to show the
asymptotic stability of the DLKCF for observable modes, and
illustrate the effect of the DLKCF on promoting consensus
among various local agents. Supplementary source code is
available at https://github.com/yesun/DLKCFcdc2014.

I. INTRODUCTION

A. Motivation

The unprecedent growth of sensing and computational ca-
pacities have advanced the development and implementation
of real-time traffic estimation techniques. For a transportation
network at the scale of a megacity, a centralized estimator
that tracks the entire state of the network requires large and
expensive computing resources to meet real-time constraints.
An alternative is to partition large networks into local re-
gions, with each region estimated by a cheap commodity
computer (e.g. an agent), thus easing the computational
burden. However, without coordination between adjacent or
overlapping partitions, estimates provided by different agents
may disagree on the estimates on the shared boundaries.
These motivates the introduction of information sharing
among agents to compensate for the lack of a central agent,
thus enhancing estimation consistency while also enabling
computational scalability.

B. Related Work

A number of sequential state estimation algorithms have
been proposed to estimate traffic conditions. The Switching
Mode Model (SMM) [1]–[3] is a piecewise linear form of the
Cell Transmission Model (CTM) [4]–[6], and is integrated
into the Mixture Kalman Filter in [2] for ramp metering. A
proof of the stability and a derivation of an error conservation
property of a Luenberger observer based on the SMM is
provided in [7], which serves as an inspiration for this work
and is extended in [8] for more accurate mode estimation. In
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[9], the Interacting Multiple Model algorithm is applied to
the SMM with generalized modes. A robust mode selector
is proposed in [10] to determine the most probable mode of
the uncertain graph-constrained SMM. In [11], a Gaussian
approximation of the stochastic traffic model is solved by the
standard Kalman Filter (KF), and the stochastic observability
of the model is proved. The Parallelized Particle Filters and
the Parallelized Gaussian Sum Particle Filter are designed in
[12] for computational scalability. Other treatments of traffic
estimation include [13]–[17]. A recent overview of sequential
estimation techniques for scalar traffic models can be found
in [18].

Research on collaborative information processing is driven
by the broad applications of multi-agent systems [19]–
[22]. The decentralized Kalman filter [23], [24] requires a
complete communication network with all-to-all links which
may not scale in large-scale systems. A scalable Distributed
Kalman Filter (DKF) is introduced in [25], and [26] par-
titions the large-scale systems into subsystems to reduce
computation load, with observasion fusion applied on the
shared states between subsystems to ensure consensus. In the
Kalman-Consensus Filter (KCF), consensus is achieved by
communication on the state estimates [27]. A formal analysis
on the stability of the KCF can be found in [27], [28].

C. Contributions and Outline of the Article

The main contribution of this article is the design and
analysis of a Distributed Local Kalman Consensus Filter
(DLKCF) to estimate the traffic density on freeways, with
system dynamics chosen to be a piecewise linear form of
the Cell Transmission Model (CTM) [4]–[6] called the SMM.
The transportation network is partitioned into local regions
with overlapping areas on the boundaries, and each local
region is estimated by an agent. Each agent provides a local
estimate on its own region, and shares sensor data and state
estimates with its neighbors (two agents are called neigh-
bors if they communicate with each other). Furthermore,
consensus on the overlapping areas is pursued to achieve
agreement on the estimates of the common state shared
between neighbors. We provide a formal proof of the stability
and boundedness of the DLKCF, which has been missing
from many traffic estimation methods.

This work is organized as follows. Section II summarizes
the CTM and the SMM, and Section III introduces the
DLKCF. In Section IV-A, we prove that the DLKCF is
globally asymptotically stable under the observable modes of
the SMM. For the unobservable modes, we prove in Section
IV-B that the state estimates are ultimately bounded. Finally,
simulation results are presented in Section V.
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II. SCALAR MACROSCOPIC TRAFFIC MODELING

A. Cell Transmission Model

The classical scalar model describing the evolution of
traffic density ρ(t, x) on a road network at location x and
time t is the Lighthill-Whitham-Richards (LWR) Partial Dif-
ferential Equation (PDE) [29], [30], which describes vehicle
conservation:

∂tρ+ ∂xQ(ρ) = 0. (1)

The function Q(ρ) = ρv(ρ) is called the flux function,
where v(ρ) is an empirical velocity function used to close
the model. The triangular flux function [5] used in this work
is given by

Q(ρ) =

{
ρvm if ρ ∈ [0, ρc]
ρcvm

ρm−ρ
ρm−ρc if ρ ∈ [ρc, ρm], (2)

where vm denotes the freeflow speed and ρm denotes the
maximum density. The variable ρc is the critical density
at which the maximum flux is realized. For the triangular
fundamental diagram, the flux function has different slopes
in freeflow (ρ ≤ ρc) and congestion (ρ > ρc). In freeflow,
the slope is vm, and in congestion, it is w = ρcvm

ρm−ρc .
The CTM is a discretization of (1) and (2) using a

Godunov scheme [31]. Consider a discretization grid defined
by a space step ∆x and a time step ∆t. We let l index the cell
defined by x ∈ [l∆x, (l+ 1)∆x), and denote ρlk the density
at time k∆t in cell l. The discretized model (1) becomes

ρlk+1 = ρlk +
∆t

∆x

(
q(ρl−1

k , ρlk)− q(ρlk, ρl+1
k )

)
, (3)

where q(ρl−1
k , ρlk) is the flux between cell l − 1 and l:

q(ρl−1
k , ρlk) = min{vmρl−1

k , w(ρm − ρlk), qm}, (4)

where qm is the maximum flow given by qm = vmρc.

B. Switching Mode Model

In the SMM, (3) is written as a hybrid system whose
evolution equation switches among different linear modes,
depending on the state of the upstream and downstream cells.

1) Definition of modes and evolution equations: Consider
discretizing a road section into n cells, and define the state
vector of the section to be ρk =

(
ρ1
k, · · · , ρlk, · · · , ρnk

)T
. We

make the following three assumptions for traffic estimation
based on the SMM: (i) the densities of the upstream and
downstream cells in each section are measured; (ii) there is at
most one transition between freeflow and congestion within
each section; and (iii) the boundary density measurements
are sufficiently accurate to distinguish between four of the
five modes described next, but they cannot determine the
location or direction of the shock.

Given the second assumption above, a road section may
switch between the following five modes:

1) freeflow–freeflow (FF), in which all cells in the section
are in freeflow;

2) congestion–congestion (CC), in which all cells in the
section are in congestion;

3) congestion–freeflow (CF), in which the cells in the
upstream part of the section are congested, and the
cells in the downstream part are in freeflow;

4) freeflow–congestion 1 (FC1), in which the upstream
part of the section is in freeflow, the downstream part
is in congestion, and the shock has positive velocity or
is stationary; and

5) freeflow–congestion 2 (FC2), in which the upstream
part of the section is in freeflow, the downstream part
is in congestion, and the shock has negative velocity.

Note the boundary sensors cannot distinguish between modes
4 and 5. In each mode stated above, the traffic state ρk
evolves with linear dynamics, forming a hybrid system:

ρk+1 = Aσ(k),s(k)ρk +Bρσ(k),s(k)ρm +Bqσ(k),s(k)qm, (5)

where ρm = (ρm, · · · , ρm)
T ∈ Rn, qm = (qm, · · · , qm)

T ∈
Rn, and Aσ(k),s(k), B

ρ
σ(k),s(k), B

q
σ(k),s(k) ∈ Rn×n are

matrices to be defined precisely later. The mode index
σ(k) ∈ S where S = {1, 2, 3, 4, 5} is the index set denoting
the five modes, and s(k) ∈ {0, 1, · · · , n} is the index
introduced to precisely locate the transition between freeflow
and congestion when it exists. We say s(k) = l when the
transition occurs between cell l and l + 1.

To explicitly define (5) in each mode, some notation is
introduced. For all p ∈ {1, 2, · · · , n− 1}, define Γp ∈ Rp×p
and ∆p ∈ Rp×p by their (i, j)th entries as

Γp(i, j) =

 1− vm∆t
∆x if i = j

vm∆t
∆x if i = j + 1

0 otherwise,

∆p(i, j) =

 1− w∆t
∆x if i = j

w∆t
∆x if i = j − 1

0 otherwise.

In the FF mode, the mode index σ = 1, and s(k) = 0.
The explicit forms of Aσ,s, Bρσ,s, and Bqσ,s are:

A1,0 =

 1 01,n−1(
vm∆t

∆x
0n−2,1

)
Γn−1

 , Bρ1,0 = Bq1,0 = 0.

where 0i,j ∈ Ri×j which is zero everywhere, and 0 = 0n,n.
In the CC mode, the mode index σ = 2, and s(k) = n.

The explicit forms of Aσ,s, Bρσ,s, and Bqσ,s are:

A2,n =

 ∆n−1

(
0n−2,1
w∆t
∆x

)
01,n−1 1

 , Bρ2,n = Bq2,n = 0.

In the CF mode, the mode index σ = 3, and the explicit
forms of Aσ,s, Bρσ,s, and Bqσ,s are:

A3,s =

(
∆s 0s,n−s

0n−s,s Γn−s

)
, Bρ3,s = 0 +

w∆t

∆x
Es,s,

Bq3,s = 0− ∆t

∆x
Es,s+1 +

∆t

∆x
Es+1,s+1,
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where Ei,j are matrices that are zero everywhere but the
(i, j)th entry, which is one. Note that s may take any value
in {1, · · · , n − 1}, depending on the location of the center
of the expansion fan.

In the two FC modes, define Γ̂p and ∆̂p as follows:

Γ̂p =


 1 01,p(

vm∆t
∆x

0p−1,1

)
Γp

 if p ∈ {1, · · · , n− 1},

1 if p = 0,

and

∆̂p =


 ∆p

(
01,p−1
w∆t
∆x

)
01,p 1

 if p ∈ {1, · · · , n− 1},

1 if p = 0.

When σ = 4 and s ∈ {1, · · · , n − 2}, or σ = 5 and s ∈
{2, · · · , n − 1}, the explicit forms of Aσ,s, Bρσ,s, and Bqσ,s
are:

Aσ,s =

 Γ̂s̃−1 0s̃,1 0s̃,s̄(
01,s̃−1

vm∆t
∆x

)
1

(
w∆t
∆x 01,s̄−1

)
0s̄,s̃ 0s̄,1 ∆̂s̄−1

 ,

Bρσ,s =

 0s̃+1,s̃+1

(
0s̃,1 0s̃,s̄−1

−w∆t
∆x 01,s̄−1

)
0s̄,s̃+1 0s̄,s̄

 , Bqσ,s = 0,

where for σ = 4 we have s̃ = s and s̄ = n− s− 1, and for
σ = 5 we have s̃ = s− 1 and s̄ = n− s.

When σ = 4 and s = n − 1, we have Aσ,s =

diag
(

Γ̂n−2, 1
)

(i.e. with Γ̂n−2 and 1 on the diagonal) , and

Aσ,s = diag
(

1, ∆̂n−2

)
when σ = 5 and s = 1. For both

cases, we have Bρσ,s = Bqσ,s = 0.
2) Observability: The observability results of the SMM

for individual modes are summarized in Table I [3]. It can
be derived directly from standard linear system techniques
for each mode given (5) and the observation equation:

zk = Hkρk, (6)

where zk is the measurement vector, and Hk is the output
matrix.

Remark 1. In the SMM proposed in [1]–[3], an additional
assumption requires the precise inflow and outflow of the
section as inputs of the system. Here we instead assign
constant dynamics for the boundary cells subject to some
uncertainty. It is assumed that boundary measurements will
be available and will be integrated through the update
equation within the filter. As a result the system dynamics no
longer depends on cell densities outside the section, at the
expense of a correct model at the boundary. This treatment
is made since: (i) measurements of boundary conditions
cannot be treated as the true input of the system without
accounting for measurement errors, and (ii) for distributed
computational platforms, independence of system dynamics
for each section is desirable. Note that all results and proofs
in this article hold for either formulation.

TABLE I
OBSERVABILITY OF THE SMM1,2 [3]

Mode U D Shock velocity Observable with
1 F F No shock D measurement
2 C C No shock U measurement
3 C F No shock U and D measurements
4 F C positive or stationary unobservable
5 F C negative unobservable

1 F and C represent freeflow and congested, respectively.
2 U and D represent upstream and downstream, respectively.

III. DISTRIBUTED LOCAL KALMAN CONSENSUS
FILTERING

A. Kalman Filter

In this section, we briefly review the KF and introduce
notation needed later in the proposed filter. Consider a linear
time-varying model

ρk+1 = Akρk + wk, ρk ∈ Rn, (7)

where wk ∼ N (0, Qk). Sensor measurements zk are mod-
eled by the following linear observation equation

zk = Hkρk + vk, zk ∈ Rm, (8)

where Hk and vk ∼ N (0, Rk) are the observation matrix
and measurement noise, respectively.

Given the sensor data up to time k denoted by Zk =
{z0, · · · , zk}, the prior estimate and posterior estimate of
the state can be expressed as ρk|k−1 = E[ρk|Zk−1] and
ρk|k = E[ρk|Zk], respectively. Let ηk|k−1 = ρk|k−1−ρk and
ηk|k = ρk|k − ρk denote the prior and posterior estimation
errors. The state error covariance matrices associated with
ρk|k−1 and ρk|k are given by Γk|k−1 = E[ηk|k−1η

T
k|k−1]

and Γk|k = E[ηk|kη
T
k|k]. The KF sequentially computes ρk|k

from ρk−1|k−1 as follows:

Forecast:
{
ρk|k−1 = Ak−1ρk−1|k−1

Γk|k−1 = Ak−1Γk−1|k−1A
T
k−1 +Qk−1,

Analysis:

 ρk|k = ρk|k−1 +Kk(zk −Hkρk|k−1)
Γk|k = Γk|k−1 −KkHkΓk|k−1

Kk = Γk|k−1H
T
k (Rk +HkΓk|k−1H

T
k )−1.

B. Distributed Local Kalman Consensus Filter

The DLKCF is a localized version of the KCF, which
itself is an extension of the KF for multi-agent estimation
[27], [28]. Consider a network with an ad hoc undirected
communication topology between agents given by the graph
G = (V, E), where V and E are the vertex and edge sets,
respectively. For agent i the output equation is given by

zd
i,k = Hd

i,kρk + vd
i,k, zd

i,k ∈ Rmi ,

where the superscript d stands for distributed, and vd
i,k ∼

N
(

0, Rd
i,k

)
. Let Ni = {j : (i, j) ∈ E} be the set

of neighboring agents of agent i on graph G, and define
Ji = Ni

⋃
{i}. In the KCF, through communication each

agent possesses columnized measurement vector zi,k =
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colj∈Ji

(
zd
j,k

)
and a corresponding columnized output ma-

trix Hi,k = colj∈Ji

(
Hd
j,k

)
, as well as a block diagonal mea-

surement error covariance matrix Ri,k = diagj∈Ji

(
Rd
j,k

)
.

A consensus term is computed based on the disparities of
the prior estimates among neighbors and is applied to the
analysis step to promote agreement on estimates among
neighboring agents.

For the KCF stated above, each agent estimates all the
state variables of ρk. However, for estimation on large-
scale transportation systems, this is neither computationally
efficient nor practically necessary. Consequently, a localized
version of the KCF, namely the DLKCF, is introduced. The
DLKCF partitions the state into local overlapping subsets,
and each agent estimates a single subset of the state.

The freeway network is partitioned into N local sections,
with overlapping regions established to allow communica-
tion between neighboring agents to exchange messages on
measurements and state estimates. From the SMM in section
II-B, the system dynamics of the ith section is given by

ρi,k+1 = Ai,kρk +Bρi,kρm +Bqi,kqm, ρi,k ∈ Rni . (9)

Note that in (9) and for the remainder of the article the
subscripts for A, Bρ, and Bq are slightly different from
what was used in (5) with σ(k) and s(k). Since both σ(k)
and s(k) are dependent on k, we let subscript k combine
their effects, and add an subscript i ∈ I = {1, 2, · · · , N}
to denote the section index. We denote the dimension of the
overlapping region between section i and section j as ni,j .
For the freeway network, the neighborhood of section i is
defined as

Ni =

 {i+ 1} if i = 1
{i− 1, i+ 1} if i 6= 1, and i 6= N
{i− 1} if i = N.

For j ∈ Ni, define matrix operator Îi,j as

Îi,j =

{ (
Ini,j

0ni,j ,ni−ni,j

)
if j = i− 1(

0ni,j ,ni−ni,j Ini,j

)
if j = i+ 1, (10)

where Ini,j
∈ Rni,j is the identity matrix, and the operation

Îi,jρi,k selects the part of agent i’s state that overlaps with
agent j.

Formally the forecast and analysis steps of the DLKCF
for the ith agent are written as{

ρi,k|k−1 = Ai,k−1ρi,k−1|k−1

Γi,k|k−1 = Ai,k−1Γi,k−1|k−1A
T
i,k−1 +Qi,k−1,

(11)
ρi,k|k = ρi,k|k−1 +Ki,k

(
zi,k −Hi,kρi,k|k−1

)
+
∑
j∈Ni

Cji,k

(
Îj,iρj,k|k−1 − Îi,jρi,k|k−1

)
Γi,k|k = Γi,k|k−1 −Ki,kHi,kΓi,k|k−1

Ki,k = Γi,k|k−1H
T
i,k(Ri,k +Hi,kΓi,k|k−1H

T
i,k)−1,

(12)

where Cji,k is the consensus gain of agent i associated with
neighbor j at time step k, and for simplicity we drop the
last two terms in (9) independent of the state. Our choice for
the consensus gain for the observable modes is inspired by

[28], and the consensus term is dropped for the unobservable
modes. Hence the choice of the consensus gain reads:

Cji,k =

{
γk−1Fi,kGi,k Î

T
i,j σ(k) ∈ {1, 2, 3}

0 σ(k) ∈ {4, 5}, (13)

where

Fi,k =I −Ki,kHi,k,

Gi,k =Ai,k−1Γi,k−1|k−1A
T
i,k−1 +Qi,k−1 (14)

+ Γi,k|k−1Si,kΓi,k|k−1,

where Si,k = HT
i,kR

−1
i,kHi,k is the information matrix, and

γk is a sufficiently small scaling factor, whose explicit form
will be given in Section IV to ensure stability of the filter.

IV. STABILITY AND PERFORMANCE ANALYSIS
OF THE DLKCF FOR TRAFFIC ESTIMATION

In this section, we show that for a network where all
sections switch among observable modes, the error dynamics
is globally asymptotically stable (GAS). For an unobservable
section, we show that despite the lack of knowledge on the
state equations and boundary conditions, the estimate of the
state is physically meaningful.

A. Asymptotic Stability of Error Dynamics in Observable
Modes

We define the prior and posterior estimation errors for
section i as ηi,k|k−1 = ρi,k|k−1 − ρi,k and ηi,k|k = ρi,k|k −
ρi,k, and define the neighbor disagreement as

uji,k = Îj,iηj,k|k−1 − Îi,jηi,k|k−1. (15)

The global estimation error ηk|k is reconstructed by ηk|k =
col(η1,k|k, · · · , ηN,k|k), and the estimation error in section i
evolves as follows (without model and measurement noise):

ηi,k|k = Fi,kAi,k−1ηi,k−1|k−1 +
∑
j∈Ni

Cji,ku
j
i,k. (16)

We choose a common Lyapunov function which reads

V (k, ηk|k) =

N∑
i=1

ηTi,k|kΓ−1
i,k|kηi,k|k, (17)

and compute its one-step change δV (k, ηk|k) by applying
(16) as follows:

δV (k, ηk|k) = V (k + 1, ηk+1|k+1)− V (k, ηk|k) =∑N
i=1 η

T
i,k|k

(
ATi,kF

T
i,k+1Γ−1

i,k+1|k+1Fi,k+1Ai,k − Γ−1
i,k|k

)
×

ηi,k|k

+2
∑N
i=1

(
ηTi,k+1|kF

T
i,k+1Γ−1

i,k+1|k+1

∑
j∈Ni

Cji,k+1u
j
i,k+1

)
+
∑N
i=1

(∑
j∈Ni

Cji,k+1u
j
i,k+1

)T
Γ−1
i,k+1|k+1×(∑

j∈Ni
Cji,k+1u

j
i,k+1

)
.

(18)

The common Lyapunov function (17) is radically un-
bounded by the following lemma.

Lemma 1 (Boundedness of the estimation error covariance
matrix in the KF for an arbitrary switching sequence in
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observable modes [32]). If the hybrid system (9) switches
among observable modes for all i and k, the error covariance
matrix Γi,k|k given in (12) is bounded for all i and k,
independent of the switching sequence.

The next lemma provides a result on the Laplacian of an
undirected graph, which is important for treatment of the
consensus term in the stability proof of the DLKCF.

Lemma 2 (Quadratic property of the Laplacian of an
undirected graph [33], [34]). The following holds for the
n-dimensional Laplacian L̄ of any undirected graph G =
(V, E) with N vertices, irrespective of its connectivity:

N∑
i=1

∑
j∈Ni

ξi(ξj − ξi) = −1

2

∑
(i,j)∈E

‖ξj − ξi‖2 = −ξT L̄ξ,

where ξ = col(ξ1, · · · , ξN ) with ξi ∈ Rn the element
corresponding to the ith vertex of V , and L̄ = In ⊗ L with
L the graph Laplacian of G.

The GAS result for the DLKCF in observable modes is
presented next.

Proposition 1 (Stability of the DLKCF for observable
modes). Consider the DLKCF in (11) and (12) with the
consensus gain in (13)–(14). Suppose Qi,k is positive definite
for all i and k, and all sections switch among the observable
modes of the SMM. Then, the error dynamics of ηk|k is
GAS for sufficiently small γk, with consensus reached on
the overlapping regions between neighbors.

Proof. We show δV (k, ηk|k) is negative when ηk|k 6= 0. To
determine the sign of δV (k, ηk|k), we first analyse the signs
of the three terms in (18) independently and then combine
them together.
Step 1. Negative definiteness of the first term in δV

The proof for the first term follows closely from [28] with
minor changes. Here we only show the result and introduce
the matrices needed in this article. Each element in the first
term in δV can be equivalently written as

ηTi,k|k

(
ATi,kF

T
i,k+1Γ−1

i,k+1|k+1Fi,k+1Ai,k − Γ−1
i,k|k

)
ηi,k|k

=− ηTi,k|kΛi,kηi,k|k = −ηTk|kΛkηk|k,

where Λk = diag(Λ1,k, · · · ,Λn,k). It can be shown that

Λi,k =Γ−1
i,k|k −A

T
i,k(Ai,kΓi,k|kA

T
i,k +Wk)−1Ai,k > 0,

Wk =Qi,k + Γi,k+1|kSiΓi,k+1|k > 0,

by assuming Qi,k > 0. Consequently, the first term is
negative definite.
Step 2. Negative semidefiniteness of the second term in
δV

Using the quadratic property of the Laplacian in Lemma
2, we can render the second term of δV negative semidefinite
by the consensus gain chosen in (13)–(14). We introduce a
new undirected graph Ĝ = (V̂, Ê) representing the topology
of the overlapping regions with V̂k = {ξ̂î,k : î ∈ Î} for

Î = {1, · · · , 2N − 2}, and

ξ̂î,k =

{
Îi,jηi,k|k−1 with i = î+1

2 , j = i+ 1, if î odd
Îj,iηj,k|k−1 with i = î

2 , j = i+ 1, if î even,

Nî =

{
{̂i+ 1} if î odd
{̂i− 1} if î even.

Suppose ni,j = n̂ for all i ∈ I and for all j ∈ Ni, then
ξ̂î,k ∈ Rn̂ for all î. Let L̂ be the n̂ dimensional Laplacian of
Ĝ. Denote ξ̂k = col(ξ̂1,k, · · · , ξ̂2N−2,k) = Ĥηk|k−1, where
Ĥ = Diag(Ĥ1, · · · , Ĥn) with the ith block on the diagonal

Ĥi =


Îi,i+1 if i = 1

Îi,i−1 if i = n(
ÎTi,i−1 Î

T
i,i+1

)T
otherwise,

and let Ak = diag(A1,k, · · · , AN,k). Then by substituting
the consensus gain (13) and the neighbor disagreement (15)
into the second term of δV , and rewriting it in terms of the
new graph Ĝ, we obtain:

2

N∑
i=1

ηTi,k+1|kF
T
i,k+1Γ−1

i,k+1|k+1

∑
j∈Ni

Cji,k+1u
j
i,k+1


=− 2γkη

T
k|kA

T
k Ĥ

T L̂ĤAkηk|k ≤ 0.

Thus it is concluded that the second term in δV is negative
semidefinite.
Step 3. Positive definiteness of the third term in δV

Given the choice of consensus gain in (13)–(14), the third
term in δV can be written as

N∑
i=1

∑
j∈Ni

Cji,k+1u
j
i,k+1

T

Γ−1
i,k+1|k+1

∑
j∈Ni

Cji,k+1u
j
i,k+1


= γ2

k

N∑
i=1

∑
j∈Ni

ÎTi,ju
j
i,k+1

T

GTi,k+1

∑
j∈Ni

ÎTi,ju
j
i,k+1

 .

We columnize uji,k over all neighbors j ∈ Ni within each
section i and over all sections i ∈ I, and denote it as uk:

uk = coli∈I
(

colj∈Ni

(
uji,k

))
= L̃ηk|k−1 = L̃Ak−1ηk−1|k−1,

where L̃ can be defined as a partitioned matrix with the
(̂i, i)th block L̃î,i given by

L̃î,i =



−Îi,i+1 if î is odd, and i = 1
2 (̂i+ 1)

Îi,i−1 if î is odd, and i = 1
2 (̂i+ 1) + 1

Îi,i+1 if î is even, and i = î
2

−Îi,i−1 if î is even, and i = î
2 + 1

0 otherwise,

where î ∈ Î and i ∈ I. Denoting Gk =
diag(G1,k, · · · , GN,k), the third term in δV is equivalent to

γ2
k

N∑
i=1

∑
j∈Ni

ÎTi,ju
j
i,k+1

T

GTi,k+1

∑
j∈Ni

ÎTi,ju
j
i,k+1


=γ2

kη
T
k|kA

T
k L̃

T ĤGk+1Ĥ
T L̃Akηk|k > 0,
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and it is positive definite since Gk+1 is positive definite.
Step 4. The negative definiteness of δV (k, ηk|k)

Provided Steps 1, 2, and 3, δV can be written as

δV (k, ηk|k) =− ηTk|k
(

Λk − γ2
kA

T
k L̃

T ĤGk+1Ĥ
T L̃Ak

)
ηk|k

− 2γkη
T
k|kA

T
k Ĥ

T L̂ĤAkηk|k.

Therefore by choosing γk sufficiently small we can render
δV (k, ηk|k) < 0 for all k ≥ 0 and for all ηk|k 6= 0. To be
more precise, we need γk < γ∗k where γ∗k is defined by

γ∗k =

 λmin (Λk)

λmax

(
ATk L̃

T ĤGk+1ĤT L̃Ak

)
 1

2

,

where λmin and λmax are the minimum and maximum
eigenvalues of a matrix, respectively. Thus we conclude that
δV (k, ηk|k) < 0 for all k ≥ 0 and for all ηk|k 6= 0, and
therefore ηk|k = 0 is GAS for the error dynamics of the
DLKCF. Consequently, all estimators reach a consensus on
the overlapping regions between neighbors.

B. Ultimate Boundedness of Estimates in Unobservable
Modes

Challenges for estimating the unobservable sections stem
from the dependence of the system dynamics of the SMM on
the state to be estimated (i.e. mode, shock location and shock
velocity), thus non-observability of the system will lead to
unknown system dynamics. Moreover, with only upstream
and downstream measurements, it can be shown that the
unobservable modes are also undetectable. In this section we
show that the estimates of all the cells in an unobservable
section are ultimately bounded inside [−ε, ρm+ε] for all ε >
0, provided that the upstream and downstream measurements
are available. This property ensures that the estimates given
by the DLKCF for unobservable modes are always physically
meaningful to within ε.

First we present a lemma stating the boundedness of
Kalman gain Kk, which is necessary for the boundedness
of the estimates.

Lemma 3 (Boundedness of the Kalman gain for an unde-
tectable system [35]). If the system (7)-(8) is undetectable,
and all the undetectable modes are of unit modulus, then Kk

is uniformly bounded from above for all k ≥ 0.

The Kalman observability canonical form of (5)-(6) shows
that the eigenvalues of the observable subspace (i.e. the
boundary cells) are one, and the unobservable subsystem has
eigenvalues less than or equal to one (with the eigenvalue
one corresponding to the shock location), which satisfies the
assumptions of Lemma 3. We now establish the ultimate
boundedness of the estimates, and for the remainder of
Section IV-B the section index i is dropped for notational
simplicity.

Proposition 2 (Ultimate boundedness of the DLKCF for an
unobservable section). Consider an unobservable section in
a road network with dimension n. For all ε > 0, a finite

time T (ε) exists such that ρlk|k ∈ [−ε, ρm + ε] for all k >
T (ε) and for all l ∈ {1, · · · , n}, independent of the initial
estimate.

Proof. The proof is by induction. For all ε > 0, since the
upstream cell is in the observable subspace, we have ρ1

k|k →
ρ1
k, where ρ1

k ≥ 0. Hence a finite time T1(ε) exists such that
ρ1
k|k > −

ε
n for all k > T1(ε).

Suppose ρl−1
k|k > −

(l−1)ε
n . For all l ∈ {2, · · · , n}, if ρlk|k <

− (l−1)ε
n , we obtain from (4) that

q
(
ρl−1
k|k , ρ

l
k|k

)
= vmρ

l−1
k|k > −vm

(l − 1)ε

n
, (19)

q
(
ρlk|k, ρ

l+1
k|k

)
≤ vmρlk|k. (20)

Combining (19) and (20) with (3), and adding an information
update term from the analysis step yields

ρlk+1|k+1 > ρlk|k +
vm∆t

∆x

∣∣∣∣ρlk|k +
(l − 1)ε

n

∣∣∣∣− c ‖ ηok|k ‖∞,
where c > 0 is a finite scalar whose existence is guaran-
teed by the boundedness of Kalman gain, and we denote

ηok|k =
(
η1
k|k, η

n
k|k

)T
as the posterior estimation error of the

upstream and downstream cells, which form an observable
subspace, hence ‖ ηok|k ‖∞→ 0 as k → ∞. Thus a class
K function α(·) and a continuous positive definite function
W (| · |) on R exist such that

ρlk+1|k+1 − ρ
l
k|k >W

(∣∣∣∣ρlk|k +
(l − 1)ε

n

∣∣∣∣) ,
∀
∣∣∣∣ρlk|k +

(l − 1)ε

n

∣∣∣∣ ≥ α(‖ ηok|k ‖∞) ,
which indicates that the one-step change of the estimates is
always positive, and large enough so that a finite time Tl(ε)
exists such that ρlk|k > − lεn for all k > Tl(ε) [36]. By

induction we conclude that if ρn−1
k|k > − (n−1)ε

n , a finite time
Tn(ε) exists such that ρnk|k > −ε for all k > Tn(ε). Letting
T (ε) = maxl{Tl(ε)} = Tn(ε), we obtain ρlk|k > −ε for all
k > T (ε) and l ∈ {1, 2, · · · , n}. This proves the ultimate
lower bound of the estimates.

The proof for an ultimate upper bound is similar, with a
variation that the induction is conducted from n to 1.

The essence of ultimate boundedness is that it rules out
the possibility that the estimate of any single cell in the
unobservable section is destabilized by the analysis step, thus
it is not necessary to drop the output feedback as in [7] for the
Luenberger observer. In future work we will show that under
most cases the error sum over the cells in the unobservable
section is converging.

V. NUMERICAL EXPERIMENTS

In this section, we assess the performance of the DLKCF
under different scenarios. We first show the estimation results
of the DLKCF for a Riemann problem [37], and validate
the GAS of error dynamics under observable modes when
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Fig. 1. a) Freeway network setup and the communication topology between
estimation agents (capital A in circles) and sensors (red dots), with blue
lines standing for connections between agents, and red lines representing
connections between agent and sensors. The network is simplified into a
one-dimensional straight line, discretized by cells (small rectangles) and
localized by sections (blocks). Sensor locations are represented by shaded
cells; b) True solution of a Riemann problem (expansion fan).

properly accounting for the modeling errors on the bound-
aries. Then under a more complex experiment, we evaluate
the performance of the consensus filter by comparing the
disagreements on estimates among neighbors with and with-
out a consensus term. The computation complexity of the
DLKCF at each step is dominated by O

(
n3
i + n2

i n̂
)

for the
ith agent1, which is much smaller than O

(
n3
)
, the cost for

a centralized KF, when ni � n.

A. GAS under Observable Modes

We first present an experiment where the initial condition
of the entire network is piecewise constant, and the true
solution is approximated using the Godunov scheme (3). We
show that the negative effect of assigning constant boundary
dynamics in our SMM can be attenuated by imposing larger
modeling errors on the corresponding boundaries.

The network setup and the communication topology is
illustrated in Fig. 1a. The network is a stretch of highway
divided into 100 cells and 5 sections. For the DLKCF,
each section has 28 cells, with the left and right 10 cells
overlapping with its left and right neighbors, respectively.

We apply normalized parameters for the triangular funda-
mental diagram, and analyse the behaviour of the DLKCF
when the true solution is an expansion fan (shown in Fig.
1b). Parameter values which are not detailed here can be
found in the supplementary source code.

The estimation of the expansion fan given by the DLKCF
is illustrated in Fig. 2a. Note that in order to validate the GAS
of estimation error, measurement noise is turned off for this
experiment to check the convergence of the estimation error
(in mean) to zero. The evolution of the common Lyapunov
function (17) is plotted in Fig. 2b, with the solid line denoting
the common Lyapunov function for the estimate in Fig.
2a, and with the dashed line denoting an estimate when
the standard deviation of model noise is increased to 0.3
at the boundary cells with constant dynamics (compared to
0.03 at the interior cells). It is shown that by increasing the

1It is assumed that the Rayleigh Quotient Iteration is applied for rapid
convergence when computing eigenvalues in the consensus term. Also note
that the sparsity of the matrices Ak , L̃ and Ĥ is not considered currently.
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Fig. 3. a) True solution defined as a combination of an expansion fan
and a shock propagating upstream, with a sinusoidal boundary condition;
b) State estimation by the DLKCF; c) Disagreement on estimates uk for
the DLKCF with and without the consensus term.

standard deviation of model noise on the boundary we yield
a monotonically decreasing common Lyapunov function.

B. Effect of the Consensus Filter

In this section, we show the effect of the DLKCF on
reducing the disagreement of estimates on the overlapping
cells given by adjacent agents. We compare the performances
of the DLKCF with and without a consensus term. The true
solution is set to be a combination of an expansion fan and
a shock propagating upstream, with a sinusoidal upstream
boundary condition (illustrated in Fig. 3a.)

Disagreement between estimates provided by different
agents can stem from various aspects. For this experiment
we generate disagreement by imposing the combining effect
of the low quality sensors, the low quality agents, and
disagreement on model parameters used by different agents
in estimation. Starting from the downstream sensor of the
first section, we put a low-quality sensor with a large
measurement error once every three sensors, and we assume
that agents indexed by even numbers cannot recognize the
low-quality sensors they are connected to. We also apply
different values of ρm, ρc, and vm in the estimator for agents
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indexed by odd and even numbers. The disagreement at

time k is computed by uk = 1
N−1

∑N−1
i=1

‖ui+1
i,k ‖

2
2

ni,i+1
with ui+1

i,k

defined in (15). Fig. 3b shows the estimation given by the
DLKCF, where the large estimation errors at regions around
cell 80 are generated because the corresponding section is
processing low-quality sensor data whose large errors are
not recognized. Fig. 3c compares the disagreements δk of the
DLKCF with and without a consensus term. It is shown that
the disagreement can always be reduced by the consensus
term in the DLKCF. Moreover, in general the effect of the
consensus term is more apparent if the disagreement before
applying a consensus term is relatively large.

VI. CONCLUSIONS
In this article a distributed local Kalman consensus filter-

ing algorithm is designed for large-scale multi-agent traffic
estimation. The DLKCF is applied on the switching mode
model to monitor traffic on a road network partitioned into
local sections, with overlapping regions between neighbors
introduced to allow for information exchange on measure-
ments and estimates. We prove that the error dynamics
of the DLKCF is globally asymptotically stable when all
sections switch among observable modes of the SMM. For
an unobservable section, we show that the estimates are
ultimately bounded, thus ensuring physically meaningful
estimates. Numerical experiments verify the proved results,
and illustrates the effect of the consensus filter on promoting
agreement on the estimates among different agents.
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