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Scaling the Kalman Filter for Large-Scale
Traffic Estimation

Ye Sun, Student Member, IEEE, and Daniel B. Work , Member, IEEE

Abstract—This work introduces a scalable filtering algorithm for
multiagent traffic estimation. Large-scale networks are spatially
partitioned into overlapping road sections. The traffic dynamics of
each section is given by the switching mode model using a conserva-
tion principle, and the traffic state in each section is estimated by
a local agent. In the proposed filter, a consensus term is applied to
promote interagent agreement on overlapping sections. The new
filter, termed as (spatially) distributed local Kalman consensus filter
(DLKCF), is shown to maintain globally asymptotically stable mean
error dynamics when all sections switch among observable modes.
When a section is unobservable, we show that the mean estimate
of each state variable in the section is ultimately bounded, which is
achieved by exploring the interaction between the properties of the
traffic model and the measurement feedback of the filter. Based on
the above results, the boundedness of the mean estimation error of
the DLKCF under switching sequences with observable and unob-
servable modes is established to address the overall performance
of the filter. Numerical experiments show the ability of the DLKCF
to promote consensus, increase estimation accuracy compared to
a local filter, and reduce the computational load compared to a
centralized approach.

Index Terms—Consensus filter, distributed Kalman filter (KF),
transportation networks.

I. INTRODUCTION

D ESPITE important advances in sensing and computation,
real-time traffic estimation problems are still open to a

number of critical issues including:
1) the entire state of the transportation network is too large

(usually of order at least 105) for the estimators to scale
in real time;

2) few results are available that provide a theoretical analysis
of the performance of traffic estimation algorithms; and

3) the nonobservability of the traffic model is inevitable due
to the existence of shocks and the sparsity of sensor mea-
surements.

This work aims at designing a scalable distributed traffic esti-
mation algorithm to address issues 1) and 2) with specific care of
issue 3). The large-scale network is partitioned into overlapping
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sections, and the traffic density on each section evolves accord-
ing to a conservation law traffic model. The density is estimated
by a cheap commodity computer (referred hereafter as an agent)
associated with each section. However, without coordination
among agents, estimates provided by different agents inevitably
disagree on the shared boundaries due to model and measure-
ment errors. This potentially leads to problems where applica-
tions computed based on traffic estimates (e.g., navigation and
traffic control) produce disparate results depending on which
agents provide the estimates. To promote agreement between
neighboring agents on their shared states, each agent shares
sensor data and estimates with its neighbors, and a consensus
term is introduced. The filter trades global optimality in favor
of scalability both in terms of communication and computation,
thus the proposed filter is suboptimal. Regardless, the proposed
filter has performance guarantees when traffic state is observable
or unobservable, as well as when the system switches between
observable and unobservable modes. Specifically, in unobserv-
able scenarios, the physical properties of the traffic model (i.e.,
mass conservation and a flow-density relationship) are com-
bined with the measurement feedback in the correction step of
the filter to analyse the theoretical performance of the filter.

Research on collaborative information processing is driven
by the broad applications of multiagent systems. A complete
communication network with all-to-all links is required in the
decentralized Kalman filter [1], or relaxed in the channel filter
[2] for the fixed tree communication topology. Recently, the
application of consensus strategies in distributed estimation is
widely studied to promote agreement on estimates among agents
[3]–[5], and/or to reconstruct sensor data not directly accessible
through purely sharing measurements with neighbors [6]–[8],
thus approximating the central estimator. To ensure the stability
of the estimators, each local system is assumed to be observable
(or detectable) in [3]–[5], or the full system observability is
only achieved given all the sensor data in the network [6]–[8]. A
common feature of [1]–[8] is that all agents estimate the same
full state of dimension n, which may not scale in large-scale
traffic networks since the complexity of the Kalman filter (KF)
is O(n3). Moreover, the nonobservability of the traffic model
cannot be resolved even if all measurements throughout the
network are fused.

There are also notable works on scalable distributed esti-
mation algorithms, where each agent estimates (or performs
computation on) a small subset of the full state. Specifically
in [9] and [10], the large-scale state vector is partitioned
into overlapping local states of dimension nl � n, and the
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computation task is distributed across local agents. In [9], the
cross correlation of neighboring agents is incorporated in the
estimation error covariance at the expense of requiring a O(n4

l )
complexity at each local agent. However, the stability of the
proposed estimator is not analyzed. In [10], a consensus term is
designed to help each local agent reconstruct the estimates of
other local states, and is analyzed only when all local filters are
detectable and have achieved a steady state. Other relevant treat-
ments include moving-horizon estimation [11] and distributed
Kriged Kalman filtering [12]. However, they either require ex-
tensive communication, or rely on the statistics of random fields
that are not directly applicable for traffic dynamics. Moreover,
the estimators [11], [12] are not analyzed when the model is
unobservable.

A number of sequential estimation algorithms has been
applied for traffic monitoring. Due to the nonlinearity and non-
differentiability [13] of the nonlinear hyperbolic conservation
law used to describe traffic, few results exist that rigorously
prove the performance of the proposed estimators. In [14], the
discretized conservation law is transformed to a switched linear
system known as the switching mode model (SMM), and the
observability of each mode is analyzed. The properties of the
error dynamics of a Luenberger observer in various modes of
the SMM is given in [15], which inspires this work and is ex-
tended in [16], [17]. A recent overview of sequential estimation
for scalar traffic models is given in [13]. Another interesting
line of work focuses on designing estimators and associated
numerical schemes directly for conservation laws, see [18] and
references therein.

The main contribution of this paper is the design and anal-
ysis of a (spatially) distributed local Kalman consensus fil-
ter (DLKCF) (see Section III-B), with provable performance
and neighbor consistency. The DLKCF is proposed to estimate
traffic densities on large freeways, with the system dynamics
described by the SMM (see Section II). We analyze the per-
formance of the DLKCF under various observability scenarios,
yielding three main results.

1) The dynamics of the mean estimation error is globally
asymptotically stable (GAS) when all sections switch
among observable modes of the SMM (see Section IV-A);

2) When a section switches among unobservable modes, the
mean estimate is ultimately bounded inside a physically
meaningful interval (see Section IV-B).

3) The mean estimation error is upper bounded for sections
that switch among observable and unobservable modes,
provided a minimum residence time in the observable
mode(s) is satisfied (see Section IV-C).

The above results focus on the mean estimate and are derived
based on the stability (or bounded partitions) of the estimation
error covariances (given in the lemmas proceeding the proposi-
tions). Numerical results (see Section V) show the effect of the
consensus term on reducing disagreement between estimates
given by neighboring agents (with ˜50% reduction), and that the
DLKCF outperforms a purely local KF (LKF) on estimation
accuracy.

Compared to our preliminary work [19], the main extension is
to prove the overall performance of the DLKCF under switches
among observable and unobservable modes. The DLKCF is also

modified to be scalable both in the sense of computation (i.e.,
with cubic computational complexity in the local dimension)
and communication (i.e., each agent only communicates with
its one-hop neighbors, and the global communication topology
is not needed).

II. SCALAR MACROSCOPIC TRAFFIC MODELING

A. Cell Transmission Model

The classical conservation law describing the evolution of
traffic density ρ(t, x) on a road at location x and time t is
the Lighthill–Whitham–Richards partial differential equation
(LWR PDE) [20], [21]

∂tρ + ∂xF(ρ) = 0. (1)

The function F(ρ) = ρv(ρ) is called the flux function, where
v(ρ) is an empirical velocity function used to close the model.
The triangular flux function [22] used in this paper is given by

F(ρ) =

{
ρvm, if ρ ∈ [0, �c ]

w(�m − ρ), if ρ ∈ [�c , �m ]
(2)

where w = �c vm

�m −�c
, vm denotes the freeflow speed and �m de-

notes the maximum density. The variable �c is the critical density
at which the maximum flux is realized. For the triangular funda-
mental diagram, the flux function has different slopes in freeflow
(0 < ρ ≤ �c ) and congestion (�c < ρ ≤ �m ). In freeflow, the
slope is vm , and in congestion, it is w.

The cell transmission model (CTM) [22] is a discretization of
(1) and (2) using a Godunov scheme. Consider a discretization
grid defined by a space step Δx > 0 and a time step Δt > 0. Let
l index the cell defined by x ∈ [lΔx, (l + 1)Δx), and denote as
ρl

k the density at time kΔt in cell l, where k ∈ N and l ∈ N+ .
The discretized model (1) becomes

ρl
k+1 = ρl

k +
Δt

Δx

(
f(ρl−1

k , ρl
k ) − f(ρl

k , ρl+1
k )
)

(3)

where f(ρl−1
k , ρl

k ) is the flux between cell l − 1 and l

f(ρl−1
k , ρl

k ) = min{vm ρl−1
k , w(�m − ρl

k ), qm} (4)

where qm is the maximum flow given by qm = vm �c . Note
that if the Courant–Friedrichs–Lewy condition is satisfied, the
solution of the CTM converges in L1 to the weak solution of
the LWR PDE as Δx → 0.

B. Switching Mode Model

Consider a freeway section with n cells with the state variable
at time step k ∈ N defined as ρk =

(
ρ1

k , . . . , ρn
k

)T
. The SMM

[14] is derived from (1) under the main assumption that there is
at most one transition between freeflow and congestion in each
section. From an estimation point of view, the SMM also as-
sumes the road network is partitioned into sections with sensors
located in the first and last cell, such that the densities ρ1

k and ρn
k

are directly measured. Finally, the SMM assumes the boundary
density measurements are sufficiently accurate to distinguish
between four of the five modes described next, but they cannot
determine the precise location or direction of a shock.
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Given the assumption of at most one transition in a section,
the SMM may switch between the following five modes.

1) Freeflow–freeflow: (FF), in which all cells in the section
are in freeflow.

2) Congestion–congestion: (CC), in which all cells in the
section are in congestion.

3) Congestion–freeflow: (CF), in which the cells in the up-
stream part of the section (i.e., the cells in the upstream
side of the transition between freeflow and congestion
based on the direction of travel) are congested, and the
cells in the downstream part are in freeflow.

4) Freeflow–congestion 1: (FC1), in which the upstream part
of the section is in freeflow, the downstream part is in con-
gestion, and the shock has positive velocity or is stationary.

5) Freeflow–congestion 2: (FC2), in which the upstream part
of the section is in freeflow, the downstream part is in
congestion, and the shock has negative velocity.

Note the boundary sensors cannot distinguish between modes
4) and 5).

In each mode stated above, the traffic state ρk evolves with
linear dynamics, forming a hybrid system

ρk+1 = A
s(k)
σ (k)ρk + B

ρ,s(k)
σ (k) 1�m + B

q,s(k)
σ (k) 1qm (5)

where 1 is the vector of all ones, and A
s(k)
σ (k) , B

ρ,s(k)
σ (k) , B

q,s(k)
σ (k) ∈

Rn×n are to be defined precisely later. The index σ(k) ∈ S,
whereS = {FF, CC, CF, FC1, FC2} is the set of the five modes,
and s(k) ∈ {1, . . . , n − 1} is the index introduced to precisely
locate the transition between freeflow and congestion when it
exists. We say s(k) = l when the transition occurs between cell
l and l + 1.

For all p ∈ {1, 2, . . . , n − 1}, define Θp ∈ Rp×p and Δp ∈
Rp×p by their (i, j)th entries as

Θp(i, j) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1 − vm Δt

Δx
, if i = j

vm Δt

Δx
, if i = j + 1

0 otherwise

Δp(i, j) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1 − wΔt

Δx
, if i = j

wΔt

Δx
, if i = j − 1

0 otherwise.

In the FF mode, the mode index σ = FF, and the transition
does not exist. The explicit forms of As

σ , Bρ,s
σ , and Bq,s

σ are

AFF =

⎛
⎜⎜⎝

1 01,n−1(
vm Δt
Δx

0n−2,1

)
Θn−1

⎞
⎟⎟⎠ , Bρ

FF = Bq
FF = 0n,n

where 0n,m ∈ Rn×m , which is zero everywhere. In the CC
mode, the transition also does not exist, and

ACC =

⎛
⎜⎝ Δn−1

(
0n−2,1

wΔt
Δx

)

01,n−1 1

⎞
⎟⎠ , Bρ

CC = Bq
CC = 0n,n .

The FF (resp. CC) mode is observable given density measure-
ment of the downstream (resp. upstream) cell.

In the CF mode, the mode index σ = CF, and

As
CF =

(
Δs 0s,n−s

0n−s,s Θn−s

)
, Bρ,s

CF = 0n,n +
wΔt

Δx
Es,s

Bq,s
CF = 0n,n − Δt

Δx
Es,s+1 +

Δt

Δx
Es+1,s+1

where Ei,j are matrices that are zero everywhere but the
(i, j)th entry, which is one. Note that s may take any value
in {1, . . . , n − 1}, depending on the location of the center of
the expansion fan connecting the congested and freeflow states.
The CF mode is observable given density measurements of the
upstream and downstream cells.

In the two FC modes, define Θ̂p and Δ̂p as follows:

Θ̂p =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

⎛
⎜⎜⎜⎝

1 01,p⎛
⎝ vm Δt

Δx
0p−1,1

⎞
⎠ Θp

⎞
⎟⎟⎟⎠ if p ∈ {1, . . . , n − 1}

1 if p = 0

and

Δ̂p =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

⎛
⎜⎜⎜⎝

Δp

⎛
⎝01,p−1

wΔt

Δx

⎞
⎠

01,p 1

⎞
⎟⎟⎟⎠ if p ∈ {1, . . . , n − 1},

1 if p = 0.

When σ = FC1 and s ∈ {1, . . . , n − 2}, or σ = FC2 and s ∈
{2, . . . , n − 1}, the matrices As

σ , Bρ,s
σ , and Bq,s

σ read

As
σ =

⎛
⎜⎜⎜⎜⎜⎝

Θ̂s̃−1 0s̃,1 0s̃,s̄(
01,s̃−1

vm Δt

Δx

)
1
(

wΔt

Δx
01,s̄−1

)

0s̄,s̃ 0s̄,1 Δ̂s̄−1

⎞
⎟⎟⎟⎟⎟⎠

Bρ,s
σ =

⎛
⎜⎜⎜⎝

0s̃+1,s̃+1

⎛
⎝ 0s̃,1 0s̃,s̄−1

−wΔt

Δx
01,s̄−1

⎞
⎠

0s̄,s̃+1 0s̄,s̄

⎞
⎟⎟⎟⎠ , Bq,s

σ = 0

where for σ = FC1 we have s̃ = s and s̄ = n − s − 1, and for
σ = FC2 we have s̃ = s − 1 and s̄ = n − s. When σ = FC1 and
s = n − 1, we have As

σ = diag(Θ̂n−2 , 1) (i.e., with Θ̂n−2 and 1
on the diagonal), and As

σ = diag(1, Δ̂n−2) when σ = FC2 and
s = 1. For both cases, Bρ,s

σ = Bq,s
σ = 0n,n . The two FC modes

are not observable unless density measurements of all the cells
are available, which does not occur in practical discretizations
of road networks.
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For consistency with the shock dynamics in (1), the allowed
mode transitions are enumerated in the graph constrained-SMM
[16]. The results in this paper hold for the graph constrained and
more general switching sequences.

The observability results of the SMM for individual modes
can be derived directly from computing the rank of the ob-
servability matrix for each mode given (5) and the observation
equation zk = Hkρk , where zk is the measurement, and Hk is
the appropriate output matrix. From a physical viewpoint, the
nonobservability of the SMM is due to the irreversibility of
the LWR PDE given the available sensor measurements in the
presence of shocks, and is not due to the discretization.

III. DISTRIBUTED LOCAL KALMAN CONSENSUS FILTER

A. Kalman Filter

In this section, we briefly review the KF and introduce no-
tations needed later in the proposed filter. Consider the linear
time-varying system

ρk+1 = Akρk + ωk , ρk ∈ Rn

zk = Hkρk + vk , zk ∈ Rm

where ωk ∼ N (0, Qk ) and vk ∼ N (0, Rk ) are the white Gaus-
sian model and measurement noise. Given the sensor data
up to time k denoted by Zk = {z0 , . . . , zk}, the prior esti-
mate and posterior estimate of the state can be expressed as
ρk |k−1 = E[ρk |Zk−1 ] and ρk |k = E[ρk |Zk ], respectively. Let
ηk |k−1 = ρk |k−1 − ρk and ηk |k = ρk |k − ρk denote the prior
and posterior estimation errors. The estimation error covariance
matrices associated with ρk |k−1 and ρk |k are given by Γk |k−1 =
E[ηk |k−1η

T
k |k−1 |Zk−1 ] and Γk |k = E[ηk |kηT

k |k |Zk ]. The KF se-
quentially computes ρk |k from ρk−1|k−1 as follows:

Prediction:

{
ρk |k−1 = Ak−1ρk−1|k−1

Γk |k−1 = Ak−1Γk−1|k−1A
T
k−1 + Qk−1

Correction:

⎧⎪⎨
⎪⎩

ρk |k = ρk |k−1 + Kk (zk − Hkρk |k−1)

Γk |k = Γk |k−1 − KkHkΓk |k−1

Kk = Γk |k−1H
T
k (Rk + HkΓk |k−1H

T
k )−1 .

B. Distributed Local Kalman Consensus Filter

In the DLKCF, the discretized freeway network is spatially
partitioned into N overlapping sections, with each section es-
timated by its own agent. Neighboring agents are allowed to
exchange measurements and state estimates to reduce disagree-
ment on shared cells. For the one-dimensional freeway, the set
of neighbors of section i is given by

Ni =

⎧⎪⎨
⎪⎩

{i + 1}, if i = 1

{i − 1, i + 1}, if i �= 1, and i �= N

{i − 1}, if i = N.

(6)

Hence, the Laplacian associated with the communication topol-
ogy is a tridiagonal matrix. The reader is referred to Fig. 1(d) for
an illustration of the partitioning of a roadway into overlapping
sections. In Fig. 1(d), the freeway is partitioned into seven sec-
tions with 28 cells and four sensors in each section, and there

are ten cells in each overlapping region between neighboring
sections. Except for the agents associated with the first and last
sections, each agent obtains direct measurements from the two
boundary sensors in the section. For the other two sensors, their
measurements are collected by the neighbors and sent to the
agent.

Given the SMM, the system dynamics of section i reads

ρi,k+1 = Ai,kρi,k + Bρ
i,k1�m + Bq

i,k1qm + ωi,k (7)

where Ai,k ∈ A = {AFF, ACC, As
σ |σ ∈ {CF, FC1, FC2}, s ∈

{1, 2, . . . , n − 1}}, ρi,k ∈ Rni and ωi,k ∼ N (0, Qi,k ) is the
white Gaussian model noise. Note that in (7) and for the re-
mainder of this paper subscript k for A, Bρ , and Bq combines
the effect of σ(k) and s(k), and subscript i ∈ {1, 2, . . . , N} is
the section index. The sensors are spatially distributed in the
road network and measure the traffic density at their locations.
Hence, if the pth sensor directly connected to agent i is located
at the lth cell in section i, the pth row of Hi

i,k is given by
(0, . . . , 0, 1, 0, . . . , 0), where the lth element is 1. The observa-
tion equation modeled at agent i that corresponds to the sensor
data obtained by the sensors directly connected to agent j is
given by

zi
j,k = Hi

j,kρi,k + vi
j,k , zi

j,k ∈ Rmi
j , j ∈ Ji = Ni

⋃
{i} (8)

where vi
j,k ∼ N (0, Ri

j,k ). Note that the sensor data zi
j,k for

j ∈ Ni is obtained through receiving measurements from agent
j. Consequently, through communication each agent possesses
columnized sensor data zi,k = colj∈Ji

(zi
j,k ) with noise vi,k =

colj∈Ji
(vi

j,k ) and a corresponding columnized output matrix
Hi,k = colj∈Ji

(Hi
j,k ), as well as a block diagonal measurement

error covariance Ri,k = diagj∈Ji
(Ri

j,k ).
For j ∈ Ni , denote the dimension of the overlap between

section i and j as ni,j , and define the projection Îi,j as

Îi,j =

{(
Ini , j

0ni , j ,n i −ni , j

)
, if j = i − 1(

0ni , j ,n i −ni , j
Ini , j

)
, if j = i + 1

(9)

where Ini , j
∈ Rni , j ×ni , j is the identity matrix. The quantity

Îi,j ρi,k selects the state of section i that overlaps with section j.
A consensus term is added to the correction step of the DLKCF
to promote agreement on estimates among neighboring agents
on their shared overlapping regions. The prediction and correc-
tion steps of the DLKCF for agent i reads⎧⎨
⎩

ρi,k |k−1 = Ai,k−1ρi,k−1|k−1

Γi,k |k−1 = Ai,k−1Γi,k−1|k−1A
T
i,k−1 + Qi,k−1

(10)

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ρi,k |k = ρi,k |k−1 + Ki,k

(
zi,k − Hi,kρi,k |k−1

)
+
∑

j∈Ni
Cj

i,k

(
Îj,iρj,k |k−1 − Îi,j ρi,k |k−1

)
Γi,k |k = Γi,k |k−1 − Ki,kHi,kΓi,k |k−1

Ki,k = Γi,k |k−1H
T
i,k (Ri,k + Hi,kΓi,k |k−1H

T
i,k )−1

(11)

where Cj
i,k is the consensus gain of agent i associated with

neighbor j at time step k, and for simplicity we drop the middle
two terms in (7), which are deterministic. Our choice of the
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consensus gain is given by

Cj
i,k =

{
γj

i,kΓi,k |k−1 Î
T
i,j σ(k) ∈ {FF, CC, CF}

0ni ,ni , j
σ(k) ∈ {FC1, FC2}

(12)

where γj
i,k = γi

j,k is a sufficiently small scaling factor, with

γj
i,k < γ∗

i,k for all i, j ∈ Ni and k. The explicit form of γ∗
i,k

will be given in Proposition 1 to ensure the unbiasedness of
the DLKCF. Under unobservable modes, the consensus term is
turned off. According to (12), the consensus term is designed
based on the belief of the current estimation accuracy and the
disparity among neighbors on the prior estimate, thus promoting
agreement on the state estimates. Although an arbitrary convex
combination of the estimates between neighboring agents may
considerably reduce disagreement, it may largely increase the
estimation error. Hence, the scaling factor needs to be carefully
designed to ensure stability of the DLKCF.

Remark 1: Given the consensus gain (12), one may derive
the optimal Kalman gain Ki,k through minimizing tr(Γi,k |k )
in a similar way as Theorem 1 in [4], thus yielding an opti-
mal DLKCF that incorporates the cross correlations among dif-
ferent agents in the estimation error covariance. However, the
optimal DLKCF has large communication requirements (i.e.,
the cross covariance Γj

i,k |k between section i and j needs to be
computed by agent i for all j ∈ {1, . . . , N}) that conflicts the
goal of designing a scalable traffic estimation algorithm. More-
over, when cross correlation terms are included, a section that
is always observable can have an unbounded error covariance
if the neighboring section is unobservable, as detailed in [23,
Appendix A]. Instead, the Kalman gain Ki,k in the DLKCF is
noninteracting, resulting in a suboptimal filter. Nevertheless, it
is shown in Proposition 1 that the GAS property of the error dy-
namics is not affected by neglecting the cross correlation terms.
The consistency of the DLKCF is validated through exploring
the average normalized (state) estimation error squared (NEES)
measure [24] in Section V.

Before proving the properties of the estimator, the following
assumptions are made for the DLKCF.

1) The state dimension ni ≥ 2 for all i since at least two
boundary cells exist in each freeway section.

2) The noise models satisfy q1I < Qi,k < q2I and r1I <
Ri,k < r2I for all i and k, where q1 , q2 , r1 , and r2 are
positive constants.

3) The scaling factor satisfies γj
i,k≤γ̂j

i,k=ĉ |Ni |−1 ‖Γi,k |k−1

ÎT
i,j u

j
i,k‖−1 in addition to γj

i,k < γ∗
i,k for all i, j ∈ Ni and

k.
Here |Ni | is the number of neighbors of agent i, and ĉ > 0 is

a constant predefined to set an upper bound for the magnitude
of the consensus term. Also note that the upper bound γ̂j

i,k can
be computed locally and online by each agent. In this case, the
2-norm1 of the consensus term is upper bounded as follows:∥∥∥∑j∈Ni

γj
i,kΓi,k |k−1 Î

T
i,j u

j
i,k

∥∥∥ ≤ ĉ, for all i and k. (13)

1For the remainder of this paper, we denote as ‖ · ‖ the 2-norm of a matrix or
a vector.

In practice, to run the DLKCF each agent needs to use Âi,k

(i.e., the estimated Ai,k obtained based on the state estimate and
sensor data) instead of Ai,k in (10). In observable modes, the
matrix Ai,k can be correctly reconstructed by the local agent.
However, in the FC modes Âi,k and Ai,k are unlikely to be the
same since the agent also needs to estimate the location and
direction of the shock. As a related note, using the constrained-
CTM [16] can improve the estimation accuracy of Ai,k . Also
note that all the theoretical performance analysis of the DLKCF
regarding the unobservable scenarios in Section IV hold even if
Âi,k and Ai,k differ.

IV. STABILITY AND PERFORMANCE ANALYSIS OF THE DLKCF
FOR TRAFFIC ESTIMATION

A. Asymptotic Stability of Mean Error in Observable Modes

Define the prior and posterior estimation error for section i as
ηi,k |k−1 = ρi,k |k−1 − ρi,k and ηi,k |k = ρi,k |k − ρi,k , and define
the neighbor disagreement on the shared estimates as

uj
i,k = Îj,iηj,k |k−1 − Îi,j ηi,k |k−1 . (14)

Note that this is a different notion of disagreement from
Corollary 1 of [4], which measures the disagreement of an
agent’s estimate with respect to the mean estimate over all the
agents. The global estimation error η1:N,k |k is constructed by
η1:N,k |k = col(η1,k |k , . . . , ηN ,k |k ). Let the bold font x denote
the mean of random vector x (i.e., x = E[x]). The mean of the
estimation error in section i evolves as follows:

ηi,k |k = Fi,kAi,k−1ηi,k−1|k−1 +
∑
j∈Ni

Cj
i,kuj

i,k (15)

where Fi,k = I − Ki,kHi,k . We choose a common Lyapunov
function candidate which reads

Vk =
N∑

i=1

ηT
i,k |kΓ−1

i,k |kηi,k |k (16)

and compute its one-step change ΔVk = Vk − Vk−1 by applying
(15) as follows:

ΔVk =
N∑

i=1

ηT
i,k−1|k−1

×
(
AT

i,k−1F
T
i,kΓ−1

i,k |kFi,kAi,k−1 − Γ−1
i,k−1|k−1

)
ηi,k−1|k−1

+ 2
N∑

i=1

⎛
⎝ηT

i,k |k−1F
T
i,kΓ−1

i,k |k
∑
j∈Ni

Cj
i,kuj

i,k

⎞
⎠

+
N∑

i=1

⎛
⎝∑

j∈Ni

Cj
i,kuj

i,k

⎞
⎠

T

Γ−1
i,k |k

⎛
⎝∑

j∈Ni

Cj
i,kuj

i,k

⎞
⎠ .

(17)

The next lemma is necessary to ensure that the common Lya-
punov function (16) is radially unbounded.

Lemma 1: Consider a freeway section (indexed by i) that
switches among observable modes for all k ≥ 0. If Γi,0|0 > 0,
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then Γ−1
i,k |k given in the DLKCF (10) and (11) satisfies

0 < c1
(
Γi,0|0
)
I ≤ Γ−1

i,k |k ≤ c2
(
Γi,0|0
)
I, for k ≥ 0 (18)

independent of the switching sequence. The bounds c1 (·) and
c2 (·) are functions of the initial estimation error covariance.

Proof: The bounds are constructed via Lemma 4.1 to
Lemma 4.4 in the arXiv version of this paper [23]. �

Proposition 1: Consider the DLKCF in (10) and (11) with
the consensus gain in (12). Suppose all sections switch among
the observable modes of the SMM. Then, the mean estimation
error η1:N,k |k = E[η1:N,k |k ] is GAS for sufficiently small γj

i,k .
Proof: When all sections switch among the observable

modes, Vk is radially unbounded since (18) holds for all i. We
show ΔVk in (17) is negative definite when η1:N,k−1|k−1 �= 0.

Step 1: Negative definiteness of the first term in (17).
The proof for the first term follows closely from [4] with

minor changes. Here, we only show the result and introduce the
matrices needed in this paper. Note that Ai,k is invertible for all
i and k in the SMM. Each element in the first term in (17) can
be equivalently written as (see Lemma 2 in [4] for a detailed
derivation)

ηT
i,k−1|k−1

(
AT

i,k−1F
T
i,kΓ−1

i,k |kFi,kAi,k−1

−Γ−1
i,k−1|k−1

)
ηi,k−1|k−1

= −ηT
i,k |k−1Λi,k−1ηi,k |k−1

with Λi,k defined as

Λi,k =
(
Ai,kΓi,k |kAT

i,k

)−1 − (Ai,kΓi,k |kAT
i,k + Wi,k

)−1

where Wi,k = Qi,k + Γi,k+1|kSi,k+1Γi,k+1|k > 0 and Si,k =
HT

i,kR−1
i,kHi,k . Due to the matrix inversion lemma

Γi,k |kAT
i,kΛi,kAi,kΓi,k |k

= Γi,k |k − Γi,k |kAT
i,k

(
Ai,kΓi,k |kAT

i,k + Wi,k

)−1
Ai,kΓi,k |k

=
(
Γ−1

i,k |k + AT
i,kW−1

i,k Ai,k

)−1
> 0

hence Λi,k > 0. Consequently, the first term in (17) is negative
definite.

Step 2: Negative semidefiniteness of the second term in (17).
Due to [4, Lemma 2(i)] we have Fi,k = Γi,k |kΓ−1

i,k |k−1 , hence
the consensus gain is equivalent to

Cj
i,k = γj

i,kΓi,k |k−1 Î
T
i,j = γj

i,kΓi,k |k
(
FT

i,k

)−1
ÎT
i,j .

Let î ∈ {1, . . . , N − 1} be the index of the overlapping regions,
and define η̂ î,k |k−1 = (ηT

î,k |k−1
ÎT
î,î+1

,ηT
î+1,k |k−1

ÎT
î+1,î

)T . The

second term in (17) can be written as

2
N∑

i=1

⎛
⎝ηT

i,k |k−1F
T
i,kΓ−1

i,k |k
∑
j∈Ni

Cj
i,kuj

i,k

⎞
⎠

= 2
N −1∑
î=1

γî+1
î,k

(
ηT

î,k |k−1 Î
T
î,î+1u

î+1
î,k

+ ηT
î+1,k |k−1 Î

T
î+1,î

uî
î+1,k

)

= −2
N −1∑
î=1

γî+1
î,k

η̂T
î,k |k−1L̂î η̂ î,k |k−1 ≤ 0

where

L̂î =

(
1 −1

−1 1

)
⊗ Inî , î + 1

and the last inequality holds due to the quadratic property of the
Laplacian matrix [25].

Step 3: Upper bound of the third term in (17).
Given the choice of consensus gain in (12), we have

N∑
i=1

⎛
⎝∑

j∈Ni

Cj
i,kuj

i,k

⎞
⎠

T

Γ−1
i,k |k

⎛
⎝∑

j∈Ni

Cj
i,kuj

i,k

⎞
⎠

=
N∑

i=1

⎛
⎝∑

j∈Ni

ÎT
i,j γ

j
i,kuj

i,k

⎞
⎠

T

Gi,k

⎛
⎝∑

j∈Ni

ÎT
i,j γ

j
i,kuj

i,k

⎞
⎠

where we define Gi,k = Ai,k−1Γi,k−1|k−1A
T
i,k−1 + Qi,k−1 +

Γi,k |k−1Si,kΓi,k |k−1 . Recall that Ji = Ni

⋃{i}, and define
ηJi ,k |k−1 = colj∈Ji

(
ηj,k |k−1

)
, where j are sorted in ascend-

ing order. Columnizing uj
i,k over all neighbors j ∈ Ni within

section i yields

uNi ,k = colj∈Ni

(
γj

i,kuj
i,k

)
= L̃i ĨiηJi ,k |k−1 (19)

where j are sorted in ascending order, L̃i is defined as

L̃i =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(−Îi,i+1 Îi+1,i

)
, if i = 1(

Îi−1,i −Îi,i−1
)
, if i = n(

Îi−1,i −Îi,i−1 0ni + 1 , i + 1

0ni−1 , i−1 −Îi,i+1 Îi+1,i

)
otherwise

and Ĩi = diag(γi−1
i,k Ini−1 +�0.5ni , γ

i+1
i,k Ini −�0.5ni +ni + 1 ). Fur-

ther define

H̃i =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Îi,i+1 , if i = 1

Îi,i−1 , if i = n(
ÎT
i,i−1 ÎT

i,i+1

)
otherwise.
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The third term in (17) is equivalent to

N∑
i=1

⎛
⎝∑

j∈Ni

ÎT
i,j γ

j
i,kuj

i,k

⎞
⎠

T

Gi,k

⎛
⎝∑

j∈Ni

ÎT
i,j γ

j
i,kuj

i,k

⎞
⎠

=
N∑

i=1

ηT
Ji ,k |k−1 Ĩi L̃

T
i H̃T

i Gi,k H̃iL̃i ĨiηJi ,k |k−1

≤
N∑

i=1

(
γmax

i,k

)2
λmax

(
L̃T

i H̃T
i Gi,k H̃iL̃i

)
‖ηJi ,k |k−1‖2

where γmax
i,k = maxj∈Ni

γj
i,k and λmax (resp. λmin ) is the max-

imum (resp. minimum) eigenvalue of a matrix.
Step 4: The negative definiteness of (17).
Given Step 1, the first term of (17) can be equivalently

written as

N∑
i=1

−ηT
i,k |k−1Λi,k−1ηi,k |k−1

=
N∑

i=1

−ηT
Ji ,k |k−1ΛJi ,k−1ηJi ,k |k−1

where ΛJi ,k = diagj∈Ji
(μj

i Λj,k ) with the indexes j sorted by
ascending order, and the scaling factors are predefined and sat-
isfy
∑

j∈Ji
μi

j = 1 for all i. Given Steps 1–3, ΔVk satisfies

ΔVk ≤ − 2
N −1∑
î=1

γî+1
î,k

η̂T
î,k |k−1L̂î η̂ î,k |k−1

+
N∑

i=1

((
γmax

i,k

)2
λmax

(
L̃T

i H̃T
i Gi,k H̃iL̃i

)

− λmin (ΛJi ,k−1)) ‖ηJi ,k |k−1‖2 . (20)

Therefore, by choosing γj
i,k sufficiently small we can render

ΔVk < 0 for all k ≥ 0 and for all η1:N,k−1|k−1 �= 0. Precisely,

we need γj
i,k < γ∗

i,k where γ∗
i,k is defined by

γ∗
i,k =

⎛
⎝ λmin (ΛJi ,k−1)

λmax

(
L̃T

i H̃T
i Gi,k H̃iL̃i

)
⎞
⎠

1
2

.

Note that to compute γ∗
i,k , only information from one-hop neigh-

bors is needed, and global communication topology is not re-
quired compared to [4]. Hence, ΔVk < 0 for all k ≥ 0 and
η1:N,k−1|k−1 �= 0, and therefore η1:N,k |k = 0 is GAS for the
mean error dynamics of the DLKCF. Consequently, all estima-
tors reach consensus on the shared states. �

When the consensus gain is zero, the mean error dynamics
of each local agent is also GAS under observable modes. How-
ever, due to different model errors and innovation sequences,
the estimates provided by neighboring agents on their shared
overlapping regions inevitably disagree in any realization of the

filter. Hence, the consensus term is designed to promote agree-
ment without destabilizing the filter, which is further verified
in Section V-A. Moreover, when γj

i,k < γ∗
i,k , it can be deduced

from (20) that ΔVk < −√
2
∑N −1

î=1 γî+1
î,k

‖uî+1
î,k

‖2 (derived in
the arXiv version of this work [23, Appendix E]). This indi-
cates that Vk strictly decreases at the rate proportional to the
total disagreement until the neighboring disagreements on all
the overlapping regions converge to zero, which is a property
cannot be achieved without the consensus term.

B. Ultimately Bounded Mean Estimates in Unobservable
Modes

Challenges for estimating an unobservable section stem from
the dependence of the system dynamics of the SMM on the
shock velocity and location, which are functions of the state
variables to be estimated. Hence, nonobservability of the sys-
tem will lead to unknown system dynamics. Moreover, the un-
observable modes are also undetectable since the density of the
cells in the unobservable subsystem does not dissipate. In this
section, we show that the mean estimates of all the cells in an un-
observable section are ultimately bounded inside [−ε, �m + ε]
for all ε > 0, provided that the upstream and downstream mea-
surements are available. This ensures that the mean estimates
of the DLKCF for unobservable modes are always physically
meaningful to within ε. Since this section studies the properties
of the filter for an individual unobservable freeway section, the
section index i is dropped for notational simplicity.

Let (kU, k̄U] be the time interval2 inside which a sec-
tion switches among unobservable modes, i.e., the mode
index σ(k) ∈ {FC1, FC2} for k ∈ (kU, k̄U], and σ(k) ∈
{FF, CC, CF} for k = kU and k = k̄U + 1. First, we present
a lemma stating the boundedness of the Kalman gain for
k ∈ (kU, k̄U], which is necessary for showing the boundedness
of the state estimate.

Lemma 2: Consider a freeway section that switches among
the unobservable modes while k ∈ (kU, k̄U], where 0 ≤ kU <
k̄U ≤ +∞. Given density measurements of the boundary cells,
the Kalman gain computed by the DLKCF (10) and (11) satisfies

‖Kk‖∞ ≤ k
(
ΓkU|kU

)
, for all k ∈ (kU, k̄U] (21)

where k (·) is a function of the error covariance at time kU.
Proof: The bound for ‖Kk‖∞ is derived in Lemma 4.6 of

the arXiv version of this work [23]. �
Proposition 2: Consider an unobservable section in a road

network with dimension n. For all ε > 0, a finite time T (ε)
exists such that ρl

k |k ∈ [−ε, �m + ε] for all k > T (ε) and for all
l ∈ {1, . . . , n}, independent of the initial estimate.

Proof: The proof is reported in [19, Proposition 2]. �
Proposition 2 indicates that when the estimation error of the

boundary cells converges to zero, it will drive the state esti-
mate of the interior cells inside [0, �m ] due to the conservation
law and the flow-density relationship embedded in the traffic

2The time instant k ∈ N throughout this paper. Hence, k ∈ (kU, k̄U] means
k ∈ {kU + 1, . . . , k̄U}.
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model. Hence, it is necessary to ensure the error dynamics of
the boundary cells is asymptotically stable.

C. Boundedness of the Mean Error Under Switches Among
Observable and Unobservable Modes

This section derives the upper bound for the 2-norm of the
mean estimation error when a freeway section switches among
observable and unobservable modes. We first analyze the upper
bound of the mean error when the section switches among the
unobservable modes, which quantifies the increase of the mean
error while the section is unobservable. Next, the convergence
rate of the mean error dynamics while the section switches
among the observable modes is studied. Finally, we derive the
minimum number of time steps (i.e., the residence time) required
in observable modes to ensure the boundedness of the mean
error. All results in this section hold for every individual freeway
section. In the analysis below, we drop the section index i when
it can be omitted for notational simplicity.

1) Upper Bound of the Mean Error in Unobservable Modes:
For a freeway section that switches among the unobservable
modes while k ∈ (kU, k̄U], the next proposition applies Lemma
2 to derive an upper bound for ‖ηk |k‖, which is uniform across
all k ∈ (kU, k̄U]. The derived bound is a function of ε (ε is
defined as the upper bound for ‖ηkU|kU

‖) and ΓkU|kU
, and

is larger than ε. Moreover, the derived bound does not depend
on the length of time interval (kU, k̄U].

Proposition 3: Consider a freeway section that switches
among the unobservable modes while k ∈ (kU, k̄U], where
0 ≤ kU < k̄U ≤ +∞. Let

c0 = max
{

1,
√

č2 č
−1
1 r2q

−1
1

}

c
(
ΓkU|kU

)
= c0Δxk

(
ΓkU|kU

)
(Δt min {vm ,w})−1 (22)

where č1 = ǎ(1 + ǎb̌)−1 and č2 = ǎ−1(1 + ǎb̌), with ǎ =
min
{
2r−1

2 , q1
}

and b̌ = max{2r−1
1 , q2}, and k (·) is given in

(21). For all ε>0, if ‖ηkU|kU
‖<ε, then ‖ηk |k‖ < h(ε,ΓkU|kU

)
for all k ∈ (kU, k̄U], where h(ε,ΓkU|kU

) =
√

n(�m + ε(c0
+ (n − 2)c(ΓkU|kU

))).
Proof: The proof is by induction.
Step 1 : Denote as η̌

(1)
k |k = (η1

k |k ,ηn
k |k )T the mean error of

the observable subsystem3 (i.e., the boundary cells). The error
covariance of the observable subsystem Γ̌(1)

k |k satisfies

Γ̌(1)
k |k < r2I, and Γ̌(1)

k |k−1 > q1I, for k ∈ (kU, k̄U].

Let Ǎ(1) = I be the state transition matrix associated with the
observable subsystem, it follows that∥∥∥η̌(1)

kU+1|kU+1

∥∥∥ ≤ ∥∥∥(I − Ǩ
(1)
kU+1Ȟ

(1)
)

Ǎ(1)
∥∥∥∥∥∥η̌(1)

kU|kU

∥∥∥
=
∥∥∥∥Γ̌(1)

kU+1|kU+1

(
Γ̌(1)

kU+1|kU

)−1
∥∥∥∥
∥∥∥η̌(1)

kU|kU

∥∥∥ < r2q
−1
1

∥∥∥η̌(1)
kU|kU

∥∥∥ .
3A detailed description of the observable and unobservable subsystems is

given in the arXiv version [23, Appendix F].

Denote as Ǐ(1)
·,· and Č(1)

·,· the information and controllability ma-

trix of the observable subsystem, we have 2r−1
2 I < Ǐ(1)

k,k−1 =

R−1
k−1 + R−1

k < 2r−1
1 I and q1I < Č(1)

k,k−1 = Q̌
(1)
k < q2I for all

k ∈ (kU, k̄U], where Q̌
(1)
k is the model error covariance for

the observable subsystem. Hence, č1I < (Γ̌(1)
k |k )−1 < č2I for all

k ∈ (kU, k̄U] according to [26, Lemma 7.1 and 7.2]. Define
the Lyapunov function of the observable subsystem as V̌k =
(η̌(1)

k |k )T (Γ̌(1)
k |k )−1 η̌

(1)
k |k , then V̌k+1 < V̌k for all k ∈ (kU, k̄U) due

to [4, Lemma 3]. Consequently

∥∥∥η̌(1)
k |k
∥∥∥ <
(

V̌k

č1

) 1
2

<

(
V̌k U+ 1

č1

) 1
2

<
√

č2 č
−1
1

∥∥∥η̌(1)
kU+1|kU+1

∥∥∥
for all k ∈ (kU + 1, k̄U]. It follows that for all k ∈ (kU, k̄U]:∥∥∥η̌(1)

k |k
∥∥∥ <
√

č2 č
−1
1 r2q

−1
1

∥∥∥η̌(1)
kU|kU

∥∥∥ <
√

č2 č
−1
1 r2q

−1
1 ε ≤ c0ε.

Step 2: We use induction to show that ρl
k |k > −c0ε − (l − 1)

c(ΓkU|kU
)ε ≥ −ε(c0 + (n − 2)c(ΓkU|kU

)) for all k ∈ (kU, k̄U]
and l ∈ {2, . . . , n − 1}. Since |η1

k |k | < c0ε for all k ∈ (kU, k̄U],
it holds that ρ1

k |k > −c0ε = −c0ε − (1 − 1)c(ΓkU|kU
)ε. Hence

when l = 1, ρ1
k |k > −c0ε − (l − 1)c(ΓkU|kU

)ε holds for all k ∈
(kU, k̄U].

For l ∈ {1, 2, . . . , n − 2}, suppose ρl
k |k > −c0ε − (l −

1)c
(
ΓkU|kU

)
ε for all k ∈ (kU, k̄U]. If ρl+1

k |k < −c0ε −
lc
(
ΓkU|kU

)
ε, we obtain from (4) that

f
(
ρl

k |k ,ρl+1
k |k
)

= vm ρl
k |k > vm

(−c0ε − (l − 1)c
(
ΓkU|kU

)
ε
)

f
(
ρl+1

k |k ,ρl+2
k |k
)

≤ vm ρl+1
k |k .

It follows that the estimate of cell l + 1 satisfies:

ρl+1
k+1|k+1 = ρ1+1

k |k +
Δt

Δx

(
f
(
ρl

k |k ,ρl+1
k |k
)
− f
(
ρl+1

k |k ,ρl+2
k |k
))

− Kk+1(l + 1, 1)η1
k+1|k − Kk+1(l + 1, 2)η2

k+1|k

> ρl+1
k |k +

vm Δt

Δx

∣∣∣ρl+1
k |k + c0ε + (l − 1)c

(
ΓkU|kU

)
ε
∣∣∣

− k
(
ΓkU|kU

)
c0ε

= ρl+1
k |k +

vm Δt

Δx

∣∣∣ρl+1
k |k + c0ε + lc

(
ΓkU|kU

)
ε
∣∣∣

+
vm Δt

Δx
c
(
ΓkU|kU

)
ε − k
(
ΓkU|kU

)
c0ε

≥ ρl+1
k |k +

vm Δt

Δx

∣∣∣ρl+1
k |k + c0ε + lc

(
ΓkU|kU

)
ε
∣∣∣

where the first inequality is due to ‖Kk‖∞ ≤ k(ΓkU|kU
) given in

Lemma 2 and the fact that ‖η̌(1)
k+1|k‖ = ‖Ǎ(1) η̌

(1)
k |k‖ = ‖η̌(1)

k |k‖
< c0ε for all k ∈ (kU, k̄U], and the last inequality
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is obtained by vm Δt
Δx c(ΓkU|kU

)ε − k(ΓkU|kU
)c0ε = vm

min{vm ,w}
k(ΓkU|kU

)c0ε − k(ΓkU|kU
)c0ε ≥ 0. Also since ρl+1

kU|kU
> −ε ≥

−c0ε > −c0ε − lc(ΓkU|kU
)ε, it is concluded that ρl+1

k |k >

−c0ε − lc(ΓkU|kU
)ε for all k ∈ (kU, k̄U]. Continuing the in-

duction along the cells, we obtain ρn−1
k |k > −c0ε − (n −

2)c(ΓkU|kU
)ε for all k ∈ (kU, k̄U].

We can use a similar induction to show ρl
k |k < �m + c0ε +

(n − l)c(ΓkU|kU
)ε ≤ �m + ε(c0 + (n − 2)c(ΓkU|kU

)) for all k ∈
(kU, k̄U] and l ∈ {2, . . . , n − 1}.

Step 3: Combining Steps 1 and 2, we obtain ρl
k |k ∈

(−ε(c0 + (n − 2)c(ΓkU|kU
)), �m + ε(c0 + (n − 2)c(ΓkU|kU

)))
for all l ∈ {1, . . . , n} and k ∈ (kU, k̄U]. Consequently,
‖ηk |k‖ <

√
n(�m + ε(c0 + (n − 2)c(ΓkU|kU

))) = h(ε,ΓkU|kU
)

for all k ∈ (kU, k̄U]. �
2) Convergence Rate of the Mean Error in Observable

Modes: Let (kO, k̄O] be the time interval inside that a
section switches among observable modes, i.e., the mode
index σ(k) ∈ {FF, CC, CF} for k ∈ (kO, k̄O], and σ(k) ∈
{FC1, FC2} for k = kO and k = k̄O + 1. Due to the bound-
edness of the consensus term described in (13), the mean error
satisfies

∥∥ηk |k
∥∥ ≤
∥∥∥∥∥∥

kO∏
κ=k−1

Fκ+1Aκ

∥∥∥∥∥∥
∥∥ηkO|kO

∥∥

+ ĉ

⎛
⎝1 +

k−kO−1∑
ι=1

∥∥∥∥∥∥
kO+ι∏

κ=k−1

Fκ+1Aκ

∥∥∥∥∥∥
⎞
⎠ (23)

for k ∈ (kO, k̄O], where Fk = I − KkHk . According to (23),
we need to analyze the magnitude of ‖∏kO

κ=k−1 Fκ+1Aκ‖ in
order to study the convergence rate of the mean estimation error,
which is detailed in the Lemma 3.

Lemma 3: Consider a freeway section that switches among
the observable modes while k ∈ (kO, k̄O], where 0 ≤ kO <
k̄O ≤ +∞. If the error covariance satisfies 0 < d1I ≤ Γ−1

k |k ≤
d2I for all kO < k ≤ k̄O, where d1 , d2 ∈ R+ , then∥∥∥∥∥∥

kO∏
κ=k−1

Fκ+1Aκ

∥∥∥∥∥∥ ≤ âq̂k−kO , for k ∈ (kO, k̄O] (24)

where â =
(
d2d

−1
1

) 1
2 ≥ 1, 0 < q̂=

(
1 − d (d1 , d2) d−1

2

) 1
2 <1,

and d (·, ·) is a function of d1 , d2 defined by

d (d1 , d2) =
(

d−1
1 + q−1

1 d−2
1 max

M ∈AO

σ2
max (M)

)−1

where AO = {AFF, ACC, As
CF |s ∈ {1, 2, . . . , n − 1}} and

σmax(M) is the maximum singular value of matrix M .
Proof: See the arXiv version of this work [23,

Appendix I]. �
3) Residence Time in Observable Modes: When a freeway

section switches from an unobservable mode at time kO to
an observable mode at kO + 1, the next proposition derives

the residence time the section must remain in the set of ob-
servable modes in order to reduce the mean estimation error
below a given threshold. The residence time is a function of
the mean error and error covariance of the section at time kO,
and also depends on the magnitude of the mean error to be
satisfied.

Proposition 4: Consider a freeway section that switches
among the observable modes while k ∈ (kO, k̄O], where 0 ≤
kO < k̄O ≤ +∞. Define

a
(
ΓkO|kO

)
=
(
c2
(
ΓkO|kO

) (
c1
(
ΓkO|kO

))−1
) 1

2

q
(
ΓkO|kO

)
=
(
1 − c3

(
ΓkO|kO

) (
c2
(
ΓkO|kO

))−1
) 1

2
(25)

where c1(·), c2(·) are the bounds from (18), and c3(ΓkO|kO
)

is given by c3
(
ΓkO|kO

)
= d(c1(ΓkO|kO

), c2(ΓkO|kO
)) with d(·, ·)

defined in Lemma 3.
For all ε > 0, there exists t

(
ε,
∥∥ηkO|kO

∥∥ ,ΓkO|kO

)
such that

if k̄O − kO > t(ε, ‖ηkO|kO
‖,ΓkO|kO

), the mean error at time k̄O

satisfies ‖ηk̄O|k̄O
‖ < ε + ĉ +

ĉa(Γk O |k O
)q(Γk O |k O

)
1−q(Γk O |k O

) . Explicitly

t
(
ε,
∥∥ηkO|kO

∥∥ ,ΓkO|kO

)
=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0, if a
(
ΓkO|kO

)
q
(
ΓkO|kO

) ∥∥ηkO|kO

∥∥ ≤ ĉa(Γk O |k O
)q(Γk O |k O

)
1−q(Γk O |k O

)

logq(Γk O |k O
)

(
ε

(
a
(
ΓkO|kO

) ∥∥ηkO|kO

∥∥− ĉa(Γk O |k O
)

1−q(Γk O |k O
)

)−1
)

otherwise.
(26)

Furthermore, for all k ∈ (kO, k̄O]

∥∥ηk |k
∥∥ ≤ max

{
ĉ + a
(
ΓkO|kO

)
q
(
ΓkO|kO

) ∥∥ηkO|kO

∥∥ ,
ĉ + ĉa

(
ΓkO|kO

)
q
(
ΓkO|kO

) (
1 − q
(
ΓkO|kO

))−1 }
.

Proof: According to Lemma 1, when kO < k ≤ k̄O the error
covariance satisfies c1(ΓkO|kO

)I ≤ Γ−1
k |k ≤ c2(ΓkO|kO

)I . Given

Lemma 3, it follows that for kO < k ≤ k̄O:

∥∥∥∏kO
κ=k−1 Fκ+1Aκ

∥∥∥ ≤ a
(
ΓkO|kO

)
q
(
ΓkO|kO

)k−kO

where a
(
ΓkO|kO

) ≥ 1 provides an upper bound for the increase
of the mean estimation error when the section first switches
to an observable mode at time kO + 1, and 0 < q

(
ΓkO|kO

)
< 1

describes the convergence rate of the mean estimation error in
observable modes. Hence when kO < k ≤ k̄O, the 2-norm of
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ηk |k satisfies

∥∥ηk |k
∥∥ ≤
∥∥∥∥∥∥

kO∏
κ=k−1

Fκ+1Aκ

∥∥∥∥∥∥
∥∥ηkO|kO

∥∥

+ ĉ

⎛
⎝1 +

k−kO−1∑
ι=1

∥∥∥∥∥∥
kO+ι∏

κ=k−1

Fκ+1Aκ

∥∥∥∥∥∥
⎞
⎠

≤ ĉ +
∥∥ηkO|kO

∥∥ a (ΓkO|kO

)
q
(
ΓkO|kO

)k−kO

+
k−kO−1∑

ι=1

ĉa
(
ΓkO|kO

)
q
(
ΓkO|kO

)k−kO−ι

= ĉ +
∥∥ηkO|kO

∥∥ a (ΓkO|kO

)
q
(
ΓkO|kO

)k−kO

+
ĉa
(
ΓkO|kO

)
q
(
ΓkO|kO

)
1 − q
(
ΓkO|kO

) (
1 − q
(
ΓkO|kO

)k−kO−1
)

� u
(
ΓkO|kO

, k
)

where for a fixed ΓkO|kO
, the function u

(
ΓkO|kO

, k
)

is either
nonincreasing or nondecreasing with respect to k. As a con-
sequence, for all ε > 0, there exists t(ε, ‖ηkO|kO

‖,ΓkO|kO
) ≥ 0

such that for all k − kO > t(ε, ‖ηkO|kO
‖,ΓkO|kO

)

∥∥ηk |k
∥∥ < ε + ĉ +

ĉa
(
ΓkO|kO

)
q
(
ΓkO|kO

)
1 − q
(
ΓkO|kO

) .

When a(ΓkO|kO
)q(ΓkO|kO

)‖ηkO|kO
‖ ≤ ĉa(Γk O |k O

)q(Γk O |k O
)

1−q(Γk O |k O
) , we

have u(ΓkO|kO
, kO + 1)≤ limk→∞ u(ΓkO|kO

, k), and u(ΓkO|kO
,

k) ≤ limk→∞ u(ΓkO|kO
, k) nondecreasing with respect to k ∈

(kO, k̄O], thus t(ε, ‖ηkO|kO
‖,ΓkO|kO

) = 0. On the other hand,
u
(
ΓkO|kO

, k
)

is nonincreasing with respect to k when
u(ΓkO|kO

, kO + 1) > limk→∞ u(ΓkO|kO
, k). In this case

t(ε, ‖ηkO|kO
‖,ΓkO|kO

) =

logq(Γk O |k O
)

⎛
⎝ε
(
a
(
ΓkO|kO

) ∥∥ηkO|kO

∥∥− ĉa
(
ΓkO|kO

)
1 − q
(
ΓkO|kO

)
)−1
⎞
⎠.

Furthermore, the upper bound of
∥∥ηk |k
∥∥ is given as follows:

∥∥ηk |k
∥∥ ≤ max

{
u
(
ΓkO|kO

, kO + 1
)
, lim
k→∞

u
(
ΓkO|kO

, k
)}

= max
{
ĉ + a
(
ΓkO|kO

)
q
(
ΓkO|kO

) ∥∥ηkO|kO

∥∥ ,
ĉ + ĉa

(
ΓkO|kO

)
q
(
ΓkO|kO

) (
1 − q
(
ΓkO|kO

))−1 }
for all k ∈ (kO, k̄O], which concludes the proof. �

4) Boundedness of the Mean Estimation Error Under
Switches Among Observable and Unobservable Modes: Based
on Proposition 3 and Proposition 4, the boundedness of the mean

estimation error when the SMM switches among observable and
unobservable modes is summarized in Proposition 5.

The main concept of Proposition 5 is given as follows. For a
freeway section, denote (kr

U, k̄r
U] and (kr

O, k̄r
O] as the rth unob-

servable and observable time intervals, respectively. Consider
a freeway section that switches from an observable mode at
k̄r−1

O = kr
U to an unobservable mode at kr

U + 1, and remains
unobservable through k̄r

U. An upper bound for the 2-norm of
the mean estimation error, which is uniform over (kr

U, k̄r
U], can

be obtained through Proposition 3 based on the error covari-
ance and the upper bound of the mean error at time kr

U. When
the section switches back to the set of observable modes at time
k̄r

U + 1 = kr
O + 1 and remains observable through k̄r

O, the mean
estimation error has been increased during the unobservable
time interval, and may continue to increase initially before de-
creasing while the section is observable. Based on Proposition 4,
the minimum residence time k̄r

O − kr
O the section must remain

observable to offset the increase of the mean estimation error,
as well as the upper bound of the mean error during the observ-
able interval (kr

O, k̄r
O] are derived. The minimum residence time

ensures that when the section switches back to an unobservable
mode, the mean estimation error is smaller than a given upper
bound. Based on this upper bound and the error covariance at
time k̄r

O = kr+1
U , we can apply Proposition 3 again and obtain

the upper bound for the 2-norm of the mean estimation error
during the unobservable time interval starting at time kr+1

U + 1.
We continue the induction and derive the minimum residence
time for each observable time interval, as well as the upper
bounds of the 2-norm of the mean estimation error for all the
observable and unobservable time intervals.

Proposition 5: For a freeway section, denote (kr
U, k̄r

U] (resp.
(kr

O, k̄r
O]) as the rth time interval while the section switches

among unobservable (resp. observable) modes. Hence, k1
U = 0

(resp. k1
O = 0) when the section is unobservable (resp. observ-

able) at time 0. Let δ > 0 be an arbitrary positive constant, and
suppose the following conditions on the residence time for the
observable time intervals hold

k̄r
O − kr

O >⎧⎪⎪⎪⎨
⎪⎪⎪⎩

t
(
δ, e
(
δ, Γkr −1

O |kr −1
O

,Γk̄ r −1
O |k̄ r −1

O

)
,Γkr

O|kr
O

)
r ≥ 2

t
(
δ, e0
(
Γ0|0
)
,Γk 1

O|k 1
O

)
r = 1 and k1

U = 0

t
(
δ,
√

n�m ,Γ0|0
)

r = 1 and k1
O = 0

where e0 (M) =
√

n (
√

n�m (c0 + (n − 2) c (M)) + �m ) for
M ∈ Rn×n , and

e (δ,M1 ,M2) =
√

n

(
�m +
(

δ + ĉ +
ĉa (M1) q (M1)

1 − q (M1)

)

× (c0 + (n − 2) c (M2))) ,

for M1 ,M2 ∈ Rn×n , with ĉ given in (13), c0 and c(·) defined
in (22), a (·) and q (·) defined in (25).
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When r ≥ 2, the mean error is upper bounded as follows:

∥∥ηk |k
∥∥ ≤

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(a) for k ∈ (kr
U, k̄r

U]: e
(
δ,Γk̄ r −1

U |k̄ r −1
U

,Γkr
U|kr

U

)
(b) for k ∈ (kr

O, k̄r
O]: max

{
ĉ + a
(
Γkr

O|kr
O

)
× q
(
Γkr

O|kr
O

)
e
(
δ,Γkr −1

O |kr −1
O

,Γk̄ r −1
O |k̄ r −1

O

)
,

ĉ + ĉa
(
Γkr

O|kr
O

)
× q
(
Γkr

O|kr
O

) (
1 − q
(
Γkr

O|kr
O

))−1
}

.

When r = 1 and k1
U = 0, the mean estimation error satisfies

∥∥ηk |k
∥∥ ≤

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(a) for k ∈ (k1
U, k̄1

U]: e0
(
Γ0|0
)

(b) for k ∈ (k1
O, k̄1

O]: max
{

ĉ + a
(
Γk 1

O|k 1
O

)
× q
(
Γk 1

O|k 1
O

)
e0
(
Γ0|0
)
, ĉ + ĉa

(
Γk 1

O|k 1
O

)
× q
(
Γk 1

O|k 1
O

)(
1 − q
(
Γk 1

O|k 1
O

))−1
}

.

When r = 1 and k1
O = 0, the mean estimation error satisfies

∥∥ηk |k
∥∥ ≤

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(a) for k ∈ (k1
U, k̄1

U]: e
(
δ, Γ0|0 ,Γk 1

U|k 1
U

)
,

(b) for k ∈ (k1
O, k̄1

O]: max
{

ĉ + a
(
Γ0|0
)

× q
(
Γ0|0
)√

n�m , ĉ + ĉa
(
Γ0|0
)

× q
(
Γ0|0
) (

1 − q
(
Γ0|0
))−1
}

.

Proof: The proof is reported in the arXiv version of this work
[23]. �

Remark 2: The minimum residence time in Proposition 5
shares a similar concept with the definition of (average) dwell
time (e.g., [27], [28]): both impose conditions on sufficiently
long time spent in modes that are GAS (or observable in our
case). However, different from the analysis using dwell time, in
this work there is no requirement regarding the ratio between
the total time spent in observable and unobservable modes, and
the minimum residence time here is computed online.

V. NUMERICAL EXPERIMENTS

A. Effect of Interagent Communication and Filter Consistency

In this section, we show the effect of the consensus term in
reducing neighbor disagreement, and validate the consistency of
the DLKCF using the NEES measure. The network is a stretch
of highway divided into 136 cells and seven sections. We apply
normalized parameters for the triangular fundamental diagram.
The true solution is a combination of an expansion fan and a
shock propagating upstream, with a sinusoidal upstream bound-
ary condition [see Fig. 1(a)], which is computed based on the
CTM. Elements of the experimental setup not detailed here can
be found in the README documentation for the supplementary
source code https://github.com/yesun/DLKCF.

Disagreement and error on state estimates can be generated
for various reasons, here we consider the combining effects

Fig. 1. (a) True Solution; (b)–(d) Freeway network setup and communication
topology for: (b) the LKF; (c) the DLKCF-0; and (d) the DLKCF. The red
solid lines represent the direct connection between agents (labeled A in circles)
and sensors (red dots), and the red dashed lines represent connection between
agents and sensors obtained through receiving shared measurements and sensor
models from neighbors. The blue lines stand for the existence of consensus
terms between agents. In the zoomed-in parts, the freeway is discretized by
cells (small rectangles) and localized by sections (blocks). Overlapping regions
are represented by the blue shaded cells, and sensor locations are represented
by red dots in the cells.

of the following two causes: 1) heterogeneous sensors (HS),
with some of the sensors having large measurement errors; and
2) inconsistent agents (IA), with some agents assuming incor-
rect (too small) noise models for the low-quality sensors. In this
experiment, we put a large-error sensor once every three sensors
starting from the downstream sensor of the first section. More-
over, agents associated with sections indexed by even numbers
are unable to recognize the large-error sensors they are directly
connected to. We also apply perturbations of 10–20% on the
model parameters (i.e., �m , �c , and vm ).

We explore the following effects of the above two causes on
the disagreement and error of estimates.

1) The LKF where each local agent runs the KF described in
Section III-A independently based on measurements from
the sensors it is directly connected to (e.g., zi

i,k for agent
i), without sharing measurements or estimates.

2) The DLKCF with zero consensus gain (DLKCF-0), where
the prediction and correction steps are given by (10) and
(11) (i.e., neighboring agents share sensor data and sensor
models) with consensus gains set to zero (i.e., Cj

i,k =
0ni ,ni , j

for all i, j ∈ Ni and k).
3) The DLKCF with consensus gain as given in (12) (where

γj
i,k = 0.99min{γ∗

i,k , γ∗
j,k , γ̂j

i,k} with ĉ = 0.01).
Fig. 1 shows the network setup and the communication

topology for the three filters. At time k, the average dis-
agreement ũk of the posterior estimate is computed by ũk =

1
N −1

∑N −1
i=1

‖ũ i + 1
i , k ‖2

2

ni , i + 1
with ũi+1

i,k = Îj,iηj,k |k − Îi,j ηi,k |k , and the

average estimation error is given by ηk = 1
N

∑N
i=1

‖ηi , k |k ‖2
2

ni
.

Table I reports the disagreement and estimation error of the
three filters, where ũ =

∑km a x
k=1 ũk and η =

∑km a x
k=1 ηk with kmax

denoting the total number of time steps. Since the neighboring
sections in the LKF have no overlapping cells except the shared
boundary cells with sensor measurements, the neighbor dis-
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TABLE I
DISAGREEMENT AND ERROR OF ESTIMATE1

Causes Disagreement ũ (×10−2 ) Error η (×10−2 )

HS IA LKF DLKCF-0 DLKCF LKF DLKCF-0 DLKCF

False – – 0.294 0.119 0.423 0.349 0.308
True False – 0.336 0.119 0.562 0.503 0.468
True True – 7.361 4.664 2.941 2.670 2.633

TABLE II
RUNTIME COMPARISON OF THE CENTRAL KF AND DLKCF (PER AGENT)

Central KF DLKCF

n Runtime tc (s) n nl n̂ N Runtime td (s)

100 104 100 28 10 5 6.2
210 512 210 50 10 5 24.6
210 512 210 58 20 5 42.2

agreement for the LKF is not considered. It is shown that the
estimation accuracy of the LKF is vulnerable to inconsistent
error models, since the IA can never identify the high-error sen-
sors they are connected to, while in the DLKCF-0 and DLKCF
some of the IA apply the correct measurement error covariance
matrices when they share sensor data and sensor models with
neighbors. Moreover, compared to the DLKCF-0, adding the
consensus term in the DLKCF considerably reduces the neigh-
bor disagreement (regardless of the existence of HS or IA).

As stated in Remark 1, we remove the existence of IA and
perform an NEES check [24] of the DLKCF across 50 Monte
Carlo runs, thus accessing the validity of dropping the cross
correlations among different agents in the estimation error co-
variance. The average percentage of time steps across all the
sections that the NEES measure surpasses the two-sided 95%
probability concentration region [1.484, 2.6] is 1.98%. Among
all the sections, the maximum (resp. minimum) percentage of
time steps that the NEES is greater than the upper limit (resp.
smaller than the lower limit) is 2.45% (resp. 1.8%). This in-
dicates that the filter-calculated error covariance matches the
mean square error of the DLKCF.

B. Computational Complexity

For simplicity, let ni = nl for all i, and denote as n̂ the uni-
form size of the overlapping regions. The computational com-
plexity of the DLKCF for the ith local agent is dominated by
O(n3

l + (|Ni |n̂)3) at each time step, where |Ni | is the number of
neighbors of agent i. This implies that we need n̂ < nl |Ni |−1 to
have a consensus term with computational complexity less than
the LKF. Table II reports the runtime per agent of the DLKCF
and the central KF to complete 2000 estimation steps tracking
a shockwave on a stretch of freeway, which we denote as td and
tc , respectively. It is evident that compared to the central KF,
the runtime of the DLKCF is considerably reduced. Moreover,
given a fixed network dimension and a fixed number of agents,
the computation load increases with the size of the overlapping
regions.

VI. CONCLUSION AND FUTURE WORK

In this paper a DLKCF is designed for large-scale multiagent
traffic estimation. The DLKCF is applied to the SMM to moni-
tor traffic on a road network partitioned into local sections, with
overlapping regions between neighbors introduced to allow for
information exchange. We prove that the mean error dynamics
of the DLKCF is GAS when all sections switch among observ-
able modes. For an unobservable section, the mean estimates
are shown to be ultimately bounded inside the physically mean-
ingful interval. We also prove that the 2-norm of the mean error
for any given section is upper bounded under switches among
observable and unobservable modes, provided that the section
remains observable for a minimum residence time after switch-
ing to an observable mode from an unobservable one. Numerical
experiments illustrate the effect of the DLKCF on reducing the
estimation error, compared to the LKF, as well as promoting
agreement among agents. The numerical results also show a
considerable reduction on the runtime of the DLKCF compared
to a central KF.

To apply the DLKCF in the field, extension of the observ-
ability results to freeway networks with junctions is necessary
but straightforward. Moreover, the development and incorpora-
tion of robustness results on the detection of sensing/computing
outliers and model mismatches in each local agent can further
improve estimation accuracy.
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