
MANAGING PUBLIC TRANSIT IN THE PREVALENCE OF PANDEMIC AND1
REOPENING THE ECONOMY2

3
4
5
6
7
8

Word Count: 7193 words + 1 table(s) × 250 = 7443 words9
10
11
12
13
14
15

Submission Date: August 1, 202016



Luo, Gee, and Samaranayake 2

ABSTRACT1
As the COVID-19 pandemic is rapidly evolving globally, public transit keeps playing a pivotal2
role in satisfying the essential workers’ demand for commuting and paves the way for reopening3
the economy. Local transportation agencies face a health-and-economics trade-off when devel-4
oping context-specific operation plans for public transit. Without strategic preparedness, mass5
transit facilities are potential hotbeds for the spreading of infectious diseases. This work provides6
a network-based analysis for this trade-off by computing the maximal commute network flow with7
strict public health measure constraints. The resulting plans include the traffic flow restrictions8
imposed on each route and are adaptive to the time-varying epidemic dynamics. A case study dur-9
ing the COVID-19 pandemic shows that the properly planned subway system in New York City10
can maintain 88% of traffic while reducing 50% of the risk of disease transmission compared with11
fully-loaded public transit services. Transport policy-makers can exploit this optimization-based12
framework to resolve the health-and-economic trade-off and make proactive reopening plans.13

14
Keywords: Public transit, Spatial compartmental model, Health-and-economics trade-off15
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INTRODUCTION1
Operating public transit amid post-peak and post-pandemic periods is a double-edged sword: on2
the one hand, it provides basic and low-cost mobility services to those not owning cars or who3
place environmental concerns at the center of commuting decisions; on the other hand, human4
mobility, especially commuting by mass transit, contributes to the spatial propagation of infec-5
tious disease. Policy-makers face this health-and-economics trade-off when lifting the restrictions6
and restarting public transit systems during the unprecedented COVID-19 pandemic. There is at-7
tainable evidence (1, 2) that the pandemic outbreak had a disproportional impact on mass transit8
operators and passengers compared with other groups of the population. Due to safety concerns,9
many countries have implemented the closure of transit systems (3); in some countries, ridership of10
public transit has dropped up to 90% (4, 5). While the potential risk of epidemic exposure inside11
subway carriages or buses has been well-recognized (6), there is a lack of scientific knowledge12
about the corresponding prevention strategies. This work aims to answer a critical question fre-13
quently raised by transportation agencies and researchers: How to control the traffic flows in the14
public transit networks to assist the safety preparedness in the period of infectiousness?15

To answer this question, we first model the spread and mitigation of a particular epidemic16
disease through public transit networks by a metapopulation model. The risk of disease transmis-17
sion associated with public transit depends on the characteristics of the disease and the interven-18
tion policies implemented in the workplace and the trip to work (Figure 1). Next, we outline a19
mathematical-programming approach to develop responsive public transit policies for the evolv-20
ing epidemics with the interplay of these factors. By applying targeted interventions on high-risk21
transit routes and regions, most inelastic travel demand is satisfied while the spatial propagation of22
the infectious disease is restrained.23

FIGURE 1: Illustration of public transit interventions under the pandemic; arrows mean round-
trips for daily commuting.

Related work24
There is a resurgence of interest in modeling the disease contagion processes mediated by recur-25
ring commuting trips. The development of advanced metapopulation network models coincides26
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with the pattern of increasingly frequent epidemics in recent years. Keeling et al. (7) initiated the1
stream of network models for the spatial spreading of infectious disease in the commuter-to-work2
networks. They addressed the fact that the infection dynamics in the recurrent commute networks3
were significantly different from their counterparts in the kernel and random mobility networks.4
A similar conclusion was drawn in (8), whereas the diffusion rate and recurrent commuting rate5
jointly determine whether or not the global spreading of the infectious disease occurs. Bichara and6
Iggidr (9) analyzed how the heterogeneous groups, patches, and mobility patterns affect the disease7
prevalence by a multi-group compartment model. Since the individual’s commuting patterns are8
no longer random, Yashima and Sasaki (10) found that the commute networks’ topological charac-9
teristics such as the networks’ degree distribution become relevant. When the degree of networks10
follows a heavy-tailed distribution, the disease invasion threshold decreases significantly. Hence,11
the epidemic is not preventable by merely random interventions such as quarantine and vaccina-12
tion. Therefore, studying the relationship between commute networks and disease dynamics is of13
interest to epidemiology and transportation research.14

A vast body of literature has extensively investigated transportation networks’ operations15
after disruptions (e.g., natural disasters) and incidents such as strikes and epidemics as in this16
work. As transportation systems are essential for the functioning of cities after disruptions, their17
resilience has become a key design principle (11). This stream of work centers around enhancing18
the networks’ ability to maintain operations during the disruptive period or minimize the required19
resources for recovery. Note that the enhancement of transportation networks’ resilience is only a20
derivative of measurements in previous work.21

In an attempt to identify the risk of taking public transit during the outbreak of COVID-19,22
an infectious disease with millions of confirmed cases globally, Mo et al. (12) proposed an indi-23
vidual encounter model that characterizes the transmission of the disease on public transportation24
facilities. As an agent-based model, the encounter model captures the probability of contact be-25
tween each individual and thus evaluates the risk of transmitting a disease from an infectious person26
to a susceptible one. They calibrated the model using the smart card data from Singapore. Using27
a similar approach, Qian et al. (13) conducted a cross-city comparison of the contact networks28
using the smart card data from China. They constructed a universal generation model to explain29
the correlation between the metro contact network’s properties and the risk level of transmissible30
diseases. Note these prior work all use the contact networks as the epidemic model to capture the31
social activity contacts; thus, rich trajectory data is required for model fitting. More importantly,32
these models only studied the spreading of the infectious disease in transit ignoring the interactions33
between commuters and other population. Considering the short period of commuting compared34
with other activities during the day, separating these two population seriously underestimate the35
value of public transit intervention policies. Chang et al. (14) combined the metapopulation model36
and commute networks to explain why the infection rates among disadvantaged groups were higher37
than the rest. Compared to agent-based models such as the individual encounter model, metapop-38
ulation models requires access to demographic survey data that is normally publicly available.39

While previous research typically only investigated the descriptive and predictive models40
, this work proceeds to develop a prescriptive model for transit networks. Blending the advances41
in the metapopulation epidemic models with the network fortification models, the resulting opti-42
mization lays the foundation for making transportation policy that balances the need for returning43
to normal activities and the prevention of public health hazards.44
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Objectives and main contributions1
This work focuses on optimizing the commute networks’ operations under disruptions caused by2
emerging infectious diseases. We are specifically interested in controlling the mobility patterns3
with dual objectives – providing reliable access to public transit services while slowing the com-4
municable disease invasion.5

The main contributions of this work are:6
1. Developing an optimization-based analysis by integrating the spatial epidemic model7

and the commute network model.8
2. Providing an iterative method to solve the large-scale transit traffic control policies and9

obtain general insight for effective interventions.10
3. Investigating the optimal subway route operations plans in Manhattan, New York City11

(NYC) and evaluating the impact on the transmission of COVID-19 pandemic.12
Note that the method developed in this work can be applied to any infectious disease that13

can be potentially transmitted by using public transit services, e.g., with a mix of aerosol and con-14
tact transmissions inside vehicles. The spatial epidemic model on the commute networks captures15
the influence of two most common and effective regulations: quarantine policies (population with16
severe symptoms is forced to stay at home) and social-distancing policies on public transit. Our17
work is a first attempt to investigate the adaptive transit traffic control policies considering the18
joint effects of repetitive commuting patterns and epidemic dynamics. The model developed in19
this work requires access to only publicly-available data and thus can be easily adopted by local20
transportation agencies to make data-driven responsiveness and preparedness plans.21

METHOD22
Metapopulation model for commute networks23
This work focuses on the recurring commuting trips, which account for 79% of all transit trips in24
the United States (including work and school trips) (15). Commuting remains the primary demand25
for traveling during the epidemic period and revives rapidly in the reopening of the economy (16).26

Three main approaches for modeling the commute mobility patterns have been used in the27
past. First, we may model the movement in urban commute networks on the individual level.28
However, reconstructing the contact networks is not possible without access to massive human29
motion trajectory data (12). Tracking passengers’ use of public transit and alternative modes is30
costly and slow in implementation, occasionally impossible due to privacy concerns, and biased31
due to limited users of electronic devices. The second approach for modeling traveling patterns is32
random mobility models. Nevertheless, prior work has revealed that recurring commute trips (i.e.,33
individuals take the fixed routes back and forth) have a significant impact on the disease dynamics34
and the derived control policies (7). Therefore, modeling heterogeneous mobility patterns is critical35
for developing safe and effective public transport policy.36

A promising alternative option is the metapopulation model for the following reasons. First,37
conventional transportation planning has been using basic geography units such as traffic analysis38
zones (TAZ) or census tracts, so there is a rich literature on the fundamental methodology and39
datasets in the hands of local transportation agencies. Second, leveraging the richness of urban40
planning and transportation models associated with these basic geography units, researchers can41
explore the connections to commuters’ demographical features to develop context-specific plans42
in preventing epidemics. Finally, epidemic response policies and guidance are often made on a43
macroscopic network level. In what follows, we introduce how to construct such a metapopulation44
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model for commute networks.1
During the day, each resident is in one of three statuses: at home (“H”), at work (“W”),2

or commuting (“C”). The underlying commute network integrates two separate systems: a home-3
and-work network (VHW ,EHW ) consisting of basic geography units such as census tracts or TAZs,4
and public transit networks (VC,EC) serving daily commute between home-and-work nodes.5

1. Home-and-work network:6
(a) Residents live in a closed complete network with a fixed population Nv ∈ Z+,v ∈7

VHW . We denote N = [Nv]v∈VHW whenever there is no possibility of confusion.8
(b) Each vertex v ∈ VHW has a set of neighboring outflow vertices N +(v) := {u ∈9

VHW : (v,u) ∈ EHW} and a set of inflow vertices N −(v) := {u ∈ VHW : (u,v) ∈10
EHW}. The fraction of residents at v travels to u ∈ N +(v) is rvu ∈ [0,1]. The11
conservation law ensures that the fractions satisfies ∑u∈N +(v) rvu = 1 for all v ∈12
VHW .13

2. Public transit network:14
(a) A set of vertices VC represents the public transit routes available in the region,15

where each route may contain transfers between multiple modes or lines.16
(b) Expanding V = VHW ∪VC such that each region v∈ VHW is connected to reachable17

routes through edges EC.18
(c) We define the outflow and inflow to public transit as C+(v) and C−(v), respec-19

tively, upon edges EC. The fraction ∑u∈C+(v) rvu ≤ 1 holds for all v∈ V if C+(v) 6=20
/0 because residents can choose other modes of transport such as walking or driving.21

3. Effective population:22
We define the effective work-time population as Ne

v (t) := ∑u∈N −(v) ruvNu, and the ef-23
fective commuting population as Ce

v(t) := ∑w∈C−(v) rwvNv(t), respectively. The later24
definition holds by observing that commuters taking the same route back and forth so25
that rvw = rwv for any w ∈ C−(v). Let ρ define the transit matrix for ruv, we can thus26
write the effective population as Ne(t) = ρ

ᵀ
NN(t) and Ce(t) = ρ

ᵀ
CN(t).27

We call the expanded network a commute network (V ,E ). Using the route as the node28
representation in commute networks is because contagious diseases such as COVID-19 can spread29
via respiratory, aerosol, and contact transmission in vehicles. Experiments have shown that the30
infectious virus could be detected from surfaces for up to 24 hours or even three days (17, 18).31
This metapopulation model implies that travelers are exposed to the disease in a carriage carrying32
infectious passengers at different times. As a result, we only need to analyze the average daily33
traffic data to make day-to-day traffic control plans.34

A common concern is that the traveling behavior may shift away from public transit systems35
because of the pandemic (16), and the government’s disease control plans , such as reducing the36
public transit service time or alternative seating exacerbate this trend. It worth noticing that rvu37
for each v ∈ VHW and u ∈ C+ incorporates a route choice model. Since the common factors such38
as traveling time, trip purpose, and traffic congestion conditions still play a central role in these39
distributions, this work uses a fixed route choice models through the analysis. The demands for40
new empirical research regarding the change of the traveling behavior and calibrating the model41
with post-pandemic data is beyond the scope of this current work.42
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Spatial epidemic model1
Spatial epidemic models are widely used to model the spread of infectious disease and quantify2
workable disease control strategies. Many infectious diseases have a long period from infection3
to onset of symptoms, which causes a significant challenge in addressing control strategies. The4
respiratory symptoms of COVID-19 appear in as few as two days or as long as 14 days after ex-5
posure (18). To capture this feature, we use a standard epidemic model that divide the population6
at each node into four groups, susceptible, exposed, infectious, and recovered as Sv(t),Ev(t), Iv(t),7
and Rv(t), respectively ; i.e., Nv(t) = Sv(t)+Ev(t)+ Iv(t)+Rv(t) for all v ∈ VHW . In each period,8
Qv(t) = α(t)Iv(t) represents a ratio of the infectious population symptomatic and quarantined in9
the home node. The quarantined population is still contagious to the local population. The non-10
symptomatic individuals or individuals unaware of their health conditions, (1−α(t))Iv(t), con-11
tinue to move in commute networks. The Spatial SEIR model on commute networks is presented12
in Figure 2.13

FIGURE 2: Spatial SEIR model on commute networks with |VHW |= 2 and |Vc|= 1. In commute
node w, Ce

w is the remaining flow-in commuter population through the transit route.

The dynamics of the susceptible population, who become exposed once having infectious14
contact with the infected population, is described as follows (19):15

dSv(t)
dt

=− pHSv(t)
(
(1−α(t))βvIv(t)

Nv

)
− pW Sv(t)

(
∑

u∈N +(v)

(1−α(t))rvuβu[ρNI(t)]u
[ρNN]u−α(t)[ρNI(t)]u

)
(1)

− pCSv(t)

(
∑

w∈C+(v)

(1−α(t))rvwβw[ρCI(t)]w
[ρCN]w−α(t)[ρCI(t)]w

)
,

where pH , pC and pW represent the fraction of time during the day involving staying in the home16
region, commuting, and in the workplace, respectively. In each period, (1−α(t)) ratio of the17
infected population is isolated from each node v. Note that we do not assume that each trip (u,v) is18
carried by public transit so the total ∑v∈VHW [ρ

ᵀ
CN]v ≤ ∑v∈VHW Nv, and those use other modes such19

as driving bear no risk in commuting.20
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Following the notational conventions in epidemic models (12, 20), the epidemic model1
follows a Spatial SEIR model on commute networks:2

∇tSt =−pHSᵀ
t IH

t − pW Sᵀ
t IW

t − pCSᵀ
t IC

t , (2)

∇tEt =−∇tSt−
1
δ

Et , (3)

∇tIt =
1
δ

Et− γIt (4)

∇tRt = γIt , (5)
where δ is the latency period, and γ is the recovery rate. The spatial SEIR model guarantees that3
dNv/dt = 0 for each v ∈ VHW and t ∈ R+.These population vectors are given by:4

St = [Sv(t)]
ᵀ
v∈V ,


IH
t = [βv

Iv(t)
Nv

]ᵀv∈V
IW
t = [∑u∈N +(v) rvuβu

(1−α(t))[ρN I(t)]u
[ρNN]u−α(t)[ρN I(t)]u

]ᵀv∈V

IC
t = [∑w∈C+(v) rvwβw

(1−α(t))[ρCI(t)]w
[ρCN]w−α(t)[ρCI(t)]w

]ᵀv∈V ]

Given the epidemic dynamics, we can obtain a critical measurement to guide disease con-5
trol called the basic reproduction number R0. It is the average number of secondary cases produced6
by one infected individual introduced into a completely susceptible population (10). Emerging in-7
fectious diseases such as COVID-19 can spread in a population if R0 > 1. R0 also determines what8
proportion of the population should be immunized or vaccinated to eradicate the infectious disease.9

In the metapopulation setting, R0 is defined as the dominant eigenvalue of the next genera-10
tion matrix (NGM) G0 ∈R|VHW |×|VHW |. Additionally, in the epidemiology literature there exists the11
concept of effective reproductive number, which we denote Rt , which measures the spread of the12
infection in a partially susceptible population. We extend this notion to the metapopulation model13
by computing the NGM and its dominant eigenvalue at time t 6= 0. The effective next generation14
matrix, Gt , is an approximate measurement of the disease transmission process for t ∈ [0,T ].15

We can also obtain an expression for changes in Rt as a result of parameter changes in the16
model. For a fixed time t, let ζ and η be the eigenvectors associated with Rt in the eigenvector17
decomposition of Gt , i.e., ζ ᵀGt = Rtζ

ᵀ,Gtη = Rtη , and normalized such that ζ ᵀη = 1. If we18
vary the spatial SEIR model parameters by controlling the transit ridership through the planning19
horizon, we can evaluate the change of the reproduction number as:20

∆Rt =
ζ ᵀ∆Gtη

ζ ᵀη
. (6)

Optimizing transit flows with disease reproduction constraints21
Our decision is curbing the traffic flows on particular transit routes to balance the demand for com-22
muting and disease spreading. For each u ∈ VHW ,w ∈ VC, we let xuw ∈ [0,1] denote the proportion23
of subpopulation allowed to use this public transit route. Such a control can be realized either by24
reducing the frequency of service on a particular route or imposing new capacity regulation per25
ride. In the fixed flow control case, xxx is fixed at time t = 0; In the extended version, the policy-26
maker adaptively changes the guidance for using public transit xxx(t) after observing that R0 hits27
certain thresholds over the planning horizon t ∈ [0,T ].28
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Fixed flow control policy1
Our decision xxx ∈ R|VHW |×|VC| is the proportion of flows allow to use public transit on each route2
(v,w),v ∈ VHW ,w ∈ VC. Our primary goal is to set an initial control plan to maximize the network3
throughput in public transit networks while protecting the public from the aggravation of infectious4
diseases. We can formulate the problem as follows:5

maximizexxx ∑
(v,w):v∈VHW ,w∈VC

xvwrvwNv (7)

s.t. ∆R0(xxx)≤ κ(R0(1)−R0(0))
0≤ xvw ≤ 1, ∀v ∈ VHW ,∀w ∈ VC.

The right-hand side of the disease reproduction constraint in (7) means that the change of6
basic reproduction number due to opening public transit is within a tolerance κ ∈ [0,1] from the7
worst case. The worst case is measured by R0 with full reopening of public transit (xxx = 1) and the8
best case is with no opening at all (xxx = 0) (a more rigorous proof is given in Lemma 2). The main9
reasons for using this relative measure of the disease spreading, R0(1)−R0(0), include:10

1. The impact of controlling public transit flows not only affect the public transit users11
(direct exposed group), but also the resulting propagation to other populations in their12
home or work nodes.13

2. The impact of public transit is sensitive to input data such as route choice estimation and14
epidemic model parameters. In contrast, the relative value of R0 is a stable measure.15

3. The constraint can be directly computed by (6).16
Through the optimization, we assume that commuters choose alternative modes of transport (e.g.,17
driving, walking, ride-hailing) if public transit is not available. This assumption is conservative18
for the estimation of disease spreading. Supposing that commuters disregard the travel plans if19
no alternative option is available, they are not exposed to the disease and our control policy is20
restricted for public safety.21

We explain how to obtain the explicit expressions of constraints in what follows. The22
detailed derivations can be found in Appendix A.1. Assuming a constant quarantine ratio of α ,23
the NGM at time t, Gt(xxx), can be computed from the production of transmission and transition24
matrices. For each tuple of u,v ∈ VHW , we have:25

[Gt(xxx)]vv =
1
γ

[
pHβv(1−α)

Sv(t)
Nv

+ pW ∑
u∈N +(v)

r2
vuβu

(1−α)Sv(t)[ρ
ᵀ
NN]u

([ρᵀ
NN]u−α[ρᵀ

NI(t)]u)2+

pC ∑
w∈C+(v)

x2
vwr2

vwβw
(1−α)Sv(t)[ρC(x)ᵀN]w

([ρC(x)ᵀN]w−α[ρC(x)ᵀI(t)]w)2

]
, (8)

[Gt(xxx)]vu =
1
γ

[
pW ∑

w∈N +(u)∩N +(v)
ruwrvwβw

(1−α)Sv(t)[ρ
ᵀ
NN]w

([ρᵀ
NN]w−α[ρᵀ

NI(t)]w)2+

pC ∑
w∈C+(u)∩C+(v)

xuwruwxvwrvwβw
(1−α)Sv(t)[ρC(x)ᵀN]w

([ρC(x)ᵀN]w−α[ρC(x)ᵀI(t)]w)2

]
. (9)

With fixed xxx over the planning horizon t ∈ [0,T ], the disease reproduction constraint in (7)26
is given by:27
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ζ
ᵀ(G0(xxx)−G0(0))η ≤ (R0(1)−R0(0))ζ ᵀ

η , (10)
where [G0(xxx)−G0(0)]vu =

pC ∑
w∈C+(v)

x2
vwr2

vwβw(1−α)Sv
[ρC(x)ᵀN]w

([ρC(x)ᵀN]w−α[ρC(1)ᵀI]w)2 ,v = u

pC ∑
w∈C+(u)∩C+(v)

xuwruwxvwrvwβw(1−α)Sv
[ρC(x)ᵀN]w

([ρC(x)ᵀN]w−α[ρC(x)ᵀI]w)2 ,v 6= u.
1

Given controls xxx, there exists an obvious disease-free equilibrium Sv(0) = Nv and Iv(0) = 02
for all v ∈ V at t = 0. We can further simplify (10) as:3

[G(xxx)−G(0)]vu =


pC(1−α)Nv ∑

w∈C+(v)

x2
vwr2

vwβw

[ρC(x)ᵀN]w
,v = u

pC(1−α)Nv ∑
w∈C+(u)∩C+(v)

xuwruwxvwrvwβw

[ρC(x)ᵀN]w
,v 6= u.

(11)

Adaptive flow control policy4
Corresponding to the disease control center’s preparedness plans, the transportation authorities5
need to make sequential decisions during [0,T ] in the evolving situation. Since the basic reproduc-6
tion number Rt(x(t)) represents the expected future infectious number after adopting the public7
transit control x(t), we intend to design adaptive control policy around it. The optimal control8
policy is derived by solving the following extension of (7):9

maximize ∑
τ∈TTT

∑
(v,w):v∈VHW ,w∈VC

xvw(τ)∆τrvwNv (12)

s.t. ∆Rτ(xxx(τ))≤ κRτ (0),Rτ (1)(τ)
(

Rτ(1)−Rτ(0)
)
, ∀τ ∈ TTT ,

0≤ xvw ≤ 1, ∀v ∈ VHW ,∀w ∈ VC.
Note that κRt(0),Rt(1)(t) is dependent on the values realized at period t as the public transit10

operator intends to lift the health measure constraints as the spreading of the disease slows down.11
As a result, the disease reproduction constraint is adaptive to the effect of traffic control policy12
up to time τ . Each control xxx(τ) that persists for ∆τ is added as a linear term in the objective.13
The policy-maker can set a series of thresholds for R0 and the optimizer will return corresponding14
policies at periods TTT = {0,τ1, . . . ,T}. Since the fixed flow control policy is a special case of the15
adaptive policy by setting TTT = {0,T} and xxx(τ) = xxx, the adaptive policy is more effective than the16
fixed ones. Hence, we use the fixed control policy as a starting point for the adaptive control in17
Algorithm 1.18

Solving adaptive control t = [0,T ] is more challenging due to the confounding simulation-19
and-optimization issue. Given policy xxx(τ), simulating the spatial SEIR model is time-consuming20
and control-dependent. The workload grows exponentially when the list of thresholds increase.21
This urges to reduce the enumeration of controls by separating the compounds of simulation and22
optimization using the following procedure. We initialize Algorithm 1 with the fixed control policy.23
Then, in each backward step, we update the control policy after the current period and simulate24
the epidemic dynamics up to the current period. This procedure is valid because Rt is a long-term25
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measure for the contagious disease because of the prior controls. Given a sequence of controls1
along TTT , the disease reproduction constraints have a knapsack structure and the objective function2
is linear in time horizon. The procedure is suboptimal because we do not enumerate all possible3
states of SSSt and IIIt and evaluate adaptive policies is costly.4

Algorithm 1 Adaptive public transit flow control
Initial SEIR model SSS0,EEE0,III0,RRR0, population N, and network flow r over the commute network.
Solve fixed control problem x̂xx and set the optimal control xxx(τ)← x̂xx for all τ ∈ TTT .
while t ≤ T do

xxx(τ) = x̂xx for τ < t
Let t← t +∆t:
· Forward step: Simulate spatial SEIR model and obtain SSSt and IIIt .
· Backward step: Solve the subproblems of optimization in (12) with TTT = [t,T ] to obtain

the optimal control xxx∗(τ),τ ≥ t and optimal value OPT (t). Ensure:Ensure:Ensure: ∆Rτ(xxx)≤ κ(τ)(Rτ(1)−
Rτ(0)) for all τ ≥ t
Update control by xxx(t)← xxx∗(t)
Update the objective value OPT ← OPT (t)

end while
return xxx(t) for t ∈ T amd the corresponding optimal value OPT .

In practice, we can integrate the data collection into the analysis as follows:5
1. The observed infectious statistics can be used to calibrated the epidemic model (SSSt ,EEEt ,IIIt ,RRRt).6
2. If interventions were not available in the early stage, we set xxx = 1 for these periods and7

resolve the adaptive control problem in the middle of the disease outbreak.8
3. Finally, we can work the optimal points of time TTT into the optimization as it is equivalent9

to enforcing new equality constrains on x over the planning horizon.10
It worth noticing that the disease reproduction constraints in optimization (7) and (12) are11

non-convex and the dimension of xxx ∈ R|VHW |×|VC| is large. In the next section, we specify the12
existence conditions for optimal control and general rules for the optimal fixed flow control policy.13

GENERAL RULES FOR PUBLIC TRANSIT CONTROL POLICY14
For ease of analysis, we study the fully connected commute networks where each home node15
is reachable from other work nodes, and each commute node in VC connects to all nodes in VHW .16
This connectivity assumption does not lose generality because we can model inaccessible routes by17
enforcing the flow to be zero. The expanded network (V ,E ) is notwithstanding not fully connected18
because routes are not interconnected. The following lemma provides the existence conditions for19
optimal fixed control policy.20

Lemma 1. If the operator uses a global proportional control on public transit flow, i.e., xvw is a21
constant for all v ∈ VHW and w ∈ VC, the change of basic reproduction number is proportional to22
the control-free case.23

Proof. Let set xvw = σ for all v ∈ VHW and w ∈ VC, which means that we allow a constant ratio24
of residents to use public transit on each route. We have ρC(x) = σρC(1), and hence ρC(x)ᵀN =25
σρC(1)ᵀN and xvw

[ρC(x)ᵀN]w
= 1

[ρC(1)ᵀN]w
. Note that xvw

[ρC(x)ᵀN]w
appear in each entry of (11). This proves26

σ [G(1)−G(0)] = G(xxx)−G(0) and thus σ [R0(1)−R0(0)] = R0(xxx)−R0(0).27
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Note that this lemma is true because we assume that people have access to alternative modes1
for commuting. Lemma 1 is an important building block as it means that, for any exogenous κ ,2
we can simply set xxx = κ to satisfy the constraints hence the feasible set of the optimization is3
nonempty.4

Definition 1. A control policy xxx is more restrained than xxx′ if:5
1. xvw ≤ x′vw for all v ∈ VHW and w ∈ VC and there exists edges such that xvw < x′vw.6
2. Each pair of xvw > 0,xuw > 0 has dominating marginal effect on the controlled routes7

(v,w) and (u,w) with regard to the effective population, i.e., x′vwx′uv
xvwxuw

≥ [ρC(x′)ᵀN]w
[ρC(x)ᵀN]w

.8

We then have the following lemma:9

Lemma 2 (Monotonicity). If a public transit control policy xxx is more restrained than xxx′, then10
R0(xxx)< R0(xxx′).11

Proof. Without loss of generality, we assume the NGM associated with xxx and xxx′ both have linearly12
independent eigenvectors. NGM is nonnegative real-valued. We let the two NGM be G := Gt(xxx)13
and G′ := Gt(xxx′). The difference G′−G in each entry is:14 
(1−α)Nv pC ∑w∈C+ βwr2

vw

[ x′2vw
[ρC(x′)ᵀN]w

− x2
vw

[ρC(x)ᵀN]w

]
, u = v

(1−α)Nv pC ∑w∈C+ βwrvwruw

[ x′vwx′uw
[ρC(x′)ᵀN]w

− xvwxuw

[ρC(x)ᵀN]w

]
, u 6= v.

Let xxx′ = xxx+σσσ . For an arbitrary w ∈ VC, we can plug xxx′ into G′−G so we can represent15
the NGMs as G′ = G+σσσ ′G with the perturbation σ ′G much smaller than G. We can observe that,16
if the conditions of restrained controls are satisfied, then each term above is nonnegative. Note17
that σ ′G ≥ 0 is a function of σ and x. According to the matrix perturbation theory (21), we have18
λ ′i = λi +η

ᵀ
i σ ′Gη for each eigenvalue λi. By definition, R0 is the largest eigenvalue of NGM and19

we conclude that R0(xxx′)> R0(xxx).20

Remark 1. Lemma 2 indicates that reducing the traffic flow on a particular public transit route21
does not necessarily reduce the spreading of the infectious disease.22

Lemma 2 is not true if only condition 1 of restrained control holds. A counterexample is23
as follows. Instead of computing σ ′G, we only need to show that, for any given xxx and arbitrary24
u ∈ VHW ,v ∈ VHW , we have25

[σ ′G]vu =
(xvw +σvw)(xuw +σuw)

[ρC(x)ᵀN +ρC(σ)ᵀN]w
− xvwxuw

[ρC(x)ᵀN]w
.

We can easily find σvw > 0,σuw > 0 such that [σ ′G]vu < 0 by having a third node v′ with26
Nv′σv′w� σvw +σuw. Hence R0(xxx) increases with xxx.27

The optimization problem (7) is thus non-trivial because we cannot use gradient-based28
search method or decompose the problem by columns. The asymmetry between the home-and-29
work network and commute network motivates the derivation of the following general rules for30
obtaining upper-bounds on the public transit operations.31
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Theorem 1. At the disease free equilibrium, with intervention xxx, we have1

R0(xxx)≤
1−α

γ
max

v

[
pHβv + pW ∑

w∈N+(v)
rvwβw + pC ∑

w∈C+(v)
xvwrvwβw

]
(13)

Proof. Since R0(xxx) is the spectral radius of G(xxx), we have R0(xxx)≤ ‖G(xxx)‖ for any induced matrix
norm. Choosing the `1 norm, we have

R0(xxx)≤ ‖G0‖`1 = max
v

n

∑
u=1

[G0(xxx)]uv.

Computing the sum of column v of G0(xxx), we get2

n

∑
u=1

[G0(xxx)]uv =
pH(1−α)

γ
βv +

pW (1−α)

γ

n

∑
u=1

n

∑
w=1

ruwrvwβw
Nu

[ρᵀ
NN]w

+
pC(1−α)

γ

n

∑
u=1

m

∑
w=1

xuwruwxvwrvwβw
Nu

[ρC(x)ᵀN]w

=
pH(1−α)

γ
βv +

pW (1−α)

γ

n

∑
w=1

rvwβw +
pC(1−α)

γ

m

∑
w=1

xvwrvwβw.

Taking the maximum over v gives the desired expression.3

Remark 2. This bound can be further simplified to

R0(xxx)≤
(1−α)maxv βv

γ

(
pH + pW + pC max

v,w
xvw

)
(14)

which makes clear the relationship to R0 in the single population model, which would be given by4
(1−α)β

γ
.5

Theorem 2. Assume we have a policy xxx that is more restrained than having no intervention. Then6
at the disease free equilibrium ∆R0(xxx) = R0(1)−R0(xxx) satisfies7

0≤ ∆R0(xxx)≤ ‖ξ‖`1‖η‖`1 max
v ∑

w∈C+(v)
rvwβw(1− xvw), (15)

where ξ and η are the left and right eigenvectors of G0(1) normalized such that ξ ᵀη = 1.8

Proof. The inequality 0 ≤ ∆R0(xxx) follows from Lemma 2. Taking norms on both sides of the9
sensitivity analysis equation we get10

|∆R0(xxx)| ≤ ‖ξ‖‖η‖‖∆G0(xxx)‖
for any induced matrix norm. Again choosing `1, we have11
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‖∆G0(xxx)‖`1 = max
v

n

∑
u=1

[∆G0(x)]uv

=
pC(1−α)

γ
max

v

m

∑
w=1

rvwβw

(
∑

n
u=1 ruwNu

[ρC(1)ᵀN]w
− xvw ∑

n
u=1 xuwruwNu

[ρC(x)ᵀN]w

)
=

pC(1−α)

γ
max

v

m

∑
w=1

rvwβw (1− xvw)

which gives the result. Note that each term in the sum is positive because of the definition of1
restrained policies.2

Proposition 1. To maximize the upper bound (maximize the potential impact on R0) we should3
choose a policy x such that4

xxx = argmax
xxx

[
max

v

m

∑
w=1

rvwβw (1− xvw)

]
(16)

Remark 3. These bounds can be extended to the case of Gt(xxx), and other bounds can be obtained5
by considering other vector norms.6

Proposition 2. The basic reproduction number Rt(xxx)< 1 for any t ∈ [0,T ] if and only if7

lim
k→∞

Gt(xxx)k = 0. (17)

Proposition 2 holds due to the convergence of the power series of the NGM as R0 is the8
spectral radius of NGM for any control xxx. This condition has valuable practical meaning because9
R0 < 1 is a central indicator that the infection cannot spread in a population.10

In summary, solving for optimal flow control policies in (7) or (12) is computational chal-11
lenging because of the nonlinear disease reproduction constraints. We can leverage general obser-12
vations drawn above to improve computational efficiency. Besides, these observations also have13
important policy implications regarding transit-relate disease control plans.14

NUMERICAL RESULTS AND CASE STUDY15
We validate the general rules for public transit control policies in §5.1 the test the impact of input16
data in §5.2. In §5.3, we present the improvement of adaptive control policy. To solve a case study17
of NYC’s subway system in §5.4, we investigate the impact of network complexity as a critical18
building block for large-scale networks.19

Calibrating metapopulation and epidemic models20
We combine multiple sources of data to gauge the metapopulation model and the epidemic model.21
Table 1 summarizes the epidemic model’s parameters from existing COVID-19 literature and the22
calibrated traffic flow data used in the rest of the numerical experiments. We study the NYC case23
study because it has one of the largest public transit systems in the world. About 39% of the24
population in NYC use public transit for commuting, more than that of driving private cars (27%)25
(22). NYC was also one of the cities with the most COVID-19 cases in the first half of 2020.26
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Although the ridership of the subway witnessed a significant drop (16) amid the early stage of the1
pandemic, we hope to propose a safe and effective management policy during the recovery time.2

Parameter
Epidemic model

Average contagion
rate β̄

Length of infectious
period 1/γ

Length of latent
period δ

Quarantine
ratio α

Value 0.422 (23) 6.5 days (24) 5.1 days (25) 0.15 (26)

Parameter
Public transit network

Origin-destination
daily flow

Subway ridership
in pandemic

Transit network
transfer connectivity

Source Regional MTA (27) Wang et al. (16) Regional MTA (27)

Parameter
Spatial SEIR weights (28)

Constraint κ
Hours active at home Hours in work Commute time

Value 8 hr 8 hr 1 hr 0.5

TABLE 1: Parameters and data sources for NYC case study

In addition, we can obtain the local contagion rate βv by:

βv = β̄ · dv

d̄
,∀v ∈ V , (18)

where dv is the population density in region v and d̄ is the average population density.3

(a) Manhattan subway system’s average
daily commuting flow estimation

(b) Commute networks’ route flow distribution

FIGURE 3: Case study: controlling public transit (subway) in Manhattan, NYC dueing the out-
break of COVID-19 in 2020.

Given the population Nv for v ∈ VHW and daily commuting flows on the home-to-work4
network, we need to determine the probability of choosing each route rvw for each v ∈ VHW and5
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w ∈ VC. Assuming that each potential commuter following a multinomial logit model (MNL) with1
a single explanatory variable – the walking distance to the route:2

rvw = P(y = w|dw) =
exp(εdw)

∑w′∈VC
exp(εdw′)

, (19)

where y is the dependent variable for route choice, dw is the Manhattan distance to the subway line,3
and ε is a constant depending on commuters’ heterogeneity. Also, we assume that commuters use4
the same route from home to work and back (10, 20). Each route’s flow w ∈ VC is ∑v∈VHW rvwNv5
as shown in Figure 3a. This route choice estimation is arguably inaccurate. We use two strategies6
to enhance the accuracy of the route choice model. First, we reweigh the routing probabilities7
by the MTA subway ridership data (27) because trips other than commuting are also important8
components in the infectious contact in public transit. Second, §5.2 shows that optimal control9
policies are insensitive to these estimation errors.10

Spatially-specific controls on public transit are necessary only if the underlying network’s11
features such as density or degree have a heavy-tailed distribution (10). The distributional assump-12
tion is verified as the estimated distributions of the subway flow ∑v∈VHW rvwNv in Manhattan, NYC13
is obviously heavy-tailed in Figure 3b.14

Aggregating commute networks and sensitivity analysis15
We conduct three types of sensitivity analysis to understand the errors caused by model reductions16
and the input data inaccuracy.17

• Test on route choice: A sensitivity analysis of the route choice model.18
• Test on commute network characteristics: A sensitivity analysis of network properties19

such as network degrees.20
• Test on epidemic model: A sensitivity analysis of the epidemic model’s parameters.21

Test on route choice: The first sensitivity analysis is conducted on a well-designed commute22
network having fixed origin-destination flows (sorted from large to small in Figure 13 in A.2).23
Residents follow a random route choice model with a uniform distribution. Unlike the distance-24
based choice model in the case study, we randomize the route choice because the actual route25
choice is difficult to estimate without trajectory data and may differ before and after the outbreak of26
the infectious disease. Our goal is to evaluate the variations of both objective and the reproduction27
rate of the emerging disease when people’s route choice shifts from their normal routine.28

We simulate 1,000 experiments and compute the optimal controls for public transit flow29
repeatedly from (7). The upper bound for the total transit throughput of about 85 depends on the30
sampled choice model. Note that, if there is no intervention in commute networks, i.e., xxx = 1, the31
disease spreads with R0 = 1.75; if the public transit is shut down, the disease is under control with32
R0 = 1.39. Hence, the implementation of public transit flow controls is critical for public safety.33
We draw the following observations from the experiments:34

1. The optimal control xxx is small for nodes with the large outflows and vice versa.35
2. The objective and optimal controls xxx is relatively sensitive to the uncertain route choice36

(Figure 4a) because r are linear coefficients in the objective.37
3. The disease reproduction constraint is sensitive to the route choice model (Figure 4b).38
We conclude that the accurate estimation for the route choice model is critical for the opti-39

mality of control plans. Hence, travel behaviors during the on-peak and post-pandemic time need40
further investigation.41
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(a) Effect on maximum flow (b) Effect on basic reproduction number

FIGURE 4: Sensitivity of fixed optimal transit flow controls with regard to the random route
choice

Test on commute network characteristics: We solve the fixed transit flow controls by non-1
convex programming in (7) with increasing number of nodes. The computation time grow sub-2
exponentially as the size of the problem (|xxx|= |VHW ×VC|) increases (Figure 5).3

FIGURE 5: Optimization (7)’s running time grows with the network size

Thus, the large-scale problem quickly becomes unsolvable mainly due to the nonlinearity4
of the disease reproduction constraint. Reducing network size is necessary for the NYC case study5
containing 288 census tract nodes and 277 routes. Extrapolating the running time in Figure 5,6
computing the exact solution of the NYC network (|xxx| ≈ 80,000) by standard nonlinear program-7
ming methods is obviously impractical. In this case, the trust-region method is expected to take8
1015−1023 seconds to solve to optimally.9

To handle such a large-scale network analysis, we can cluster nodes in VHW with similar10
demographical information and aggregate the inter-node commuting flows. The question of opti-11
mality loss due to this node-aggregation procedure naturally arises. In the following experiment,12
we keep the constant total expected population ‖N‖1 = 100 when dividing the area of interest to13
finer and finer grids. Consequently, the degree of the fully-connected commute networks (i.e., the14
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number of connections it has to other nodes) increases. For example, when dividing the area evenly1
into two nodes, the maximum degree of the network is 3, and so on.2

When the maximum degree of the commute network increases, the objective value of (7) is3
stable, but the basic reproduction number increases significantly. When the degree increases, the4
impact of critical nodes is strengthened, so the basic reproduction number at optimality increases5
accordingly. This is another reason not to use the absolute value of R0 when scaling the networks6
for computational efficiency. However, as (7) and (12) use a relative reduction in basic reproduc-7
tion number, the results are unaffected to the scaling of the commute networks except the control8
policies become less specific.9

FIGURE 6: Sensitivity of the optimal control and the basic reproduction number regarding the
commute network’s degree

Test on epidemic model: The accuracy of the epidemic model is highly dependent on the10
estimated parameters in Table 1. However, these parameters, especially the contagion rate from11
the susceptible population S to the infected population I, are affected by the anti-contagion policies12
(29) and social responsiveness(30). For example, the transmission rate β reported in literature13
varies from 0.17 to 0.8 (16, 23–25) because of the social distancing effect. We test the sensitivity14
of objective function in (7) and basic reproduction number with varying parameters from literature.15
The sensitivity test results are shown in Figure 7.16

We draw the following observations:17
1. As the average contagion rate β̄ increases due to lack of prevention strategies such as18

social-distancing, the maximum public transit flow decreases to control the transmis-19
sion. On the other hand, the basic reproduction number increases substantially.20

2. As the quarantine ratio α increases, for example, the testing rate increases so more21
infected population is identified, the maximum public transit flow stays approximately22
the same while the basic reproduction number decreases substantially.23

3. As the length of the infection period increases due to the deterioration of healthcare24
quality, the maximum public transit flow decreases because of the significant increase25
in the basic reproduction number.26

4. The latent period’s length has a negligible impact on the optimal control policy or the27
disease spreading speed.28
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(a) Sensitivity of average contagion rate β̄ (b) Sensitivity of quarantine ratio α

(c) Sensitivity of infectious period 1/γ (d) Sensitivity of latent period δ

FIGURE 7: Sensitivity analysis of epidemic model parameters

Social-distancing strategy on public transit: If public transit operators enforce stricter social-1
distancing policies in vehicle, βw is reduced for all w ∈ VC. Such a policy can assist the control2
of the disease as shown in Figure 8. We vary the ratio of βw/β̄ and the basic disease reproduction3
number is reduced. As we are using a relative disease reproduction constraint, the objective func-4
tion is not much affected. To this end, social-distancing in public transit helps the public health5
measures and do not affect the maximal throughput in commute networks.6
Health-and-economics trade-off: The health-and-economics trade-off reflects by the value7
of κ in the disease reproduction constraint. When κ increases from 0 to 1, the system puts more8
weight on efficiency and less weight on safety. As shown in Figure 9, when the total throughput9
in commute networks increases significantly. Note that the variation of the objective is large when10
κ is between 0.2− 0.6. In the case study of NYC, the same trade-off is presented in the subway11
operational plans.12

Numerical results for adaptive flow control13
We demonstrate the insights obtained by solving a two-stage adaptive policies in the same network14
presented above. The computation of the dynamic policy in Algorithm 1 allows to iteratively15
simulate the state SSSt and IIIt are dependent on xxx(τ),τ < t. On the other hand, the disease reproduction16
constraints need to satisfied for all τ ∈ TTT .17
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FIGURE 8: Effect of social-distancing policy on public transit

FIGURE 9: Health-and-economics trade-off

κ(τ) is a sequence of endogenous variables that mitigates the health-and-economics trade-1
off due to the evolving pandemic. As the constraint κR0(0),R0(1)(t) is dependent on the realized basic2
reproduction number at time t, the optimization automatically adjusts more weights on economics3
than health concerns as the severeness of the disease relieves. Suppose that we make an initial4
flow control policy at t = 0 and allow to adjust the policy at t ′ ∈ [0,T ] when R0(1) hits a preset5
threshold. To demonstrate the strictness of the health measures after the basic reproduction number6
R0(t ′), we fix κ(0) = 0.5 and sampling points with κ(t ′) = R0(0, t ′)/R0(0,0). As R0(0, t ′)/R0(0,0)7
increases, the second state decision is made earlier. Note that κ(t ′)≈ 1.0 is equivalent to relaxing8
the disease reproduction constraint.9

In Figure 10, the maximum flow over the public transit network increases as the health10
measures are more severe at the early stage. In other words, setting a large threshold for a sequen-11
tial decision increase the total throughput; thus, quick responsiveness is valuable for social benefit.12
On each route and location, we also observe the inhomogeneous level of relieved flow in Figure 1413
in Appendix A.2 when κ decreases or increases because (12) automatically and effectively releases14
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FIGURE 10: The optimal control when the health measures are relaxed over time

the restrictions on public transit traffic after observing the changes of the disease dynamics.1

Trade-offs in NYC’s reopening decisions2
Obtaining the control policy directly for complex urban infrastructure networks is computationally3
challenging. Owing to the small optimality gap shown in the sensitivity test, this procedure does4
not influence the results’ generality. Considering commuters’ transfers, the NYC subway system5
contains 277 combinations of subway lines, hence |VC| = 277 in the following analysis (transfers6
between subway lines can refer to Appendix A.2). The census tracts in Manhattan, NYC are7
combined to 15 nodes (labeled 0-14 in Figure 11a) by spatial clustering.8

(a) Susceptible population N at t = 0 in
aggregate home-and-work network VHW

(b) Optimal public transit control x

FIGURE 11: Optimal public transit control policy in NYC case study
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We focus on the fixed traffic flow control policy in this case study. With no intervention on1
public transit (i.e., xxx = 1), the basic reproduction number is R0(1) = 1.794; with the total closure2
of public transit, R0(0) = 1.670. The optimal control policy shown in Figure 11b obtains 88%3
(original network flow is 1.62 million) while reducing the gap of the basic reproduction rate at4
R0 = 1.703.5

Although the difference in basic reproduction number seems small, mainly due to the short6
time spent in transit per day pC, its effect on transmitting the infectious disease is significant. As7
we can see the dynamics in Figure 12, the difference between the optimal control and no-control8
scenarios can reach 50,000 for the susceptible population, and 30,000 for the infected population9
in Manhattan borough within T = 100 days. These results emphasize the need for controlling the10
disease transmission on the target region or public transit line during the reopening time, especially11
with the anticipated second-wave (31).12

(a) Susceptible population (b) Infected population

FIGURE 12: Dynamics of COVID-19 under different public transit control policies

Regarding the route-level controls in Figure 12b, we make two additional remarks.13

Remark 4 (Critical nodes in commute networks). In fully connected commute networks, the dis-14
ease reproduction constraint is most sensitive to controls implemented on areas with largest out-15
flow.16

Remark 5 (Route-based control). Limiting flow on a high-density route does not necessary control17
the spreading speed of the disease most effectively.18

Note that Remark 4 is consistent with the sensitivity analysis in (10). The R0-centrality19
measure is defined as −∂λ0(G)

∂Nv
, which is equivalent to the sensitivity analysis on xvw in the current20

work.21
Finally, the results provide several interesting policy implications that can also be general-22

ized to other cities’ disease control plans:23
1. The numerical results in NYC confirm the general rules derived in §4. For example,24

the optimal subway control policy is almost uniform on each row (corresponding to a25
home-and-work node) in Figure 11a. The most populated outflow node is curtailed the26
most.27
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2. Shutting down public transit, as passengers may choose alternative modes, brings marginal1
benefit comparing to the targeted traffic control policy in this work (Figure 12).2

CONCLUSION3
This work proposes a disease reproduction constrained mathematical programming to resolve the4
health-and-economics trade-offs in responsiveness plans for pandemics. An optimization-based5
analysis simultaneously accommodates the inevitable travel demand amid the pandemic period6
and reopening the economy and meanwhile follows the strict safety measures for the infectious7
disease. By maximizing the transit flow constrained by the epidemic prevention measures require-8
ment, public transit continues to serve as a protected, low-emission, and low-cost option in urban9
transportation.10

Note that the node-target public transit control policy has a potential equity issue in extreme11
cases. In the case study, we restrict most lines between 40% and 90% due to the demographical12
similarity in Manhattan, NYC. We can avoid this issue by either proposing new lower bounds for13
controls xxx or reformulating the objective to a max-min problem. Another promising research av-14
enue is to investigate more realistic models, such as stochastic epidemic models and heterogeneous15
traveling behavior.16
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APPENDIX1
Derivation of NGM for Spatial SEIR model2
To compute the next generation matrix, we actually only care about the infected subsystem, the set3
of populations that contain infected individual consisting of Ev(t) and Iv(t) for all regions v ∈ V .4

To compute the Jacobian, we need to compute ∂

∂Ev

(
dEu
dt

)
, ∂

∂ Iv

(
dEu
dt

)
, ∂

∂Ev

(
dIu
dt

)
, ∂

∂ Iv

(
dIu
dt

)
, where5

each is evaluated at Su = Nu and Iu = 1.6
Note there exists a disease-free equilibrium with Sv = Nv and Iv = 0 for all v ∈ V . In the7

case of fixed control, we can directly plug in these values to further simplify the computation. Note8
both F and V in dimension R2|V |×2|V | and hence we can write the NGM as:9

G = FV−1|>0 (20)

[F ]uv =



pHβv(1−α)+ pW ∑u∈N +(v) r2
vuβu

(1−α)Nv[ρ
ᵀ
NN]u

([ρᵀ
NN]u−α[ρᵀ

N I]u)2+

pC ∑w∈C+(v) xvwr2
vwβw

(1−α)Nv[ρC(x)ᵀC]w
([ρC(x)ᵀC]w−α[ρC(x)ᵀI]w)2 , u = v,u,v ∈ V

pW ∑w∈N +(u)∩N +(v)βwruwrvw
(1−α)Nv[ρ

ᵀ
NN]w

([ρᵀ
NN]w−α[ρᵀ

N I]w)2+

pC ∑w∈C+(u)∩C+(v)βwruwrvw
(1−α)Nv[ρC(x)C]w

([ρC(x)ᵀC]w−α[ρC(x)ᵀI]w)2 , u 6= v,u,v ∈ V

, (21)

V =



1
δ
· · · 0 0 · · · 0

... . . . ...
... . . . ...

0 · · · 1
δ

0 · · · 0
1
δ
· · · 0 γ · · · 0

... . . . ...
... . . . ...

0 · · · 1
δ

0 · · · γ


. (22)

If we compute the expanded G from these expression for F and V−1 we get10

G = FV−1|>0 =



0 · · · 0 1
γ
[F ]EvIv · · · 1

γ
[F ]EuIv

... . . . ...
... . . . ...

0 · · · 0 1
γ
[F ]EuIv · · · 1

γ
[F ]EvIv

0 · · · 0 0 · · · 0
... . . . ...

... . . . ...
0 · · · 0 0 · · · 0


|>0 (23)

and here the nonzero submatrix is the NGM, G. We can see that:11

[G]vv =
1
γ
[F ]EvIv (24)

[G]vu =
1
γ
[F ]EuIv (25)

Commute networks in numerical experiments12
In the simulation, we use the following commute networks (|VHW | = 4, |VC| = 6) with randomly13
generated population (with expected total population of 100) and route choice.14
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FIGURE 13: Commute network for control policy validation

The route-based control policy for the adaptive flow control numerical experiments are1
shown in Figure 14.2

(a) At t = 0 (up) with κ(0) = 0.5 and t ′ >
0 (down) with κ(t ′) = 0.2.

(b) At t = 0 (up) with κ(0) = 0.5 and t ′ >
0 (down) with κ(t ′) = 0.9.

FIGURE 14: Optimal transit flow control xxx∗(t) with different strictness of health measures

The connectivity of the public transit is required for reconstructing the commute network3
in NYC case study. Considering that the physical public transit lines are not an appropriate unit for4
commuting route choice as passengers may transfer between lines in a single trip and thus causing5
contagion on all visited lines. By limiting the number of transfer to one, we can crawling the public6
transit data (27) to reconstruct the commute network transfer graph in Figure 15.7
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FIGURE 15: Connectivity of the MTA subway systems; Each edge in the graph is v ∈ VC in the
commute network
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