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ABSTRACT: In the aftermath of a natural disaster, knowledge of the connectivity of different regions of
infrastructure networks is crucial to aid decision makers. For large-scale networks it can be extremely
time-consuming to obtain a converged estimate by performing a large number of Monte Carlo
simulations to compute the network failure probability. To reduce computational requirements, this
work develops a surrogate model using an AdaBoost classifier for predicting disconnections between
node clusters in lifeline infrastructure networks. The proposed approach uses spectral clustering to
partition the network, and it estimates the connectivity of these clusters using an AdaBoost classifier.
Numerical experiments on a California gas distribution network demonstrate that using the surrogate
model to determine cluster connectivity introduces less than five percent error and is two orders of
magnitude faster than methods using an exact network model to estimate the probability of network
failure through Monte Carlo simulations.

1. INTRODUCTION

Following a natural disaster, fast response is critical
to minimize the loss of life and damage to infras-
tructure. In lifeline networks such as gas distribu-
tion networks, power grids, and water pipelines, the
ability to rapidly assess the connectivity of compo-
nents within the network is vital for prompt disaster
relief (Bruneau et al., 2003; Boin and McConnell,
2007). This assessment requires methods to quickly
and accurately estimate the probability of network
failure given the individual component failure prob-
abilities conditioned on the event.

A variety of system reliability analysis (SRA)
methods have been introduced to identify the prob-
ability that a network will remain functional in the
aftermath of an event. One set of approaches, for

example those discussed by Rausand and Høyland
(2004), aim to exactly compute the network fail-
ure probability from individual component failure
probabilities. Lim and Song (2012) introduced a
method that intelligently enumerates all possible
failure combinations by preferentially identifying
disjoint cut sets and link sets to calculate the prob-
ability of network disconnection, while Reed et al.
(2009) and Vugrin et al. (2010) proposed to analyze
infrastructure resilience to natural disasters more
generally.

While these methods are useful for small net-
works when precise failure probabilities are known
in advance, they have several limitations for appli-
cation to large, infrastructure-sized networks. As
the number of nodes in the network increases, ex-
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ploring all possible node failure combinations that
lead to network failure can quickly become com-
putationally intractable. Furthermore, before the
earthquake event, one can compute the failure prob-
abilities of components for each of possible earth-
quake scenarios, or compute the ’predictive’ failure
probability for all possible earthquakes represented
by a probabilistic seismic hazard model. Both of
these approaches have inherent uncertainty since
they require conditioning on a specific earthquake
event. Knowledge of the precise component failure
probability for a specific event are not known until
after the event occurs, which means that for results
with the least uncertainty the analysis may need to
be performed in the immediate aftermath of a dis-
aster, when time is critical.

Because of the above limitations, there is re-
cent interest to develop approximate methods to
compute network failure probabilities, or bounds
on such probabilities (Der Kiureghian and Song,
2008; Song and Der Kiureghian, 2003). For exam-
ple, Monte Carlo simulations (MCS) are frequently
used to estimate the probability of network failure
in SRA (Papadrakakis et al., 1996; Ditlevsen and
Madsen, 1996). However, the Monte Carlo tech-
niques still require one to determine the connectiv-
ity of nodes in a network for each realization of the
network, which can be very time consuming if reli-
able estimates are desired.

To further speed up the calculation time, Stern
et al. (2014) proposed the idea of using a surrogate
model to determine the connectivity of two node
pairs, instead of testing the connectivity on the ac-
tual infrastructure network. The surrogate model is
a simplified model that approximates the actual net-
work model of interest and on which calculations
can be performed much more quickly. Surrogate
models are commonly used to simplify computa-
tions in fields as diverse as structural optimization,
waste water modeling, and supply chain manage-
ment (Jansson et al., 2003; Meirlaen et al., 2001;
Wan et al., 2005).

Stern et al. (2014) used MCS to approximate the
connectivity of a single source and terminal node,
using an AdaBoost (Freund and Schapire, 1995)
classifier as the surrogate model. This model is

trained on a large labeled dataset of network states
in an offline pre-processing stage, and the samples
are chosen independently of any specific node fail-
ure probabilities. As a result, the trained model
can be used in the immediate aftermath of an event
when the node failure probabilities are realized, by
performing an MCS on the surrogate model. The
results in Stern et al. (2014) indicate the approxi-
mate model can estimate the probability of discon-
nection of a source and terminal node to within 3%
under worst-case conditions, and is six times faster
than using a shortest path method to determine net-
work failure in the MCS.

Due to the hierarchical structure and regional di-
visions of emergency management authorities, de-
cisions regarding disaster response often are made
on a regional basis. Therefore, for large-scale risk
assessment on infrastructure networks it is impor-
tant to determine the probability of disconnection
of these large regions of the network, or node clus-
ters. In this work, we extend the AdaBoost surro-
gate model SRA framework to the problem of de-
termining the probability of clusters of nodes be-
coming disconnected after an event.

The main contribution of this work is as fol-
lows. By decomposing the network into densely
connected clusters and training a surrogate model
to determine cluster connectivity, we show that it is
possible to quickly estimate the probability of clus-
ter disconnection using MCS.

The remainder of the article is organized as fol-
lows. In Section 2, the AdaBoost algorithm and an
efficient sampling technique to generate balanced
training data are reviewed. In Section 3, the clus-
ter connectivity surrogate model is presented. Sec-
tion 4 demonstrates the application of the devel-
oped methods in a numerical example of the Cal-
ifornia gas distribution network. In Section 5 con-
clusions and future work are discussed.

2. BACKGROUND ON ADABOOST SUR-
ROGATE MODELS FOR SRA

In this section, the main techniques used in the
source–terminal network connectivity problem (Rai
and Aggarwal, 1978) are reviewed. The general
methodology of constructing a surrogate model us-
ing AdaBoost and training the model on a labeled
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dataset generated via guided random walk sampling
are discussed. These tools will also be leveraged in
the cluster connectivity problem used in this work.

2.1. Estimating source–terminal disconnections
The infrastructure network is modeled as a graph
G = (V ,E ), where the number of nodes n = |V |
is the cardinality of the vertex (node) set V , and
E ⊆{(i, j) : i, j ∈ V } is the set of edges. A network
state is defined as x ∈ {0,1}n, where each element
xi encodes the state of the corresponding network
component as

xi =

{
0 if node i has failed,
1 if node i remains intact.

(1)

Similarly, the network status ys,t with respect to
source node s and terminal node t is defined as fol-
lows:

ys,t =

{
1 if s and t are connected,
−1 otherwise.

(2)

Suppose, following an event E, the failure prob-
ability Pr(xi = 0|E) of each component is known.
In order to estimate network failure probability
Pr(ys,t = −1|E), we generate network realizations
x(k), where k denotes the sample index, and com-
pute ys,t(k) = f (x(k)) for each sample k. The oper-
ator f that determines the connectivity of the source
and terminal node is a shortest path algorithm. If
a finite cost path exists between s and t, then the
nodes are connected.

Given K realizations of the network state, the net-
work failure probability is approximated as:

Pr(ys,t =−1|E)≈ 1
K

K

∑
k=1

I ( f (x(k)) =−1) (3)

where I(·) is the indicator function that gives 1 if
the event occurs, and 0 otherwise. Evaluating f
for for large K can be computationally expensive.
To improve the computational performance, Stern
et al. (2014) proposed the use of a fast but approx-
imate surrogate model f̃ , which approximates the
value of ys,t as ỹs,t = f̃ (x).

2.2. Data generation for training surrogate mod-
els

When considering the binary status of components
in the network, there exist a factorial number of
possible network states (combination of failed and
non-failed nodes). Therefore, it is necessary to
sample a subset of these data points to train and test
the surrogate model f̃ . Furthermore, due to the in-
herent robustness of infrastructure networks, there
is a bias toward connected networks when sampling
likely network states. For best classification per-
formance, it is important to have a dataset that is
balanced between examples of failed and not failed
networks (Japkowicz and Stephen, 2002).

In order to generate a balanced training dataset,
data points are sampled according to a guided
random walk sampling (GRWS) method (Stern
et al., 2014). The sampling method, based on the
Metropolis-Hastings algorithm (Metropolis et al.,
1953), seeks to identify the boundary between net-
work failure and non-failure cases on the basis of
the number of nodes that have failed. A complete
description of the guided random walk sampling
technique can be found in Stern et al. (2014).

The network status ys,t must be determined for
each data point in the training data using the exact
model f , which is still computationally expensive.
The key benefit is this training data needs to be gen-
erated once offline, and future queries will use the
surrogate model once it is trained.

2.3. AdaBoost classification
The surrogate model for source–terminal connec-
tivity is constructed using the AdaBoost machine
learning classifier. AdaBoost is chosen because it
has been shown to learn complex structure with
limited training data (Schapire et al., 1998). Ad-
aBoost is a binary classification algorithm that com-
bines multiple weighted weak classifiers that, in
aggregate, produce a more sophisticated classifier.
This general approach is called boosting in the ma-
chine learning community (Freund and Schapire,
1999). The final classifier is given as:

f̃ (x) = sign

(
T

∑
t=1

αtht(x)

)
, (4)
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which is a linear combination of T weak classifiers
ht with weights αt .

Each weak classifier ht is a one dimensional clas-
sification rule. AdaBoost sequentially computes
each weak classifier, indexed by t, and determines
its contribution αt to the overall classifier according
to:

αt =
1
2

ln
(

1− εt

εt

)
> 0, (5)

where εt is the classification error of the t th weak
classifier, defined subsequently.

The weak classifier ht is determined by minimiz-
ing the classification error of the m training data
points {(x(1),y(1)), . . . ,(x(m),y(m))} as:

εt =
1
m

m

∑
k=1

Wt(k)(ht(x(k)) 6= y(k)) . (6)

To compute the classification error, the data-
points are weighted according to the weights
{Wt(1), · · · ,Wt(m)}.

For the first classifier, these weights are initial-
ized as W1(k) = 1/m. For subsequent classifiers,
the new weight for datapoint x(k) is computed
from the previous data weight Wt−1(k), the previous
classifier ht−1 operating on x(k), and the classifier
weight αt−1 as follows:

Wt(k) =
Wt−1(k)

Zt−1
exp(−αt−1y(k)ht−1 (x(k))) , (7)

where Zt is a normalization constant.
The AdaBoost classifier in Stern et al. (2014) is

trained on data collected using the guided random
walk sampling method, and applied to classify a
node pair in the network as connected or discon-
nected. Cross validation results not shown indicate
that the model is not being over fit to the training
data.

3. SURROGATE MODELS FOR CLUSTER
CONNECTIVITY

In this work, we extend the AdaBoost surrogate
model for use in an approximate method to esti-
mate the probability of disconnection of two clus-
ters of nodes. To construct the method, the infras-
tructure network is first partitioned into a number
of densely connected clusters of nodes. Once the

clusters have been determined, the connectivity of
a cluster–cluster pair can be determined by generat-
ing a surrogate model for cluster connectivity. Ow-
ing to the good performance on the source–terminal
connectivity problem, we again use an AdaBoost
classifier, where one classifier is trained for each
cluster–cluster pair. The details of this procedure
are described next.

3.1. Graph clustering
We assume a common structure for large infrastruc-
ture networks. Specifically, we assume there are
a number of densely connected components (e.g,
in an urban infrastructure grid), which are loosely
connected to other densely connected components
(e.g., in another urban area) via long range links.
These network structures lend themselves well to
cluster connectivity analysis. Clustering of infras-
tructure networks has also been proposed to under-
stand network hierarchy (Gómez et al., 2013) and
to facilitate analysis of large networks on multiple
scales (Lim et al., 2014).

Spectral graph clustering (SGC) (von Luxburg,
2007) is used to partition graphs into densely con-
nected clusters. To split a graph into two clusters
we begin by computing the graph Laplacian L as

L = D−A, (8)

where D is a diagonal matrix containing the degree
of each node on the diagonal, and A is the adja-
cency matrix of the graph. We cluster by finding
the second smallest eigenvalue of L and assigning
node labels, qi according to

qi =

{
0 if vi < 0,
1 otherwise,

(9)

where vi is the ith element of the eigenvector as-
sociated with the second smallest eigenvalue of L.
A cluster is the set of all nodes that have the same
node label qi.

For an arbitrary k number of clusters, the first k
eigenvectors of L are clustered using k-means clus-
tering and used to determine the cluster assignment
(von Luxburg, 2007).
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3.2. Training the surrogate model
Similar to the methodology in Stern et al. (2014),
we generate training data using the guide random
walk sampling method. The main modification is
that now the connectivity is defined with respect to
cluster i and cluster j:

yi, j =

{
1 if cluster i and cluster j are connected,
−1 otherwise,

(10)
as opposed to a source node and a terminal node
in Equation (2). Since each surrogate model only
describes the connectivity of two specific clusters
within the network, we construct

(nc
2

)
models de-

scribing each possible cluster pair, where nc is the
total number of clusters.

Once the surrogate models are built, the model
enters the application phase. When an event oc-
curs, fragility models are used to estimate the fail-
ure probability of each network component, and
network state samples are drawn from this distri-
bution. These samples are then run through the Ad-
aBoost classifier to estimate if the clusters in ques-
tion are disconnected for the given network realiza-
tion. Finally, the samples are used collectively to
generate an estimate on the probability of cluster
disconnection given the event.

4. NUMERICAL EXAMPLE
4.1. California gas distribution network
We use the California gas distribution network as
a numerical example to test the proposed method.
The network topology, obtained from Lim et al. (in
print), is shown in Figure 1. The network consists
of 244 components (70 nodes and 87 bi-directional
edges). Each node represents a substation in the
gas distribution network, and the edges represent
gas pipelines.

We consider a case where all nodes in the net-
work have the same uncorrelated failure probabil-
ity. Without loss of generality, only nodes are al-
lowed to fail in this network. To relax this assump-
tion, one can place a node at the midpoint of each
edge and assign to it the corresponding edge failure
probability. We divide the network into four node
clusters and consider all possible cluster combina-
tions. A surrogate model is trained for each pair of

Figure 1: California gas distribution network with four
clusters.

node clusters in the network. Each model is trained
using AdaBoost, and built using m= 5,000 training
points and a maximum of T = 200 weak classifiers.

We evaluate the trained models by estimating the
probability that the two clusters become discon-
nected using the corresponding AdaBoost classifier.
All nodes are assumed to have a failure probability
p f = 0.15, since it was found to yield the results
with the highest error Stern et al. (2014). The clus-
ter disconnection probability is estimated via MCS
with K = 5,000 samples. We compare this to the
estimate computed using Dijkstra’s shortest path al-
gorithm to check connectivity between clusters (Di-
jkstra, 1956).

In addition to the failure probability estimate, we
also compute the coefficient of variation (COV) on
the true probability of network failure based on the
estimate, δ p̂ f , computed by:

δ p̂ f =
s√

K p̂ f
(11)

where K is the total number of MCS, s is the sample
standard deviation of network failure probability
estimates, and p̂ f is the estimated network failure
probability. The time required to estimate the net-
work failure probability using the AdaBoost classi-
fier is recorded and compared with the time to esti-
mate the same probability using Dijkstra’s shortest
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path method. The algorithms are implemented in
Matlab on a quad core 2.6 GHz MacBook Pro, and
are available online at Stern (2014).

4.2. Results
The node clusters for the California gas distribu-
tion network are shown in Figure 1. This choice of
clusters divides the network into four densely con-
nected regions of approximately equal size.

The results for each cluster pair are summarized
in Table 1, which gives the estimation error, as well
as the computational time for the MCS estimate us-
ing the AdaBoost surrogate model (TML), and using
the shortest path method (TSP). The error is com-
puted as the difference between the MCS estimate
using the shortest path method and the MCS esti-
mate using the surrogate model. Overall, the error
introduced due to the surrogate model is less than
five percent across the various clusters, while the
computation time is approximately two orders of
magnitude faster.

An interesting result is the perfect performance
for predicting connectivity between clusters 2 and
3. This is due in part to the network structure,
since there is only one edge between the two clus-
ters. As a result, a model is learned that only re-
quires one weak classifier for accurate classifica-
tion. Since only a few weak classifiers are needed,
TML is reduced compared to the other surrogate
models. Figure 2d shows the convergence of the
the estimated probability of disconnection for both
MCS approaches, and is an example of the best-
case performance of the surrogate model.

Figures 2a through 2f show the general trend that
clusters that are further apart have a higher prob-
ability of disconnection than those that are adja-
cent. Furthermore, the clusters that are further apart
exhibit a greater difference between the surrogate
model estimate and shortest path estimate. For ex-
ample, Figure 2c shows that the two estimates have
converged on slightly different values. The greatest
convergence gains occur in the first 1,000 simula-
tions.

5. CONCLUSIONS AND FUTURE WORK
This work demonstrates how to use machine learn-
ing methods to construct a surrogate model for

Cluster Error (%) TML (s) TSP (s)

1 - 2 0.72 110.6 1.480×104

1 - 3 2.82 109.3 2.060×104

1 - 4 4.52 112.2 1.504×104

2 - 3 0.00 1.691 3.727×104

2 - 4 0.82 109.4 2.067×104

3 - 4 0.74 112.9 2.074×104

Table 1: Summary of results for all six cluster-to-
cluster models with component failure probability
p f = 0.15. Computation time for machine learning
method TML and shortest path method TSP provided.

estimating cluster connectivity via MCS. The ap-
proach is significantly faster and introduces rela-
tively small (less than five percent) errors to the fail-
ure probability estimate.

Several extensions to this work are currently un-
der exploration. First, the influence of correlated
component failures on the surrogate model accu-
racy are being investigated, since this may occur
in many practical applications. Second, we are also
interested in developing a machine-learning based
regression approach to predict the probability of
network failure in terms of network flow quantities.
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(a) Disconnection probability estimate of
clusters 1 and 2 convergence, and COV.

(b) Disconnection probability estimate of
clusters 1 and 3 convergence, and COV.

(c) Disconnection probability estimate of
clusters 1 and 4 convergence, and COV.

(d) Disconnection probability estimate of
clusters 2 and 3 convergence, and COV.

(e) Disconnection probability estimate of
clusters 2 and 4 convergence, and COV.

(f) Disconnection probability estimate of
clusters 3 and 4 convergence, and COV.

Figure 2: Convergence of disconnection probability estimate of cluster pairs.
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