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Abstract. Understanding human activities and urban mobility patterns
is key to solving many urban issues such as congestion and emissions.
With the abundant data sets available at different levels of fidelity, one
of the main challenges is the sparsity and heterogeneity of data sources.
The integration of such data sources is essential to better inform system
design and community-level strategies. In this paper, we incorporate a
variety of data sources including land use, vehicle emissions and build-
ing footprint to comprehensively visualize and analyze traffic patterns
in the Chicago Loop area. We first implement and compare three differ-
ent nearest-neighbor-search algorithms to determine building occupancy
assignment, and then perform a spatial-temporal correlation analysis of
vehicle emissions focusing on factors such as land use, public transit
and demographic. Lastly, we discuss the traffic characteristics from data
analysis, such as traffic congestion formation and rush hours etc.

Keywords: Vehicle emissions · Traffic patterns · Nearest neighbor
search

1 Introduction

Motivation and Contribution. According to the inventory of U.S. Green-
house Gas (GHG) Emissions and Sinks 1990–2018, transportation accounted for
the largest portion (28%) of total U.S. GHG emissions in 2018 [1]. Amongst all
the sources, passenger-cars contribute to nearly 60%. The majority of the use
cases are for daily commute. Therefore, it is central to understand the commute
patterns of city dwellers, and the integral relationship amongst other factors such
as land use, building occupancy, road network and emissions, to consequently
inform energy-efficient and sustainable community strategies specifically to each
city.

The fundamental problem we address in this paper is the lack of data inte-
gration procedures for city-scale traffic impact analysis. Because of the lack of
direct data sources for traffic impact analysis such as daily commute schedule
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or block-level emissions, and the inconsistency of the fidelity and scale of vari-
ous data sources, we design a workflow (Fig. 1) by (1) developing algorithms to
realistically assign vehicles’ last-seen locations to nearby buildings, (2) preparing
grid-based data that incorporates multiple data sources for regression analysis,
and (3) conducting feature selection and impact analysis for vehicle emissions.
The question of finding the determining factors in the urban areas that con-
tribute to traffic congestion and vehicle emissions is city-dependent, and doing
so could potentially help city planners and policy makers target specific areas
to estimate and reduce traffic-related emissions. In this paper, we focus on the
Chicago Loop area, a major business district in Chicago, IL.

Fig. 1. Workflow for traffic impact analysis.

The main contributions are the following: (1) we estimate a realistic building
occupancy schedule by efficiently assigning vehicle occupants to nearby buildings
using three nearest neighbor algorithms, with our customized metric, nearest end
point distance. We demonstrate numerically the superiority of running time and
accuracy of our approach by comparing it with others; (2) we propose a method
to analyze the impact of city land use, populations, and public transit on vehicle
emissions. We integrate various data sources that contribute to vehicle emissions,
and perform an area-wide correlation analysis on the selected features using a
linear regression model and XGBoost for validation. Specifically, we investigate
the impact of land use, population, building occupancy schedule and weather on
local vehicle emissions; (3) we lastly characterize traffic patterns by locating the
traffic hot spots, popular roads, and rush hours, among others.

Data Sources. Most of the data sources used in this project are provided by
Oak Ridge National Laboratory. The data sources are listed following.

1. Commute data: (1) simulated morning commute vehicle traces data at 30 s
intervals for one day. The data include road segment (link) ID, driver ID
and vehicle speed at each time step. The simulation software is TRansporta-
tion ANalysis SIMulation System (TRANSIMS) [2,3]. (2) schedule data for
morning commute from National Household Travel Survey (NHTS) [4] and
(3) vehicle type distribution data.
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2. Emission data: (1) road-level traffic volumes (aggregated from TRANSIMS
outputs). (2) Road-level emissions generated using MOVES [5], an emissions
simulator.

3. Road network: this data includes link IDs and road type, GeoJSON file of
the road network used for the TRANSIMS and MOVES runs, and definition
of different link types.

4. Building data: (1) building footprints from Microsoft [6]. (2) Land use data
from Chicago Metropolitan Agency for Planning (CMAP) [7], including Geo-
JSON file containing polygon data with land use attributes.

5. Socioeconomic data: (1) Population from CMAP/Census (2010) [8], (2) com-
munity snapshots (2017) [9] and (3) Chicago commute time (2017) [9].

Additional data was collected. The list with corresponding references are pro-
vided below. (1) OpenStreetMap: natural cover data [10], (2) DATA.GOV:
Chicago bus routes and Chicago rail system (“L”) shapefiles [11], (3) Weather
Underground: historical weather data [12], (4) Chicago Data Portal: building
height data, Chicago population by census block, and census block bound-
aries [13].

Related Work. Daily commute has a high impact on city traffic and vehi-
cle emissions. In order to analyze the factors that affect vehicle emissions, we
need to understand the commute behaviors in terms of when and where people
travel to work, based on survey data such as National Household Travel Sur-
vey (NHTS), vehicle traces data and building location information. The highly
spatio-temporally varying commute patterns have posed many challenges to
modeling building occupancy on a high-resolution level. Studies such as [14,15]
develop high-resolution building occupancy models using surveyed time-based
data, which underpin further analysis such as building energy demand mod-
eling. In [16], a realistic building occupancy assignment is accomplished using
a quadtree based approach to allocate agents’ first and last seen locations to
nearby buildings. Our paper uses a similar approach but compares and analyzes
different agent assignment algorithms along with the quadtree.

Integration of other data sources and modeling techniques are also important
to understand the relationship amongst human activities, land use and traffic
emissions. For example, meteorological data [17] and social media data [18] are
adopted to explore the potential influence of human activities on urban traffic
congestion and emissions. Integrated models of land use and transportation are
also applied to study city dynamics [19–21]. All of the related works present
a comprehensive model for evaluating the effect of human activities on cities’
microclimates.

The challenge of assigning vehicle occupants to nearby buildings is essentially
a nearest neighbor search (NNS) problem [22]. There are numerous algorithms to
solve the NNS problem and they are classified into two types: exact methods and
approximation methods. In exact methods, the simplest algorithm is the purely
brute force one, which is the most accurate but most computationally demanding
of all. This running time can be further improved by employing space partitioning
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methods, such as KD-tree and Hilbert R-tree [23], which skip computations on
some branches and increase efficiency. In approximation methods, the quadtree
is widely used due to its superior performance and simple implementation. The
details of the quadtree can be seen in [16].

2 Methodology

2.1 Challenge 1: Algorithms to Assign Vehicle Occupants to
Buildings

We formulate the building occupancy assignment as a nearest-neighbor-search
(NNS) problem. Specifically, we want to assign the last seen locations of vehicles
(given by the simulated vehicle trace data) to their nearest buildings (given by
the building footprint data) [16]. We apply three search algorithms, brute-force,
quadtree, and KD-tree. We compare their performance with respect to efficiency
and accuracy. Regarding the building type, we assume that people work in non-
residential buildings, and filter out residential buildings based on the land use
codes.

We first apply brute-force search algorithm to obtain the baseline running
time and accuracy of the building occupancy assignment. Since this algorithm
finds the exact solution using a double loop: for each agent find the nearest
building, we use the results to benchmark the accuracy of other algorithms.
Secondly, we apply the quadtree algorithm used in [16] to assign occupants
to buildings. We further introduce the KD-tree algorithm to solve the same
problem.

The KD-tree algorithm iteratively bisects the search space and constructs a
tree where the leaf nodes correspond to the building locations and the branch
nodes correspond to the higher subspaces. If the distance between a vehicle and
a subspace is larger than the minimum distance, we can skip this branch of the
tree such that the search efficiency can be improved.

For each of the above three algorithms, we assign vehicles based on three
distance metrics: Euclidean distance (ED), weighted Euclidean distance (WD)
and our heuristic version nearest end point distance (ND). The WD is measured
by multiplying the ED with a weight factor proportional to the inverse of building
area. The detailed definition has been mentioned in [16]. The ND is the distance
from a vehicle to the nearest end point of a building polygon. For vehicle i and
building j , ND (dij) is defined as:

dij = min
k∈Ppolyj

‖ri − rk‖ ,∀i ∈ V, j ∈ B (1)

where V is the set of vehicle last seen locations and B is the set of building
polygons; Ppolyj denotes the set of points on the boundary of building polygon
j. ri’s are the coordinates of the vehicle location i.

Furthermore, we calculate building capacity by multiplying building size with
per capita area and count the number of overload buildings to compare the
performance of the three distance metrics.
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2.2 Challenge 2: Vehicle Emissions and Correlation Analysis

Data Preparation: Generate Grid-Based Data. We enrich the provided
data with data from additional sources (listed in Data sources).

One of the main challenges in conducting traffic emissions analysis and
exploring the impact of other factors is data reconciliation. Geographical fea-
tures are often based on different scopes, such as points, lines, and polygons. To
address this problem, we first select a target area that fully covers our study
region. Then we introduce a grid-based data integration technique to normalize
and aggregate various data sets into N × N grids as shown in Fig. 2a. Specifi-
cally, the feature variables are aggregated as follows. The population is the total
number of residents in the grid. The inflow population is the total number of
people commute to the grid area each day. The Public transit (bus & rail) and
road types measure the total length of corresponding bus, rail or road line within
the grid. Land use types and natural cover types are the total area of the corre-
sponding type, and the foot print area is multiplied by the number of stories if
the building type information is available.

If one line or polygon intersects with more than one square grid, then we
assume that the corresponding feature is evenly distributed on this line/polygon.
For example, the emission data for a certain square grid is calculated as following:

total grid emission =
∑

all roads

road emission × length of road within grid
total length of road

Fig. 2. Spatial variation of aggregated emission. Darker red color indicates more emis-
sions. The partially enlarged view in (b) shows that even within a small space, there is
a large variation among road links. Thus, the grid-based method as illustrated in (a)
is used to reduce the noise. Note: The dark area on the left of (b) doesn’t look dark in
(a) because roads in that area are actually more sparse and our grids don’t cover some
of the roads with heavy emission due to the difficulty of incorporating spreading road
network into regularly shaped grid. This issue should be minimized when a broader
range of data becomes available.
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Another way to combine all the data is a road centered method, which defines
fixed areas centered around the centroid of each road, and then measures each
quantity within every defined area as the independent variables. However, this
method is not suitable for our case since the emission data is generated by
simulation and contains inherent noise. Emission per unit length is calculated as
road emission
road length and we observe a large variation in this measure even among roads

that are within the same intersection (Fig. 2b). Therefore by averaging all roads
in a specific area, the grid-based method effectively reduces the noise.

Fig. 3. The spatial distribution of each land use and natural cover type. We can see
that different land use type is concentrated in different areas. For example, residential
buildings are concentrated in the south while office is more likely to be seen in the
north.

Regression Model and Feature Selection. Our primary analysis examines
the relationship between vehicle emissions and other factors. We first perform a
multivariate regression analysis by partitioning the study area into 12×12 grids,
and assessing the contribution of each factor to the road emissions nearby. The
first model intends to examine the spatial correlation only, so the time-varying
variables are averaged. For example, emissions for a certain grid are calculated
as total emissions in a day divided by 24 h.

Figure 3 and 4 show land use and natural cover types distribution using kernel
density estimation (KDE) and the spatial correlations among all features within
the study area, respectively. From the correlation matrix (Fig. 4), we notice that
the correlation coefficients between some features (e.g., population and residen-
tial areas) indicate the presence of a strong multicollinearity (Pearson correlation
coefficient ρ ≥ 0.7), which increases the standard errors of the coefficients when
doing regression analysis, and in turn may cause some independent variables
to be not significant. To address this issue, we employ recursive feature elim-
ination(RFE) to repeatedly remove the least important variables. For spatial
correlation analysis of vehicle emissions, we regress the averaged emissions on
other variables selected by RFE using an Ordinary Least Squares(OLS) model.
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Fig. 4. A matrix showing correlation coefficients between variables

Robustness Testing. Since the number of grid cells may affect the corre-
lation results, we test the robustness of the area division by employing three
approaches to validate our result. First, we repeat the same procedure on 8× 8,
10× 10, and 15× 15 grid dividing the same area to check the consistency of the
significance of independent variables. Second, we implement the road centered
method although some variations in feature importance caused by the inher-
ent data noise are expected. Third, we use tree-based XGBoost regression to
calculate the feature importance ranking. The feature importance reported by
XGBoost is the average information gain across all decision trees when the fea-
ture is used as a splitting node. In each robustness test, we also rank the feature
importance of each variable so that we can check whether the variables used in
our primary model remain stable.

Temporal Variation. Since the vehicle emissions and some other variables are
also time-varying quantities, we intend to investigate the temporal correlation
of vehicle emissions as well. To this end, we include features such as weather.
Overall, 94.8% of all roads demonstrate an increase in emission from January to
July which is clearly an evidence of the presence of seasonal effect. However, we
are unable to extract more detailed insights regarding temporal variation. The
reason is twofold: first, the current emission data covers only two very short time
periods (Jan 9th and July 4th to 10th) and the simulated emission data in July
is the same each day. Second, the spatial coverage is too small to include the
diversity of weather conditions. We intend to address the temporal correlation
in future work when a broader range of data becomes available.
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2.3 Challenge 3: Traffic Patterns Characterization

Traffic Hot Spots, Congestion, and Popular Roads. According to
INRIX [24], a leading traffic analytics company, traffic hot spots are defined
as traffic jams that occur at the same locations along a stretch of road. The
measure we use is based on the idea that traffic state can be reflected by the
average speed. To identify traffic jams, we apply speed performance index (SPI)
formerly developed by Beijing Traffic Management Bureau (BTMB) to evaluate
the traffic condition of each road during each hour [25]. The index, defined as
the ratio between the current speed and the maximum possible speed, can be
applied here. SPI ranges from 0 to 1 with 1 indicating a very smooth traffic
and 0 extremely congested traffic. However, we do not count zero in this study
because zero average speed for an hour is more likely a sign of no vehicle pass-
ing through. According to BTMB, heavy congestion occurs when SPI < 0.25.
In our study of hot spots, we first use k-means algorithm to cluster roads into
20 small groups by their spatial locations and calculate the average number of
occurrences of heavy congestion for each cluster. We also calculate the ratio
between the weekly average speed in a week and maximum possible speed for
each road so that we can identify specific hot spots. Popular roads are measured
by their traffic volume instead of average speed. We aggregate the traffic volume
provided in the simulation data and select the top ranked roads to highlight in
the map.

Travel Time. We pre-process the data to eliminate outliers in two steps. First,
we select all the commute trips from home to work that are less than 2.5 h (as the
rest are obviously outliers, e.g., 10+ hours for a single trip), which cover 99.5%
of all the trips. Second, we only keep the trips that start from home between 5:00
and 13:00 since people typically go to work in the mornings. Then to analyse the
travel time, we divide the time window between 5:00 and 13:00 into 10-second-
intervals. We treat the travel time for each time interval as a random variable,
and calculate the mean and the 95% confidence interval based on the travel time
of trips occurring in this interval.

Busy Times and Comparison with NHTS. To compare the simulation
results and the survey conducted by NHTS, we first average the simulation out-
put from Monday to Friday to compute the average total traffic volume of each
hour in a day. The provided NHTS trip distribution is the same for each day so
it suffices to make comparison on a one-day distribution. Then, we proceed to
obtain the fraction of traffic volume per hour in the busy-time distribution plot
(Fig. 9). Note that the busy-time distribution sums up to 1 overtime, and thus
can be treated as a probability distribution. Therefore, a commonly used mea-
sure, Jensen–Shannon divergence [26], can be used to quantify the resemblance
between two probability distributions. Jensen-Shannon divergence is calculated
as the entropy of the mixture of two distributions minus the sum of the entropy
of each distribution such that a disparity in the two inputs would lead to higher
score.
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Spatial-Temporal Analysis of Speed. We analyze the spatial temporal vari-
ation and summarize our finding in a dynamic visualization. Again, we assume
that zero-speed roads imply zero-traffic so those roads are colored green.

3 Results

3.1 Challenge 1: Performance Comparison of NNS Algorithms

The accuracy of quadtree, KD-tree and brute-force algorithms for building occu-
pancy assignment are shown in the first row of Fig. 5. Both KD-tree and brute-
force algorithms achieve 100% accuracy because they compute the exact solution
to the NNS problem, no matter what distance metric we choose. However, the
accuracy of quadtree only improves when the partition is coarser (i.e., the num-
ber of leaf nodes becomes smaller), and no-split quadtree becomes equivalent to
the brute-force method). In terms of the distance criteria, ND metric can achieve
a higher accuracy than WD or ED, this is because ND metric as in Eq. (1) con-
siders the geometric shape of the buildings and not just the centroids, leading to
a better approximation of the actual distance. The running time of each of three
algorithms is shown in the second row of Fig. (5). Brute-force algorithm has the
longest running time when using ED or ND metric. This is due to the double
loop structure in the brute-force algorithm which requires going through all the
vehicles’ last seen locations and all the building locations to find the nearest
building for each occupant. KD-tree has a consistently low running time for ED
or SD metric, but fails to outperform brute-force when using WD metric. This
is because WD requires reconstructing the search tree when each new vehicle
location is added, which significantly slows down the computational time for
KD-tree. As for quadtree, higher accuracy can be achieved when using lower-
fidelity split, but this also increases the running time. The vehicle assignment
and the overload buildings are shown in the supplementary materials. The total
number of office buildings is 665 and the number of overload buildings is 27,
10, 10 for ED, WD and SD metrics. Considering both the accuracy and the
running time, KD-tree with ND metric consistently outperforms brute-force and
quadtree.

3.2 Challenge 2: Area-Wide Correlation Analysis of Vehicle
Emissions

Regression Analysis. To reduce standard errors caused by feature multi-
collinearity, we first perform a recursive feature selection (RFE) on the grid-
based data. RFE is a method that keeps removing the weakest feature, which
also allows us to evaluate the rankings of features. We find that for 12× 12 grid,
the adjusted R2 is the highest(0.71) when top 13 features are used in regression
model and most of them are statistically significant (Fig. 6). This high adjusted
R2 indicates that a large portion of variance in emission can be explained by the
features chosen by the model.
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Fig. 5. The performance of algorithms based on different distance metrics

Fig. 6. Adjusted R2 increases as more features are added to the model

The regression result (Table 1) shows that the main contribution to vehicle
emissions comes from inflow population, and some certain types of road including
A50 (Vehicular trail, road passable only by four-wheel drive vehicle) and A40
(Local, neighborhood, and rural road, city street), which are positively correlated
with vehicle emissions with significance (p-value) p < 0.001. Rail line length and
vehicle emissions are negatively correlated with p-value p < 0.001, which implies
the important role of Chicago rail system in alleviating road transportation.
One interesting finding is that wood coverage has a strong positive correlation
with emissions. One possible interpretation is that wood coverage represents
urban parks which are often built near city busy corridors. We also want to
emphasize that correlation does not imply causation. Our analysis only explores
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Table 1. Vehicle emissions regression analysis and feature rankings. * and *** represent
p < 0.05, p < 0.001 respectively.

Features Coefficients Feature ranking

Grid-based OLS Grid-based XGBoost Road-centered OLS

Inflow population 62939.816*** 1 2 8

Rail line −52640.761*** 4.75 4.25 2

Bus line 40243.822* 4.75 8 7

Office −35525.439* 10.5 10 9

Water −31460.252* 12.75 15.75 17

Wood 50688.006*** 3.75 7.63 1

A201 27364.166* 10.25 15.13 15

A302 43346.564* 7.5 6 5

A403 70263.346*** 6.75 4.75 4

A504 50938.104*** 5.5 5 3
1 Primary road without limited access, U.S. and state highway
2 Secondary and connecting road, state and county highways
3 Local, neighborhood, and rural road, city street
4 Vehicular trail, road passable only by four-wheel drive (4WD) vehicle

the concurrent land use features on vehicle emissions rather than establishing a
cause-and-effect relationship.

Validation. To further verify our results of feature selection, we generate three
more datasets with different choice of grid size. Then, we calculate the average
ranking of each feature based on RFE.We can see from Table 1 that most features
presented here, especially those with p < 0.001, are consistently top-ranked.
Feature importance with XGBoost model and a road-centered model also reports
similar ranking, as shown in Table 1. We conclude that our regression model is
able to identify the most significant features and the outcome is validated using
other methods.

3.3 Challenge 3: Characterize Traffic Patterns

Hot Spot, Congestion and Popular Roads. The visualization in Fig. 7
shows the traffic hot spots and the frequency of heavy congestion for each cluster
of roads. The number in the circle indicates on average how many hours the roads
around that region are in heavy congestion. The street view images are the six
most popular roads ranked by total volume and this result is largely confirmed
by the street reviews we find online. An interesting finding is that some very
popular roads are not highly congested, which might due to the difference in
road design.

Travel Times. Figure (8) visualizes the variation of commute time departing
between 5:00 to 13:00 of both NHTS and simulation data. We can clearly see
that the mean of the travel time ranges from 0.2 h to roughly 1 h, which is similar
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Fig. 7. The variation of travel times throughout the day

to the commute time 58.5min from a study by Robert Half [27]. In simulation
data, the travel time is longest around 7 am and slightly shorter afterwards,
possibly because people who have to commute long hours tend to depart early.
The travel time between 8 am and 11 am is typically longer than the travel time
before 6 am and after 11 am, which might be due to the morning rush hours. In
NHTS data, the travel time is highest around 11 am due to the noon peak and
decreases afterwards. There is no increasing travel time from 5 am to 7 am in
NHTS data as in simulation data, which is caused by the simulation error.

Fig. 8. The variation of travel times
throughout the day

Fig. 9. Busy times according to simula-
tion data and NHTS survey
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NHTS Survey Vs Simulation. In general, the simulation has a very similar
trend as NHTS with some minor variations. The Jensen-Shannon divergence
for these two distributions is 0.38, which indicate a relative similarity between
the busy-time distributions. The busy times indicated by both two data sources
agree on the morning rush hours (6 am to 10 am). However, there is a second
peak in NHTS data after 12 pm which is not found in the simulation. In fact,
analyzing on the original simulation data, we find very few trips after 12 pm
compared to the NHTS survey. In addition, we observe some unrealistic speeds
in the simulation setting. We find that there are about 200 roads with average
speeds between 0–1 mph. In fact, excluding the zero speeds, the average speed
for all roads is only 8.53 mph. Moreover, we believe that the traffic volume is
underestimated. For example, as one of the most popular streets, North Jefferson
street is reported to have 8,300 average daily traffic according to Chicago Data
Portal. However, in the simulation, the same street has a weekly traffic that is
only 13,605.

Spatial-Temporal Variation of Speeds. For this part of the analysis, we plot
the speeds on the street map of loop area and generate a GIF to show dynamics
(Fig. 10). Basically this visualization aligns with the previous congestion analysis.
The speeds are lowest during morning rush hours and roads around the city
center tend to have heavy congestion.

Fig. 10. Spatial-temporal variation of speeds. Green indicates high speed or no traffic
while red indicates the opposite. (It may require an Adobe reader to load this GIF.
Screenshots of this GIF can also be found here: Appendix) (Colour figure online)
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4 Conclusions

In this paper, we provide a framework for data reconciliation and urban traffic
patterns characterization. Our solutions to the three challenges contribute to the
study of commute patterns and urban transportation systems in the following
ways. First, we develop a fast and efficient nearest-neighbor search algorithm,
KD-tree with nearest-end-point distance metric, to realistically assign the last
seen locations of vehicles to the nearby building. This addresses the lack of
direct data sources such as building occupancy schedule, and provides more
information on when and where people commute to work. Second, we perform
an area-wide analysis of land use, populations and public transit on vehicle
emissions. We identify that the inflow population and road types significantly
correlates to vehicle emissions. These features are validated using an alternative
road-centered data generation approach and a XGBoost model, which produces
a similar feature importance ranking. Temporally, a seasonal effect on vehicle
emissions is observed but further analysis is hindered due to the lack of high
resolution data. Lastly, we explore the traffic simulation data and extract some
interesting traffic patterns. We conclude that overall this simulation setup is
able to reproduce realistic traffic activities. Most of the travel times are realistic.
A good match in busy-time distribution is found between the simulation data
and NHTS survey, and major streets are indeed occupied with more vehicles.
However, the simulation fails to take into account, for example, the commute
back to work after lunchtime that NHTS might indicate.

Some limitations of this study are also worth noting. First, we are not able to
draw any conclusion of the impact of vehicle types on emissions, due to the lack
of diversity in vehicle classifications. Information about vehicle types would also
help us design a more realistic algorithm since the vehicle type might implicate
the building type that the vehicle owner is more likely to work at. Second, the
vehicle emissions analysis focuses on a specific region (Chicago Loop area), and
may not well generalize to other cities. We acknowledge that these limitations
exist due to the scope of this study, and instead we focus on providing a frame-
work of reconciling data of different types, and analyzing emissions using other
more accessible data, which can be applied in broader scenarios.
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