
Machine learning-based surrogate models for network
reliability analysis

R. E. Stern
University of Illinois at Urbana–Champaign, Urbana, IL, USA

J. Song
Seoul National University, Seoul, Korea

D. B. Work
University of Illinois at Urbana–Champaign, Urbana, Il, USA

This article introduces a framework to perform system reliability analysis in real–time. The frame-
work replaces the computationally intensive step of determining network connectivity for realiza-
tions of an infrastructure network subject to component failure probabilities with a faster surrogate
model. The surrogate model uses an AdaBoost classifier to predict network connectivity and to
significantly reduce the computation time during Monte Carlo simulations. A guided random walk
sampling algorithm is proposed to generate training data to improve the classifier performance,
and a proof of concept numerical experiment is performed on the California gas pipeline network.

1 INTRODUCTION

In the aftermath of a natural disaster, prompt response is critical to minimize economic damage
and the loss of life (Bruneau et al., 2003; Boin and McConnell, 2007). In order to improve post–
disaster response times to hazards that impact lifeline networks such as gas, water, and electricity
distribution systems, efficient methods are needed to quickly and accurately estimate the network
failure probability under a given set of failure probabilities of individual components.

System reliability analysis (SRA) of infrastructure networks encompasses a number of methods
to determine the probability that a network will be able to complete its designed function after a
disaster event. The methods are used to analyze the resilience of the network with respect to
failure under some disaster event (Song and Ok, 2009; Vugrin et al., 2010; Reed et al., 2009;
Der Kiureghian and Song, 2008).

Traditional SRA techniques utilize Monte Carlo simulations (MCS) of different possible fail-
ure scenarios to determine the overall probability of network failure (Papadrakakis et al., 1996). To
analyze infrastructure network reliability, current SRA techniques rely on Monte Carlo simulations
combined with shortest path algorithms to simulate network damage and test for connectivity be-
tween points of interest. By simulating multiple different damaged versions of the same network
caused by an event, it is possible to estimate the probability of network failure. Unfortunately,
existing SRA techniques are computationally too slow to perform the analysis in real–time as a
disaster is unfolding. The objective of this research is to enable real–time SRA through the use of
fast, surrogate network connectivity models. The estimates from a surrogate model can be used
as independent outcomes of an MCS to estimate the probability of network failure, and effectively
decrease the real-time computation requirements while computing the network failure probability
with sufficient accuracy.

The main contributions of this paper are as follows. First, a framework for using surrogate
models within SRA is proposed. The framework is shown in Figure 1. Second, a specific surrogate
model is developed using the AdaBoost classification algorithm. The AdaBoost algorithm predicts
network connectivity given the state of the network components with low computational overhead.
Finally, the framework is evaluated with respect to the computational time and prediction accuracy
compared to traditional SRA techniques.

Figure 1: Proposed framework with machine learning-based SRA. A machine learning classifier
is trained using training data and then used to classify network states generated by a hazard model.
Multiple Monte Carlo simulations are used to estimate on the true network failure probability.

The remainder of the article is organized as follows. In Section 2, a surrogate modeling ap-
proaches are reviewed, and the AdaBoost algorithm is introduced. In Section 3, an efficient sam-
pling method termed guided random walk sampling is introduced and used to generate training
data for AdaBoost. Section 4 details a numerical experiment on the California gas distribution net-
work to highlight the benefits and trade–offs of the proposed framework compared to traditional
SRA approaches. Finally, future work and conclusions are presented in Section 5.

2 MACHINE LEARNING-BASED SURROGATE MODELS

2.1 Surrogate modeling

Surrogate models provide a similar output to a given model, but are computationally less intensive,
and therefore can be used in place of the more accurate model for fast computations. This is
typically done when the outcome of interest is computationally complex to obtain, and a simpler
surrogate model suffices to generate the desired outcome (Qian et al., 2005). Surrogate models
have been applied extensively in fields such as structural optimization, waste water modeling, and
supply chain management (Jansson et al., 2003; Meirlaen et al., 2001; Wan et al., 2003).

In this work we apply surrogate modeling to SRA applications. Given a graph G = (V,E),
where n = |V| is the cardinality of the vertex (node) set, and E ⊆ {(i, j) : i, j ∈ V} we define
a network state as x ∈ {0,1}n where each element xi represents the status of the corresponding
component:

xi =

{
0 if node i has failed
1 if node i remains intact

(1)

Similarly, the network status yst with respect to source node s and terminal node t is defined
as follows:

yst =

{
1 if s and t are connected
−1 otherwise

(2)

where connectivity is defined as the existence of a path across only intact components. Com-
mon shortest path methods such as Dijkstra’s algorithm (Dijkstra, 1956) can be used to relate the
network x to the network status yst as follows:

yst = f(x, s, t) (3)

In (3), the operator f(·, ·, ·) involves running a computationally slow but exact algorithm such
as Dijkstra’s algorithm to determine the connectivity of the source and terminal nodes under the
network state x.

If the failure probability pfi of each node i is known, then the failure probability of the network
with respect to the source and terminal node can also be computed. Typically this involves a
Monte Carlo approach which requires running the operator f for each sample, which is the major
computational bottleneck that prevents running the calculation in real–time.

To compute a faster estimate of the network failure probability, the exact model f can be
replaced with a surrogate model f̃ as:

ỹst = f̃(x, s, t) (4)

where ỹst denotes the estimated network status predicted by the surrogate model.
For real–time applications, a good surrogate model should be significantly faster than the exact

model f , while at the same time maintaining a high accuracy at predicting the network status across
a wide range of network states x.

2.2 AdaBoost as a surrogate network connectivity model

To efficiently and accurately determine connectivity of s and t, we explore using a machine
learning-based classifier known as AdaBoost (Freund and Schapire, 1995). AdaBoost is a clas-
sification algorithm that is able to learn complex structure through boosting (Freund and Schapire,
1999), which uses a weighted combination of multiple simple weak classifiers to form a more
advanced classifier. For example, the AdaBoost classifier H(·) is given by:

H(x) = sign

(
T∑
t=1

αtht(x)

)
(5)

which is composed of T weak classifiers ht with weights αt. The AdaBoost classifier H(·) is the
surrogate model f̃(·, s, t), where the dependency on the source and terminal node are suppressed
for notational simplicity. AdaBoost is a member of the broader family of boosting algorithms.
AdaBoost is an appropriate choice for a surrogate model because it has demonstrated capabilities
to learn complex structures with limited training data (Schapire et al., 1998).

In AdaBoost the weak classifiers ht are one dimensional classification rules. AdaBoost se-
quentially computes each t ∈ [0, · · · , T] weak classifier by weighting the m training data points
(x1, y1), · · · , (xm, ym) according to the weights Dt ∈ Rm. For the first classifier, all training data
receives the same weight (i.e., D1(i) = 1/m). Subsequently, the tth weak classifier is determined
by minimizing the weighted misclassification error: εt = PrDt [ht(x

i) 6= yi].
The weak classifier is given the weight αt = 1

2 ln
(
1−εt
εt

)
> 0, based on the misclassification

error. After the tth weak classifier and weight αt are determined, the training data is re-weighted to
place a larger emphasis on points that were misclassified. This is achieved as follows: Dt+1(i) =
Dt(i)
Zt
· exp

(
−αtyiht(xi)

)
, where Zt is a normalization constant.

3 GENERATING TRAINING DATA FOR ADABOOST

In order to run AdaBoost, a dataset must be generated in order to train the classifier. Due to the
massive state space generated by even modest infrastructure networks (i.e., 2n states), only a small
fraction of the state space can be used as training data. Moreover, due to the inherent robustness
of infrastructure networks (e.g., through designed redundancies), it is common for many network
state realizations to result in a connected network status. Consequently, selection of a balanced
training dataset is critical for the classifier to perform well over a wide range of network states.

For example, it is important that the number of positive and negative examples in the training
set are approximately equal to allow the classifier to be trained on sufficiently many examples
of networks that are disconnected, and networks that remain connected after the disaster event
(Japkowicz and Stephen, 2002).

Algorithm 1 Guided Random Walk Sampling
Pick initial value n1f
Set nf = n1f
for k = 2 :K do

Calculate: pnf

f

Draw s ∼ N (0, γ) and set ntf = round(nf + s)

Calculate: p
nt
f

f

if Bt
k < Bk then Accept: Set nf = ntf , n

k
f = nf

else
Calculate λ = min

{
Bk

Bt
k
,1
}

Draw u ∼ U [0,1]
if u ≤ λ then Accept: Set nf = ntf , nkf = nf
else Reject: Set nkf = nf
end if

end if
Generate and record network state: xk s.t.

(∑n
i=1

(
xki == 0

))
= nkf

Compute and record network status: ykst = f(xk, s, t)
Update pnf

f

end for

3.1 Developing guided random walk sampling

A random-walk sampling technique is proposed to generate training data points, which is based
on the Metropolis-Hastings algorithm (Metropolis et al., 1953). We categorize the network states
based on the the number of failed nodes, nf , and track the proportion of network states with nf
failures which correspond to failed networks, pnf

f . Similarly we track the the proportion of failures

at the trial point ntf given by p
nt
f

f . The goal is to sample points such that the failed and intact

network states are balanced. This is achieved by sampling points as to minimize Bk =
∣∣∣pnf

f − 0.5
∣∣∣

by preferentially selecting trial points with Bt
k =

∣∣∣∣pnt
f

f − 0.5

∣∣∣∣ < Bk.

In the exploratory phase of the algorithm we randomly generate network states for each nf ,
and use a shortest path algorithm (Dijkstra, 1956) to identify whether a path exists between the
source and terminal node. Once the baseline estimate on network failure probability for each
level of node failure (1 to n nodes failing) is obtained, we continue by randomly selecting a level
of node failure and determine whether to include the point in the training data. A trial point
ntf is generated from the previous point nf using a Gaussian random step size with zero mean

and variance: γ = a ·

(
1
n

n∑
nf=1

P
nf

f

)b
, rounded to the nearest integer, where a and b are tuning

parameters. The trial point is accepted or rejected to balance the proportion of failed network
states. The algorithm is summarized in Algorithm 1.

3.2 Node importance factors

If the network state x is the only feature used for classification, the classifier is not given any
explicit information about the network topology. To provide information on the network topology
and the relative importance of each node to network survival, two node importance factors are
considered. These node importance factors can be used as weights for each feature, to place
particular emphasis on important nodes, while de-emphasizing less predictive nodes.

Figure 2: Graphical abstraction of California gas distribution network with source and sink identi-
fied with a ?.

A commonly used measure of node importance is the degree centrality (DC) of the node (Op-
sahl et al., 2010). Degree centrality measures the total degree (in degree and out degree) as a
relative proportion of the highest degree node in the network.

In addition to degree centrality, we use eigenvector centrality (EC) to provide the classifier
with more information about the network topology. Eigenvector centrality is a measure of the
relative influence of a node in the network. The eigenvector centrality of a node is computed as the
corresponding component of the eigenvector associated with the greatest eigenvalue of the network
adjacency matrix (Chartrand, 1984).

4 NUMERICAL EXAMPLES

4.1 California gas distribution network

The California gas distribution network is used for the numerical examples in this study. The
topology of the network obtained from Lim et al. (2013) is reproduced in Figure 2. This is an
interesting network to study since it provides complexity while remaining sufficiently simple to
visually inspect the connectivity. This network consists of 244 components (70 nodes and 87 bi-
directional edges). The nodes represent substations and end consumers in the distribution network
and the edges are pipelines between these substations. For simplicity of demonstration in this
study, only nodes are allowed to fail, although the assumption can be easily relaxed by assigning
a node and corresponding failure probability to each pipe segment. This example considers the
same source and terminal node for all experiments, and they are identified in Figure 2.

4.2 Explanation of experiments

In order to simulate an uncorrelated random failure, we examine the case where all nodes in the
network have the same uncorrelated probability of failure. In reality, components may have corre-
lation due to geographic proximity, and the framework can be extended to accommodate this case.
For this first simple experiment, we generate a vector of length n of uncorrelated uniform random
variables, and compare them to the node failure probability to determine if each node has failed or
is still intact for the simulation.

For each case tested, 500 network states are generated and tested for connectivity using the Ad-
aBoost classifier and using Dijkstra’s algorithm. The results are used to estimate the true probabil-
ity of network failure under a surrogate and exact connectivity model. The coefficient of variation
(COV) on the true probability of network failure δp̂nf is computed as:

δp̂nf =

1√
N
sq

p̂nf
(6)

0 100 200 300 400 500
0

0.2

0.4

0.6

0.8

1

Number of MCS
E

s
ti
m

a
te

d
 n

e
tw

o
rk

 f
a

ilu
re

 p
ro

b
a

b
ili

ty

MCS for estimate of network failure probability, p
f
=0.1

Machine learning based estimate

Shortest path based estimate

Machine learning based COV

Shortest path based COV

Figure 3: Convergence of MCS estimates on true network failure probability for pfi = 0.1 with
500 simulations.

where N is the total number of MCS, sq is the sample standard deviation of the network failure
probability estimates, and p̂nf is the estimated network failure probability. We are then able to
compare the accuracy of the estimates, as well as the computation time for each method to evaluate
the machine learning-based SRA framework.

We consider individual component failure probabilities pfi of 0.01, 0.1, 0.2, and 0.5, in order
to observe a range of network failure probabilities. Additionally, we use graph theoretic node
importance factors that measure to relative centrality of each node to improve the network failure
estimate for the case when pfi = 0.1. All experiments are performed using an AdaBoost based
model with T = 200 weak classifiers.

We also consider a non-uniform component failure probability where component failure prob-
ability varies linearly with the distance from the epicenter. In the case considered, component fail-
ure probabilities vary from a maximum pmaxf = 0.01 at the epicenter to a minimum pminf = 0.20
at the furthest point from the epicenter.

4.3 Results

Based on the cases outlined above, it is found that if the component failure probability is very high
or very low, AdaBoost is able to classify network states with almost zero error. In the case where
pfi = 0.1, the machine learning classifier is able to correctly predict each tested network state, as
seen in Table 1. The MCS estimate of the network failure probability generated with the proposed
machine learning classifier converges with the MCS estimate using the shortest path method as
seen in Figure 3, which also shows bounds for the estimate based on the coefficient of variation.
Table 1 shows the results of all the MCS conducted. Here, pfi is the individual component failure
probability, ML time and SP time are the time for the machine learning algorithm and shortest-path
algorithm to complete all the MCS, respectively, and error is computed as the overall number of
incorrect predictions. This table shows that the worst performance is achieved around pfi = 0.1.
Furthermore, when a non-uniform component failure probability is considered, Table 1 shows that
this has slightly worse overall performance then if each component is assumed to be equally likely
to fail.

As illustrated in Table 1, there is a significant time savings when using the machine learning-
based method (TML) for evaluating each Monte Carlo simulation as compared to traditional short-
est path methods (TSP) for evaluating the connectivity of two points of interest within the network.

In order to improve the performance of the machine learning-based classifier, the node im-
portance factors introduced previously are used to give the classifier more information about the

pfi TML (s) TSP (s) Error (%)

0.01 1.6605 8.8806 0.4
0.1 1.6758 8.9012 4.6
0.2 1.6911 8.9399 3.6
0.5 1.7817 9.0739 0.0

0.01 - 0.2 1.6196 9.0994 8.6

Table 1: Run time and error for 500 MCS at selected component failure probabilities (pf).

Method TML (s) TSP (s) Error (%)

Baseline 1.6758 8.9012 4.6
DC 4.5024 10.3058 2.0
EC 4.2358 9.7206 4.2

Table 2: Influence of node importance factors for 500 MCS with pf = 0.1, which is the worst
performing classifier (Table 1).

network topology. Based on the results highlighted in Table 2, supplying topological information
about the graph to weight each feature has the effect of slightly decreasing the error when degree
centrality is used, while causing the computation time to increase. When information about the
connectedness of the graph is provided to the machine learning algorithm during training, there is a
significant reduction in error as seen in Table 2. Providing topological information to the classifier
allows it to classify more accurately.

5 CONCLUSION AND FUTURE WORK

A framework to perform system reliability analysis in real–time using machine-learning-based sur-
rogate models was introduced. AdaBoost was proposed as a method to construct surrogate model
for classification of network states. In order to obtain an adequate training sample to developed the
classifier a guided random walk sampling algorithm was proposed. The framework was demon-
strated on the California gas distribution network. All functions and scripts to reproduce these
results can be found at (Stern, 2014).

The current classifier is trained of a single source-destination node pair, and thus works when
the specific nodes of interest are known in advance. For real–time SRA applications, having a
general model that can classify the connectivity of any two nodes within the network will broaden
the applicability of the approach. Future work will focus on constructing a general-purpose clas-
sifier for all nodes and all pairs. Further research will be devoted to training the surrogate model
for cases with spatially-correlated component failure probability. This advanced classifier will be
tested on a variety of infrastructure networks for validation.

ACKNOWLEDGMENTS

The authors would like to thank the US National Science Foundation for funding under grant
number CMMI 1031318. Any opinions, findings and conclusions or recommendations expressed
in this material are those of the authors and do not necessarily reflect the views of the National
Science Foundation. The second author, Junho Song would like to acknowledge support by a
grant entitled Development of cutting edge technologies for the multi-faceted representation of
design earthquake ground motions based on analyses of acceleration records [NEMA-NH-2013-
71] provided by the Natural Hazard Mitigation Research Group, National Emergency Management
Agency of Korea.

REFERENCES

Boin, A. and A. McConnell (2007). Preparing for critical infrastructure breakdowns: The limits
of crisis management and the need for resilience. Journal of Contingencies and Crisis Manage-
ment 15, 50–59.

Bruneau, M., S. E. Chang, R. T. Eguchi, G. C. Lee, T. D. O’Rourke, A. Reinhorn, M. Shinozuka,
K. Tierney, W. A. Wallace, and D. von Winterfeldt (2003). A framework to quantitatively assess
and enhance the seismic resilience of communities. Earthquake Spectra 19, 733–752.

Chartrand, G. (1984). Introductory Graph Theory. Dover Publications.
Der Kiureghian, A. and J. Song (2008). Multi-scale reliability analysis and updating of complex

systems by use of linear programming. Reliability Engineering & System Safety 93, 288–297.
Dijkstra, E. (1956). A note on two problems in connexion with graphs. Numerische Mathematik 1,

269–271.
Freund, Y. and R. E. Schapire (1995). A decision-theoretic generalization of on-line learning and

an application to boosting. Journal of Computer and System Science 55, 119–139.
Freund, Y. and R. E. Schapire (1999). A short introduction to boosting. Journal of Japanese

Society for Artificial Intelligence 14(5), 771–780.
Jansson, T., L. Nilsson, and M. Redhe (2003). Using surrogate models and response surfaces in

structural optimization with application to crashworthiness design and sheet metal forming.
Structural and Multidisciplinary Optimization 25, 129–140.

Japkowicz, N. and S. Stephen (2002). The class imbalance problem: a systematic study. Intelligent
Data Analysis 6, 429–450.

Lim, H., J. Song, and N. Kurtz (2013). Seismic reliability assessment of lifeline networks using
clustering-based multi-scale approach. Earthquake Engineering and Structural Dynamics.

Meirlaen, J., B. Huyghebaert, F. Sforzi, L. Benedetti, and P. Vanrolleghem (2001). Fast, simultane-
ous simulation of the integrated urban wastewater system using mechanistic surrogate models.
Water Science and Technology 43, 301–307.

Metropolis, N., A. Rosenbluth, M. Rosenbluth, A. Teller, and E. Teller (1953). Equation of state
calculations by fast computing machines. Journal of Chemical Physics 21, 1087–1092.

Opsahl, T., F. Agneessens, and J. Skvoretz (2010). Node centrality in weighted networks: Gener-
alizing degree and shortest paths. Social Networks 32, 245–251.

Papadrakakis, M., V. Papadopoulos, and N. D. Lagaros (1996). Structural reliability analysis of
elastic-plastic structures using neural networks and monte carlo simulations. Computer methods
in applied mechanics and engineering 136, 145–163.

Qian, Z., C. C. Seepersad, V. R. Joseph, J. K. Allen, and C. F. J. Wu (2005). Building surrogate
models based on detailed and approximate simulations. Journal of Mechanical Design 128,
668–677.

Reed, D., K. Kapur, and R. Christie (2009). Methodology for assessing the resilience of networked
infrastructure. IEEE Systems Journal 3, 174–180.

Schapire, R. E., Y. Freund, P. Bartlett, and W. S. Lee (1998). The Annals of Statistics 26, 1651–
1686.

Song, J. and S.-Y. Ok (2009). Multi-scale system reliability analysis of lifeline networks under
earthquake hazards. Earthquake Engineering and Structural Dynamics 39, 259–279.

Stern, R. (2014). https://github.com/raphaelestern/systemreliability.
Vugrin, E. D., D. E. Warren, M. A. Ehlen, and R. C. Camphouse (2010). A framework for assess-

ing the resilience of infrastructure and economic systems. Sustainable and Resilient Critical
Infrastructure Systems, 77–116.

Wan, X., J. F. Pekny, and G. V. Reklaitis (2003). Simulation-based optimization with surrogate
modelsapplication to supply chain management. Computers & Chemical Engineering.

