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This article presents a technique to determine the effects of an earthquake on
road traffic conditions by linking seismic hazard and bridge fragility models
with a traffic model and traffic sensor data. Using the earthquake character-
istics as an input to the traffic model, the traffic conditions are sequentially
estimated given traffic sensor measurements using an ensemble Kalman fil-
ter. The proposed algorithm is tested on a numerical experiment on Interstate
155 West near the New Madrid Seismic Zone in New Madrid, Missouri. The
results show that the proposed technique improves the post-disaster traffic es-
timate. The supporting source code and data are available for download at
https://github.com/rotsuka/postDisaster_EnKF.
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1. Introduction

1.1 Post-disaster traffic estimation as a sequential state estimation
problem

Earthquakes are devastating events that can have a number of social, economic, and
structural consequences. One of the structural ramifications that can result from the
propagation of earthquake shock waves is damage to transportation infrastructure. As ob-
served in recent earthquake events, bridges are especially susceptible to damage (Akiyama
et al. 2013, Basöz et al. 1999, Kosa 2012, Schanack et al. 2012). Structural damage to
bridges can cause disconnections in the transportation network and reductions in traffic
flow capacity, which in turn slows down post-hazard response efforts. If accurate traf-

∗Corresponding author. Email: junhosong@snu.ac.kr

ISSN: 1573-2479 print/ISSN 1744-8980 online
c© 200x Taylor & Francis
DOI: 10.1080/1573247YYxxxxxxxx
http://www.informaworld.com



March 26, 2015 11:39 Structure and Infrastructure Engineering Estimat-
ing˙post˙disaster˙traffic˙conditions˙using˙real˙time˙data˙streams

2 R. P. Otsuka, D. B. Work, and J. Song

fic estimates can be calculated immediately following an earthquake, it could be very
helpful in expediting post-hazard rescue and response efforts. The problem addressed in
this work is to estimate post-disaster traffic conditions using measurements from traffic
sensors and information on the earthquake characteristics and infrastructure fragility. In
this work, the magnitude of the earthquake and its proximity to bridge infrastructure
results in changes to the traffic capacity of each bridge, affecting the traffic conditions of
the network.

Typically, the traffic estimation problem is posed as a sequential state estimation prob-
lem. The traffic evolution equations are constructed from a macroscopic traffic model,
denoted by f . The function f describes how the traffic state x, i.e. a vector of traffic
densities (e.g. veh/km) at various locations along the roadway, evolves from time n−1 to
time n. The evolution and observation equations (e.g., Simon 2006) are given respectively
as

xn = f (xn−1,θ,wn) (1)

yn = hn (xn) + vn, (2)

where θ is a time-invariant vector which contains parameters of the road such as the
maximum traffic capacity, the speed limit, and the jam density. The term yn is a vector
of traffic sensor measurements, hn is an observation operator that relates the system state
with the measurements, wn is the model noise, and vn is the measurement noise at time
n. Given the model evolution (Equation (1)) and observation (Equation (2)), the traffic
estimation problem can be posed as estimating the traffic state xn given measurements
y1, · · · ,yn.

Following an earthquake, a standard traffic estimation algorithm will suffer poor perfor-
mance because the forward model (Equation (1)) does not explicitly account for changes
in the network topology due to the earthquake damage. Additionally, dedicated traffic
sensors may be sparsely distributed throughout the network (due to the high installation
and maintenance costs), which limits the ability of the measurements to correct the traf-
fic state estimate. Thus, to improve the estimation performance, we augment the model
evolution equation by feeding in real-time information about the earthquake at each time
step as an input, un, to the traffic model. As a result, Equation (1) can be rewritten as

xn = f (xn−1,θ,un,wn) , (3)

where un is the earthquake input at time step n defined as

un =

{
1 if n < nEQ

α if n ≥ nEQ.
(4)

The size of the vectors un and α is equal to the number of bridges in the network, or
more generally the number of elements of the infrastructure that may sustain damage.
In Equation (4), nEQ is the time step in which the earthquake occurs and the vector α is
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the traffic capacity factor, with elements αi ∈ [0, 1]. The elements in θ that correspond
to the maximum traffic capacity and the jam density are multiplied by the elements in
un of the corresponding bridge to allow for the fact that the roadway properties may
change following an earthquake. Due to the nonlinearity of the traffic model, we propose
to use an ensemble Kalman filter (Evensen 1994) to solve the sequential state estimation
problem with the earthquake input.

1.2 Related work on post-disaster transportation networks and
traffic state estimation

Motivated by the number of natural disaster occurrences worldwide, many researchers
have focused on the post-disaster resilience of infrastructure systems. Specifically, there
have been several studies which employed investigative techniques to study the post-
disaster performance of transportation systems. Chang and Nojima (2001) developed
post-disaster performance measures and applied them to rail and highway transportation
networks in Kobe, Japan following the 1995 Hyogoken-Nanbu earthquake. Nakanishi
et al. (2013) performed travel demand modeling for the recovery phase following the
2011 Tohoku earthquake and applied it to the city of Ishinomaki, Japan.

Recently, software and simulation techniques have also been developed to analyze trans-
portation systems following a disaster such as an earthquake. The California Department
of Transportation (Caltrans) uses ShakeCast and ShakeMap (Wald et al. 2008), devel-
oped by the United States Geological Survey (USGS), to obtain the likelihood of damage
to bridges and other structures following an earthquake. These systems provide Caltrans
with insight on how to reroute traffic due to potential road closures. Nojima and Sug-
ito (2000) proposed a model to simulate and evaluate the post-earthquake functional
performance of a highway transportation system using Monte Carlo (MC) simulation
and the modified incremental assignment method (MIAM) to simulate the traffic states.
Similarly, Shizunoka et al. (2003) integrated bridge fragility models with an MC analysis
of traffic flows to study the degradation of capacity of the Caltrans network following
the 1994 Northridge earthquake.

System reliability analysis (SRA) techniques have also been developed to understand
the post-disaster behavior of transportation networks. SRA methods are capable of in-
tegrating analyses across physical scales and combining models and data from multiple
fields of science and engineering for quantifying risk at the system level. For example,
Lee et al. (2011) evaluated the probabilities of various damage scenarios using a matrix-
based reliability method (Kang et al. 2008, 2012, Song and Kang 2009) and a network
flow analysis for a sample bridge transportation network. While these software, simu-
lation, and SRA techniques have been successful in determining failures of bridges in
networks and changes in flow capacity, they do not explicitly model the traffic dynamics.
The present work considers the integration of a traffic flow model, and the approach can
be extended to general road networks provided a network traffic flow model is available
(Garavello and Piccoli 2006).

Filters are sequential estimation algorithms that produce best estimates (in the sense
of minimal variance) or posterior distributions of the state given a noisy model and
observations that appear sequentially in time. Sequential estimation algorithms for traffic
applications date back several decades to the 1970s when Gazis and Knapp (1971) and
Szeto and Gazis (1972) used the Kalman filter (KF) (Kalman 1960) and the extended
Kalman filter (EKF) (Anderson and Moore 1979), respectively, to estimate the traffic
density in the Lincoln Tunnel of New York City for optimal traffic control applications.
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Recent uses of the KF and EKF for traffic applications include Jabari and Liu (2013),
Wang and Papageorgiou (2005), and van Hinsbergen et al. (2012). The mixture Kalman
filter (MKF) (Chen and Liu 2000) is an extension of the KF and has been applied in
the transportation community using a switching mode traffic model (Sun et al. 2004)
and GPS data from cell phones (Herrera and Bayen 2010) for traffic state estimation.
Another filter of note is the unscented Kalman filter (UKF) (Julier and Uhlmann 1997),
which was developed for highly nonlinear systems and has been used to estimate traffic
on a Belgian highway (Mihaylova et al. 2006).

Recently, stochastic filtering methods (Evensen 1994, Gordon et al. 1993) have been
applied to traffic estimation. The performance of the particle filter (PF) (Gordon et al.
1993) has been tested on a Belgian freeway using experimental and synthetic traffic data
(Mihaylova et al. 2007) as well as Interstate 66 in the United States (Chen et al. 2011).
A recent application of the PF is given in Chen and Rakha (2014) for real-time travel
time prediction. The PF has been further expanded into the parallelized particle filter
(PPF) and parallelized Gaussian sum particle filter (PGSPF) for use in large-scale traffic
network systems (Mihaylova et al. 2012). Work et al. (2010) applied the ensemble Kalman
filter (EnKF) (Evensen 2009) to San Francisco Bay Area highway networks to estimate
traffic velocities. Using a similar approach, Hong and Fukuda (2012) implemented an
EnKF system for the Tokyo Metropolitan Highway during rush hour that showed the
effect of sensor spacing on the estimation results.

Note the specific choice of the filter depends on the model, the measurement equation,
and the computational constraints needed for real time implementation. The interested
reader is directed to Blandin et al. (2012) for a recent review of sequential estimation
techniques for scalar traffic models. While sequential estimation techniques have been
used with traffic dynamics to accurately estimate traffic states, they have not been inte-
grated with seismic hazard and bridge fragility models in post-disaster scenarios.

1.3 Outline and contributions of this article

The main contribution of this article is the design and analysis of an estimation framework
to determine the post-disaster traffic conditions of a transportation network. We propose
combining a seismic hazard model, a bridge fragility model, and a traffic model with
traffic sensor data in an EnKF framework to account for the nonlinearity of the model.
Figure 1 illustrates the framework. Earthquake data is obtained and used as inputs into
the hazard model. The hazard model quantifies the severity of the earthquake through
the peak ground acceleration which is then used in the fragility model to determine the
damage state of the bridge and the resulting traffic capacity. This information is then
fed into the traffic model, which is combined with traffic sensor data in the filtering
framework to get a best estimate of the traffic conditions of the system. This estimate is
fed back into the traffic model at the next time step.

The remainder of this work is summarized as follows. In Section 2, the traffic evolution,
earthquake hazard, and probabilistic fragility models are introduced. Section 3 gives a
brief introduction to the KF and EnKF sequential state estimation algorithms and the
observation equation used in the proposed framework. Section 4 evaluates the framework
for several numerical experiments performed on Interstate 155 West, and quantifies the
benefit of using both knowledge of the earthquake characteristics and traffic sensor data
as inputs into the estimator.
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Figure 1. Proposed framework: The upper left boxed portion shows the three models. Earthquake
data is used as an input into the forward model, which consists of the seismic hazard, bridge
fragility, and traffic evolution models. These are integrated with traffic sensor data as inputs into
the filter. The EnKF runs an error variance minimizing scheme to produce the best estimate of
the traffic state. The estimated traffic states are fed into the forward model at the next time step.

2. Overview of traffic flow, seismic hazard, and earthquake fragility
models

This section gives a brief introduction to the model of traffic dynamics, and the seismic
hazard and bridge fragility models. Combining these elements is the basis for the forward
model (Equation (3)).

2.1 Macroscopic traffic model

The Lighthill-Whitham-Richards (LWR) partial differential equation (PDE) (Lighthill
and Whitham 1955, Richards 1956) is a conservation law used to model the evolution
of the traffic density, ρ(x, t), which is a measure of the number of vehicles per unit
length at location x during time t (veh/km). It is a continuum model that describes the
conservation of vehicles:

∂ρ

∂t
+
∂Q(ρ)

∂x
= 0, (5)

where Q(·) is the flux function, or fundamental diagram. The traffic flow, or traffic flux,
is a measure of vehicle throughput per unit time (veh/h). The fundamental diagram
is constructed from an empirical relationship between density and speed v = V (ρ) as
follows:

Q(ρ) = ρV (ρ).
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Figure 2. Newell-Daganzo flux function: Densities in the range ρ ∈ [0, ρc] are in the free flow
region and densities in the range ρ ∈ [ρc, ρj] are in the congested region.

One widely used fundamental diagram is the triangular Newell-Daganzo flux function
(Daganzo 1995, Newell 1993), shown in Figure 2. It is a piecewise linear function of the
density, with different slopes in the free-flow and congestion regions:

Q(ρ) =

{
ρvmax if ρ ∈ [0, ρc]
qmax(ρj−ρ)
ρj− qmax

vmax

if ρ ∈ [ρc, ρj],
(6)

where vmax is the free-flow speed, ρc is the critical density where traffic transitions from
free flow to congestion, and ρj is the jam density where traffic is fully congested and
vehicles are stationary. The maximum flux is given by qmax = ρcvmax and the maximum
backward propagating wave speed is given by w = qmax/(ρj−ρc). From Equation (6), it is
observed that the three variables qmax, vmax, and ρj are sufficient to define the triangular
fundamental diagram (Figure 2).

For numerical implementation, Equation (5) is discretized in time and space using a
Godunov scheme (Godunov 1959) as described below. The time and space domains are
discretized by introducing a discrete time step ∆T , indexed by n ∈ {0, · · · , nmax}, and
a discrete space step ∆x, indexed by i ∈ {0, · · · , imax}. The space discretization yields
cells. The density at the next time step (n+ 1) for cell i is computed as

ρin+1 = ρin +
∆T

∆x

(
q
(
ρi−1
n , ρin

)
− q

(
ρin, ρ

i+1
n

))
, (7)

where the numerical flux q(·, ·) is a function used to compute flow across the boundary
of two adjacent cells. Boundary conditions are imposed through ghost cells at −1 and
imax + 1 (Herrera and Bayen 2010). Equation (7) is commonly referred to as the cell
transmission model (CTM) (Daganzo 1994, 1995) for triangular fundamental diagrams.
The quantity q

(
ρin, ρ

i+1
n

)
is the flow between cell i and cell i+ 1 during time n and time

n+ 1, which can be computed as

q
(
ρi, ρi+1

)
= min

{
S
(
ρi
)
, R
(
ρi+1

)}
, (8)
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Figure 3. Sending and receiving functions of the Newell-Daganzo flux function: The fundamental
diagram is shown as the light dotted line. In free flow conditions, the sending function shares
the same behavior as the fundamental diagram. In congested conditions, the receiving function
shares the same behavior as the fundamental diagram.

where the sending function, S(·), and receiving function, R(·), represent the traffic that
is sent by the upstream cell and the traffic that is received by the downstream cell,
respectively, and ρi and ρi+1 represent the densities of the upstream and downstream
cells. The sending and receiving functions are constructed from the fundamental diagram
as shown in Figure 3. Intuitively, as the upstream density increases, more vehicles are
available to be sent into the downstream cell, resulting in an increased flow, up to the
maximum flow, qmax. Beyond the critical density, ρc, even if the density continues to
increase, the flow sent to the downstream cell cannot be greater than qmax (Figure 3(a)).
Similarly, when there are few vehicles in the downstream cell, the downstream cell can
receive a flow up to qmax. This is true for any ρi+1 ≤ ρc. If the density continues to
increase, the flow that can be received decreases (Figure 3(b)).

2.1.1 Non-additive noise model

Often, the evolution equation (Equation (1)) is formulated with additive noise wn, which
conserves mass in expectation (Simon 2006). However, in this work, a non-additive noise
model is assumed for Equation (3). The noise is instead embedded in the empirical
fundamental diagram (Equation (6)) and thus directly affects the sending and receiving
functions. This results in mass being conserved always, not just in expectation. A normal
distribution is used for the noise and it is added to the fundamental diagram to generate
more realistic sending and receiving functions consistent with experimental data from
inductive loops (Caltrans 2014):

Ŝ(ρ) =

{
S (ρ) + εS if ρ ∈ [0, ρc]

S (ρ) + εQ if ρ ∈ [ρc, ρj],
(9)

and

R̂(ρ) =

{
R (ρ) + εQ if ρ ∈ [0, ρc]

R (ρ) + εR if ρ ∈ [ρc, ρj],
(10)

where εS ∼ N
(
µS , σ

2
S

)
and εR ∼ N

(
µR, σ

2
R

)
are noises associated with the free flow
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Figure 4. Illustration of noise models of the sending and receiving functions. There are 5000
sample points on each graph to illustrate the relative magnitudes of the means and variances
associated with each function.

region of the sending function and the congested region of the receiving function, re-
spectively, and µ and σ2 are the mean and variance of the distribution. A third noise,

εQ ∼ N
(
µQ, σ

2
Q

)
, is introduced to represent the noise on the maximum flow. To intro-

duce unbiased noise, we let µS = µR = µQ = 0. The noise on the receiving function is
assumed to be greater than that on the sending function to be consistent with data from
inductive loops (Caltrans 2014). An example of noisy sending and receiving functions is
shown in Figure 4, where the solid line represents the deterministic sending and receiving
functions.

Note that for densities near zero or the jam density, Equations (9) and (10) may result
in a negative flow. To avoid negative flows across cell boundaries, the numerical flow is
taken as the maximum of the minimum value of Equations (9) and (10), and 0. Thus,
Equation (8) is rewritten as

q
(
ρi, ρi+1

)
= max

{
min

{
Ŝ
(
ρi
)
, R̂
(
ρi+1

)}
, 0
}
.

2.2 Seismic hazard and fragility models

Two main characteristics of an earthquake event are its magnitude and location. Using
these characteristics and site conditions of the structure, peak ground parameters are
computed through the use of attenuation relationships. By mapping these parameters to
existing fragility models, the probability of a bridge being in prescribed damage states is
determined. The maximum traffic capacity for each bridge based on a realization of the
bridge damage distribution is then obtained.

2.2.1 Attenuation relationship

The peak ground acceleration (PGA) exerted on a structure from an earthquake is de-
pendent on a number of factors, including the magnitude of the earthquake, the distance
of the structure from the epicenter, the site conditions (i.e., soil profile), and the fault
type. PGA is related to these factors by attenuation relationships. In this work, the
attenuation relationship by Campbell (1997) is used as an example:



March 26, 2015 11:39 Structure and Infrastructure Engineering Estimat-
ing˙post˙disaster˙traffic˙conditions˙using˙real˙time˙data˙streams

Structure and Infrastructure Engineering 9

lnAH =− 3.512 + 0.904M − 1.328 ln

√
r2 + (0.149 exp (0.647M))2

+ (0.440− 0.171 ln r)ssr + (0.405− 0.222 ln r)shr (11)

+ (1.125− 0.112 ln r − 0.0957M)Ft,

where AH is the horizontal component of the PGA (in g), M is the magnitude, r is the
distance to the epicenter (in km), Ft is the fault type, and ssr and shr define the local
site conditions. Equation (11) can be written as follows:

AH = fe (M, r, ssr, shr, Ft) . (12)

2.2.2 Fragility curves

A fragility curve defines the conditional probability of exceeding a prescribed limit state
(LS) as a function of a selected intensity measure (IM) (e.g., horizontal peak ground
acceleration) of ground motions. The fragility is often modeled by a lognormal cumulative
distribution function (CDF), where the demand D and capacity C are assumed to be
independent lognormally distributed variables. The safety factor F (Rosenblueth and
Esteva 1972) can then be computed as

F = lnC − lnD,

where F ≤ 0 represents the failure event. Since C and D are both assumed to be log-
normal variables, their logarithms are both normal, and thus F is also normal. Since
F ∼ N

(
µF , σ

2
F

)
, the variable Z = (F − µF ) /σF follows the standard normal distri-

bution, i.e., Z ∼ N (0, 1). The conditional probability of exceedance given an intensity
measure is given as

P (F ≤ 0|IM) = P

(
Z ≤ −µF

σF

∣∣∣IM)
= Φ

(
−µF (IM)

σF (IM)

)
, (13)

where Φ(·) is the standard normal CDF. Since there are multiple limit states possi-
ble (based on different levels of drift, peak ground accelerations, etc.), the conditional
probability is computed for each limit state. The fragility curve used in this work is a
univariate model where the probability of exceedance is only dependent on the PGA in
the horizontal direction, AH (in g). As a result, Equation (13) can be rewritten in the
following form (Nielson and DesRoches 2007):

P (Fi ≤ 0|AH) = Φ

(
lnAH − ln (x̃i)

ζi

)
,

where Fi is the safety factor, x̃i is the median capacity of the structure in terms of PGA,
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Table 1. Median and dispersion values in g for seismic
fragility curves of bridges (Nielson and DesRoches 2007).

Bridge Class
Median PGA (g)

ζ
Slight Moderate Complete

MSC concrete 0.15 0.52 1.03 0.70
MSC steel 0.18 0.31 0.50 0.55
MSSS concrete 0.20 0.57 1.17 0.65
MSSS steel 0.24 0.44 0.82 0.50
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Figure 5. Fragility model for MSC steel bridges: The fragility curves represent the three limit
states.

and ζi is the dispersion value belonging to the ith limit state. Table 1 provides the fragility
curve parameters for several bridge classes typical to the Central and Southeastern United
States, excerpted from Nielson and DesRoches (2007).

For simplicity, we assume three limit states, slight, moderate, and complete, as shown
in Table 1 for multispan continuous (MSC) steel girder bridges (Nielson and DesRoches
2007). The fragility curve corresponding to each limit state is given in Figure 5. Intu-
itively, the probability of exceedance of a less severe limit state is greater than that of a
more severe limit state. Also, as AH increases, the probability of exceedance of any limit
state increases monotonically.

2.2.3 Computing the probability of damage states

Once the fragility curves have been modeled, it is possible to determine the probabilities
of being in different damage states by computing the difference between adjacent fragility
curves for a given AH. The three limit states described previously yield four damage states
(DS) defined as D = {insignificant,medium, high, total}, following a similar procedure
to Bai et al. (2009).

Consider the probabilities of exceedance of the three limit states denoted PS (slight),
PM (moderate), and PC (complete), which are listed in increasing severity. The second
column of Table 2 shows how the probability of occurrences of each damage state is
computed using the fragilities for a given AH. If damage events d ∈ D are defined such
that they are mutually exclusive and collectively exhaustive (MECE), for a given AH the
following holds:
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Table 2. Probability of being in different damage states
and their associated traffic capacity factors, α (Mackie and
Stojadinović 2006).

Damage state Probability Traffic capacity factor, α
insignificant 1− PS 1
medium PS − PM 0.75
high PM − PC 0.5
total PC 0

∑
d∈D

P (d|AH) = 1.

Assuming damage states are MECE events is important because it allows D to define
the full distribution of damage states given the earthquake magnitude and location, and
site conditions.

2.2.4 Mapping damage states to traffic capacity

We assume quarter-based capacities are used to relate the bridge damage state to traffic
capacity, similar to the assumption used by Mackie and Stojadinović (2006) and Murachi
et al. (2003). The third column of Table 2 shows the mapping between the damage state
and traffic capacity factor, α. Note that this mapping is used as an example and more
detailed models could be constructed.

2.2.5 Fragility model as an input to the traffic model

At a given time step n ≥ nEQ (i.e., after the occurrence of the earthquake), the probability
distribution of the damage states (Section 2.2.3) using the earthquake magnitude and
location, and site conditions can be computed. This distribution of damage states maps
to a distribution of the traffic capacity factor (Section 2.2.4) which can be included
explicitly as an input into the CTM (Equation (3)). In this way, the existence of an
earthquake and its subsequent damage to the transportation infrastructure has a direct
influence on the maximum flow qmax, and jam density ρj , at a given instance in time.

3. Sequential state estimation

This section briefly reviews the development of the ensemble Kalman filter (Evensen
1994) sequential state estimation algorithms used in this work. The observation (Equation
(2)) is also defined.

3.1 Kalman filter

When the model evolution and observation equations are linear with additive white noise,
Equations (1) and (2) can be written as the following:

xn = Fnxn−1 +wn
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yn = Hnxn + vn,

where Fn is the linear model operator and Hn is the linear measurement matrix, which
is also indexed by n to integrate the possibility of moving sensors (e.g. in vehicles) and
intermittently operating fixed sensors. The model and measurement noises are wn ∼
N (0,Wn) and vn ∼ N (0,Rn), respectively, where Wn is the model error covariance
matrix and Rn is the measurement error covariance matrix at time n. The Kalman filter
(Kalman 1960) computes the posterior state, xn|n, given xn−1|n−1 and measurements
yn, and is given as

Prediction:

{
xn|n−1 = Fnxn−1|n−1

Pn|n−1 = FnPn−1|n−1F
T
n + Wn

(14)

Update:


Kn = Pn|n−1H

T
n

(
HnPn|n−1H

T
n + Rn

)−1

xn|n = xn|n−1 + Kn

(
yn −Hnxn|n−1

)
Pn|n = Pn|n−1 −KnHnPn|n−1.

(15)

The model prediction step (Equation (14)) propagates the mean (xn−1|n−1) and covari-
ance (Pn−1|n−1) of the state at the previous time n − 1 forward through Fn to obtain
xn|n−1 and Pn|n−1. The measurement update step (Equation (15)) computes the pos-
terior mean (xn|n) and covariance (Pn|n) by taking into account observations given up
to step n. The Kalman gain, Kn, is chosen such that the resulting filter is a best linear
unbiased estimator (BLUE) of the state for linear systems, where best is in the sense of
minimal variance of the posterior state error covariance (Simon 2006).

3.2 Ensemble Kalman filter

Due to the nonlinearities of the CTM (Equation (7)), a nonlinear extension of the KF,
known as the ensemble Kalman filter (Evensen 1994), is used in this work. The EnKF is
also computationally cheap compared to the particle filter, and has improved accuracy
compared to extended Kalman filters (Blandin et al. 2012), thereby motivating the use
of the EnKF in the present work.

The EnKF is a sample (ensemble) approximation of the KF, which represents the prior
and posterior distributions by ensembles. Rather than obtaining the covariance matrix
through Fn (Equation (14)), the EnKF evolves the covariance matrix indirectly through
the individual ensemble evolutions of the prior distribution. The ensemble representations
of the model states and observations indexed by e ∈ {1, · · · , N} are

xen = f
(
xen−1,θ

e,uen,w
e
n

)

yen = yn + ven, (16)
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where we
n and ven are the realizations of the model noise, wn, and measurement noise, vn.

The variables uen and θe are also indexed by e to show that each ensemble is associated
with its own realization from the damage state distribution. In the limit of an infinite
number of ensembles, the EnKF converges to the KF for linear systems with Gaussian
additive noises (Mandel et al. 2011). The model prediction and measurement update
steps for the EnKF are given as

Prediction:


xen|n−1 = f

(
xen−1|n−1,θ

e,uen,w
e
n

)
xn|n−1 = 1

N

∑N
e=1 x

e
n|n−1

Pn|n−1 = 1
N−1

∑N
e=1

(
xen|n−1 − xn|n−1

)(
xen|n−1 − xn|n−1

)T
(17)

Update:


Kn = Pn|n−1H

T
n

(
HnPn|n−1H

T
n + Rn

)−1

xen|n = xen|n−1 + Kn

(
yen −Hnx

e
n|n−1

)
Pn|n = Pn|n−1 −KnHnPn|n−1.

(18)

The formulation of the EnKF shown above is identical to that used in (Blandin et al.
2012), with the exception that the algorithm presented here is generalized to include the
dependency of the forward model f on the input u and the parameters θ. After the
posterior ensembles from the previous time (xen−1|n−1) have been propagated forward in

time through the nonlinear model f to obtain the prior ensembles, xen|n−1, the sample

mean and the state error covariance matrix are computed from the ensembles. In the
analysis step (Equation (18)), a posterior ensemble, xen|n is computed using the prior

ensemble (Equation (17)) and the ensemble of observations (Equation (16)). By updating
each ensemble member using a perturbed observation yen, a new set of ensembles is
created which has the correct error statistics after the update step (Evensen 2003). The
posterior state mean, xn|n, can be computed similarly to xn|n−1. Notice the posterior
error covariance, Pn|n, and Kalman gain, Kn, are computed in exactly the same way as
that of the KF (Equation (15)).

Looking at Equation (16), it is possible that measurements may be perturbed outside
the physical bound of the quantity to be measured. One could throw away these samples
if desired, or add a non Gaussian measurement noise to prevent non-physical perturbed
measurements.

Equations (17) and (18) illustrate the structural similarities to the linear KF (Equa-
tions (14) and (15)). For the numerical experiments shown next, we use a more efficient
implementation described in Evensen (2003) and Evensen (2009). The implementation
avoids building the covariance matrix explicitly, which reduces the computational cost of
the algorithm. The implementation is used purely for numerical efficiency and is there-
fore not explained in this work; the interested reader is directed to Evensen (2003) and
Evensen (2009) for further details and to the supplementary source code available at
https://github.com/rotsuka/postDisaster_EnKF.

Note it is also possible to augment the state vector, x, by the model parameters (e.g.,
qmax) and estimate the parameters directly through the filter. Wang and Papageorgiou
(2005) used the extended Kalman filter to perform joint traffic state and parameter
estimation, and capacity reductions due to incidents is explored in Wang and Work
(2014) assuming the capacity reduction is a discrete variable. The main constraint is
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the capacity drop is not always observable, which can cause poor performance of the
filter unless good models of the parameter evaluation exist to assure convergence. As a
result, Equation (16) treats the capacity reductions as noisy inputs to the traffic model
to improve the traffic estimates.

3.3 Observation equation

We assume that the traffic density is observed at every time step from sensors located at
various positions on the road network. Thus, the operator h in Equation (2) that relates

the traffic state xn =
(
ρ0
n, · · · , ρimax

n

)T
at a time n to the sensor measurements must be

defined. The observation operator h is defined as follows:

hn (xn) = Hnxn.

For traffic sensors indexed by l ∈ {1, · · · , lmax}, the measurement operator, Hn ∈
{0, 1}lmax×(imax+1), is defined as

Hij =

{
1 if the ith measurement is obtained in cell j + 1

0 otherwise.

Assuming measurement errors vn are independent, the measurement error covariance
matrix Rn is diagonal and given as

Rn = diag
(
σ2
n,1, · · · , σ2

n,lmax

)
, (19)

where σ2
n,l is the variance of sensor l at time n.

4. Numerical experiments

This section describes the numerical experiments to quantify the potential improvements
achieved by linking the seismic hazard and bridge fragility models to the traffic model
updated by traffic sensor data. First, a transportation network based on Interstate 155
West near the New Madrid Seismic Zone in New Madrid, Missouri is constructed and
the discretization of the network is described. Using prescribed initial and boundary
conditions, the true model is run using a set of true parameters, including a reduction
in capacity due to an earthquake, to generate the true state to be estimated. The true
state serves to assess the accuracy of the estimates and it is also used to generate the
synthetic measurements in the filter.

In the estimation algorithm, a separate model called the approximate model is used,
which has different initial and boundary conditions and traffic parameters. To test the
value of various information sources (earthquake information, traffic sensors), several
estimation algorithms are run with different sensor measurements and inputs. The four
estimation algorithms are the following:

(1) Neither earthquake information nor traffic sensor data available
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New Madrid 

Seismic Zone 

Fault line 

Historical earthquakes 

Simulated earthquake location 

Traffic flow  

Link boundaries 

Network 

Figure 6. Location of network: The picture on the left shows the location of the network, as well
as the location of the earthquake. The dots represent all locations of earthquakes from 1974-2011.
The figure also shows the approximate orientations of the fault lines in the New Madrid Seismic
Zone. The picture on the right shows a close-up of the transportation network, the network
discretization into links, and the direction of traffic flow (Points A to B).

(2) No earthquake information, but traffic sensor data available
(3) Earthquake information available, but no traffic sensor data
(4) Both earthquake information and traffic sensor data available

Estimation algorithms that do not account for traffic sensor data are open loop models
while those that do account for traffic sensor data are filters. The approximate models,
regardless if they are open loop or filters, provide estimates. To quantify performance of
the filter and to compare improvements from one estimation algorithm to others (e.g.
filter vs. open loop, or earthquake vs. no earthquake), we use the Bayesian estimation
error quotient (BEEQ) (Li and Zhao 2005). The BEEQ is also used to compare filter
performance in terms of computational cost when different numbers of ensembles are
used.

4.1 Discretization of transportation network

As shown in Figure 6, we simulate a 37.5 km stretch of roadway from the junction of
Interstate 155 (I-155) and Tennessee State Route (SR) 78 in Dyersburg, TN across the
Caruthersville Bridge to the intersection of I-155 and I-55 in Hayti, MO. For simplicity,
we assume ramp inflows and outflows are negligible, although the framework can be
easily extended to support them (Daganzo 1995). This network contains one bridge, the
Caruthersville Bridge, which spans the Mississippi River. The network lies in the New
Madrid Seismic Zone (NMSZ), as shown in Figure 6.

There are indeed many other pieces for infrastructure (e.g., overpasses, underpasses)
which may cause disruptions in traffic flow. These infrastructure elements could be in-
cluded in the model provided that fragility models exist and that the location of the
infrastructure is integrated into the model. For simplicity and pedagogy, the numerical
example only considers the dependence on the bridge.

Figure 6 also shows the discretization of the network into links used in the experiments
while Figure 7 shows the linear representation of this network, which contains three links
of varying length. On each link the parameters of the roadway are constant. Links are
further subdivided into cells and the density in each cell creates the network traffic state
vector, x. The total number of cells in the network is 80.
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Figure 7. Schematic of model simulation: The roadway is composed of three links of varying
length and number of cells.

Table 3. Discretization of road network.

Link 1 2 3
Length (km) 19.7 2.2 15.6

Cells 42 4 34
∆x (km) 0.469 0.550 0.459

Lanes 2 2 2

The Caruthersville Bridge is represented by Link 2. It is assumed there are nine traffic
sensors located throughout I-155 West spaced approximately four km apart, and there are
no sensors along the bridge. Table 3 describes the discretization in detail. The simulation
is run for a duration (tmax) of 40 minutes with a time step (∆T ) of 15 seconds (0.25
minutes), resulting in 161 (nmax) time steps starting at t = 0 minutes. Since the speed
limit does not vary along I-155 West, these links are discretized into cells of approximately
equal length as shown in Table 3. The discretization obeys the Courant-Friedrichs-Lewy
(CFL) condition (Courant et al. 1967), ∆x ≥ vmax∆T , which is required for numerical
stability of the CTM (Equation (7)).

4.2 True model parameters and assumptions

4.2.1 Bridge fragility and damage scenarios

The Caruthersville Bridge is an MSC steel bridge, following the classification of Nielson
and DesRoches (2007). The site condition (soil profile) is assumed to be alluvium, thus
ssr = shr = 0. The bridge is located 15 km from the earthquake epicenter (i.e. r = 15),
as shown in Figure 6.

In this work, different scenarios for the true model are defined by the resulting damage
state of the Caruthersville Bridge following an earthquake event. In addition to earth-
quakes which cause insignificant damage (i.e., flow is uninterrupted), we assume there
are three types of earthquakes for the true model, corresponding to the various damage
states of the bridge, which are shown in Table 4. We assume the earthquake originates
along the New Madrid fault, which has a strike-slip mechanism (F = 0).

When the values corresponding to the site conditions (ssr, shr), the fault (F ), and
Table 4 are substituted into Equation (12), the resulting PGA value when mapped to
the fragility model (Figure 5) results in the damage state defined by those variables to
have the highest probability of occurrence.
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Table 4. Earthquake characteristics for the true and ap-
proximate models.

Magnitude, M Distance (km), r
Damage

True Approximate True Approximate
6.5 N (6.5, 0.32) 15 N (15, 32) medium
7.5 N (7.5, 0.32) 15 N (15, 32) high
8.5 N (8.5, 0.32) 15 N (15, 32) total

Table 5. Initial and boundary density conditions in
veh/km and traffic parameters for the true and approxi-
mate models.

Link True Approximate Error (%)
1 30 10 66.7
2 30 10 66.7
3 30 10 66.7

UBC 40 30 25
DBC 20 10 50

vmax (km/h) 110 N (110, 3.32) -
qmax (veh/h/lane) 2000 N (2000, 1002) -
ρj (veh/km/lane) 125 N (125, 6.252) -

4.2.2 Parameters and assumptions

The model parameters are given in Table 5, which is split into two sections: initial and
boundary density conditions and link traffic parameters. Note that the densities are
given in units of veh/km, while the parameters are given in units of veh/h/lane and
veh/km/lane. The parameters of the true model are given in the second column of Table
5. The traffic parameters along I-155 are constant across the links. The fundamental
diagram (Figure 2) is computed using vmax, qmax, and ρj.

The true model is initialized with the traffic in free flow and the downstream boundary
condition (DBC) also in free flow. The upstream boundary condition (UBC) is a congested
density, which given the free flow initial condition, generates maximum inflow on the
upstream boundary. At t = 10 minutes, an earthquake occurs of magnitude M a distance
r away from the bridge (Table 4). A realization of α is drawn from the damage state
distribution and this is used to compute a realization of qmax to propagate the forward
deterministic model in Equation (7). This is the true state which is used to compare the
accuracy of the traffic estimates. The density contour in the time-space domain is shown
in Figure 8(a) for an earthquake which resulted in a 50% reduction in traffic capacity
of the bridge (i.e. high damage). The true state will be further analyzed in subsequent
sections.

4.3 Approximate model parameters and assumptions

In the approximate models, an earthquake magnitude and epicenter location is drawn
for each ensemble at each time step from normal distributions whose means are the
true characteristics (Table 4). For the following experiments, the estimation algorithms
use N = 200 ensembles. We assume accurate knowledge of the earthquake magnitude
and location are available once the earthquake occurs. Therefore, the variances of the
distribution assigned to the noises for the magnitude and distance are fairly small. In the
approximate model, the parameters that compose the fundamental diagram are drawn for
each ensemble from distributions centered around the true values from the distributions
defined in Table 5. Thus, each link for each ensemble has a different realization of the
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Table 6. Filter parameters of the
approximate model.

σsensor (veh/km) 10
εS (veh/h) N (0, 502)
εR (veh/h) N (0, 1002)
εQ (veh/h) N (0, 1502)

fundamental diagram. Table 4 shows the distribution of the earthquake parameters (M, r)
used in the approximate model.

In the approximate model, the measurements are synthesized by computing the true
state and adding the measurement noise vn. We assume that the traffic sensors in the
road network are fixed, thus Hn = H (i.e., H is time-invariant). We also assume that each
traffic sensor has the same accuracy and the accuracy of traffic sensors do not change
after the occurrence of the earthquake. Thus, each entry in Equation (19) is defined with
a constant standard deviation, σsensor, shown in Table 6. The noise parameters associated
with the fundamental diagram (Equations (9) and (10)) are also shown in Table 6.

We initialize the approximate model with the traffic and boundary conditions given in
the third column of Table 5. Each link for each ensemble is associated with a different
realization of the fundamental diagram. The mean values (Table 5, second column) of
the initial and boundary conditions for approximate models are chosen in free flow. The
table also illustrates the relative error of the approximate model initial and boundary
conditions compared to those of the true model. The relative error then quantifies the
amount of error in the parameters used in the true model, and the parameters used in the
approximate model in the estimator. The values in Table 5 show that the approximate
model is initialized with fewer vehicles than the true model. Thus, there is less chance
for congestion in the approximate model if the draw from the damage distribution does
not result in a reduced traffic capacity of the bridge.

4.4 Results and discussion

In the true state (Figure 8(a)), at the start of the simulation (t < 10 minutes), there is
no congestion in the network, because the network is initialized in free flow and there are
no merges to create bottlenecks in the network. At time t = 10 minutes, the earthquake
occurs and damages the bridge (Link 2) such that its traffic capacity is reduced by 50%
(α = 0.5). This results in a backward propagating shock wave which starts at the end
of Link 1. Due to this bottleneck, downstream of the shock wave the vehicle density
decreases because the outflow from the bridge is decreased due to the damage.

The subplots of Figure 8 show the various estimation results using the four algorithms
described at the beginning of this section. As a baseline of the estimator, an open loop
model with no knowledge of the earthquake input is used (Figure 8(b)). Figures 8(c) and
8(d) show the estimation results when there is either traffic data or knowledge of the
earthquake input, but not both. Figure 8(e) shows the estimation results when there is
both traffic data and knowledge of the earthquake input.

Since the model is initialized in free flow, when there is no input from the earthquake
in the forward model (Figure 8(b)), the traffic conditions will remain in free flow. Having
no earthquake input into the model is numerically similar to having no earthquake event
or one that only results in insignificant damage to the bridge, thus no disruption in
traffic flow. When there is no earthquake input, but there is information fed to the filter
via traffic sensors (Figure 8(c)), congestion is detected in cells where sensors are located,
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Figure 8. Time-space density plots for high damage: (a) Before the earthquake occurs there is no
congestion in the network. When an earthquake occurs that results in a 50% reduction of traffic
capacity of the bridge, a shock forms at the end of Link 1. (b) Without an earthquake input into
the model or traffic sensor data, the model fails to predict any congestion. (c) With sensor data,
the model accurately predicts congestion and backward propagating shockwave is detected. (d)
Supplementing the model with data from the earthquake improves the model even if there is no
sensor data. (e) The estimator in (d) performs better when both traffic sensor and earthquake
data are also used.

and the shock wave propagates backward. However, the congestion is not detected by
the model until the shockwave is detected by a sensor. Figure 8(c) illustrates that the
sensor did not detect congestion until 25 minutes into the simulation, whereas the true
state (Figure 8(a)) has congestion starting from 10 minutes.

Figures 8(d) and 8(e) show the results of the approximate model when the earthquake
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is used as an input to the traffic model. Figure 8(d) shows that by having knowledge
of the earthquake characteristics, the congestion due to the bridge capacity reduction is
detected. However, there are two errors in the traffic estimates of the open loop model
with the earthquake input. First, the speed at which the congestion wave travels in the
open loop model is slower than in the true model. Thus, the region of congestion is
smaller than in the true model. Second, the congestion levels are slightly overestimated.
With the addition of the traffic sensor data (Figure 8(e)), the estimation of the state
is significantly improved, and the duration, location, and magnitude of the shock wave
are estimated accurately. This is an improvement on the models that have either traffic
sensor data (Figure 8(c)) or the earthquake input (Figure 8(d)) and is a significant
improvement on the open loop model (Figure 8(b)). The traffic estimate is still slightly
incorrect, because the vehicle density on the bridge itself is unaffected, whereas in the
true model the density decreases.

4.5 Quantifying model performance

To quantify the performance of open loop estimators and filters, the model performance
is evaluated using the BEEQ error score (Li and Zhao 2005). The BEEQ of an estimator
is a measure of improvement for an Nr number of independent estimates indexed by

r ∈ {1, · · · , Nr}. It is defined by the geometric mean, β =
(∏Nr

r=1 βr

)1/Nr

, which is

computed through its logarithm for numerical reasons:

log β =
1

Nr

Nr∑
r=1

log βr, βr =
‖sr − ŝr‖
‖sr − s̄r‖

, (20)

where sr represents the true state, s̄r represents the prior state, and ŝr represents the
estimation state for the rth simulation run. For our purposes, s̄r is the open loop solution
with no knowledge of the earthquake input and ŝr is one of three solutions: the filter
solution with no earthquake input, the open loop solution with the earthquake input, or
the filter solution with the earthquake input. All three solution quantities in Equation
(20), sr, ŝr, s̄r ∈ Rimaxnmax , are vectors that contain the ensemble mean densities of the
cells for all time steps. The formulation of the BEEQ as the geometric mean ensures that
error amplification and error reduction are balanced (Li and Zhao 2005). A BEEQ of 1
indicates that the error of the estimation state is no different than that of the open loop
model and a BEEQ less than 1 indicates that the estimation state has a smaller error
than that of the open loop model.

Table 7 shows the BEEQ using each definition of ŝ stated previously for earthquakes
that result in medium, high, and total damage to the bridge. We use Nr = 100 simulation
runs. From the table, it is observed that having traffic sensors (second column) or the
earthquake input (third column) gives an improvement over the open loop model with
no earthquake input and this is consistent with the graphical solutions (Figures 8(c) and
8(d)) corresponding to these estimators.

Table 7 illustrates several interesting results. For an earthquake that results in medium
damage to the bridge, the BEEQs imply that knowledge of the earthquake is less ben-
eficial than obtaining data from traffic sensors. For more severe earthquake events, the
importance of the earthquake characteristics increases relative to the importance of the
traffic sensor data, which is suggested by a decreasing BEEQ when there is knowledge of
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Table 7. BEEQ for various estimators for different earth-
quake scenarios averaged over 100 experiments.

Damage
No earthquake Earthquake Earthquake

Filter Open loop Filter
medium 0.6296 0.7722 0.3093
high 0.7304 0.5570 0.1932
total 0.8485 0.5341 0.1402

Table 8. BEEQ and running time for using different amounts of ensembles
for the estimator that has the earthquake input and traffic sensor data.

Number of ensembles, N Running time (min/sim) β σg

100 22.4 0.2139 1.0863
150 33.3 0.2002 1.0870
200 45.2 0.1932 1.0687
300 67.1 0.1846 1.0736
500 111.8 0.1824 1.0690
1000 223.1 0.1801 1.0674

the earthquake input. This is due to the fact that the approximate models are initialized
in free flow. Thus, the closer the magnitude of the shock wave congestion is to the initial
densities, the more accurate the model will be when there is no earthquake input. Note
that this trend is specific to the setup of our numerical simulation (e.g. road geometry,
initial and boundary conditions, noise models) and might not be observed in different
scenarios.

The fourth column of Table 7 suggests that having both the earthquake input and traffic
sensor data makes for the best estimator as the BEEQ for all three damage scenarios is
0.30 or less. Put another way, using this estimator results in at least a 70% reduction of
error compared to the open loop solution with no earthquake input, which is a significant
improvement in performance. Using the BEEQ as a measure of filter performance, the
estimator using the earthquake input and traffic sensor data is numerically validated for
the real-time prediction of post-disaster traffic conditions.

4.6 Influence of the number of ensembles

The performance of the EnKF is dependent on the number of ensembles used. Using too
few ensembles might fail to represent the distribution of the state estimate, but using
too many could result in very high computational costs. Thus, the performance of the
proposed algorithm is also tested with different numbers of ensembles, N . Table 8 shows
the running times per simulation, BEEQ, and geometric standard deviations, σg, for
Nr = 100 simulations for the estimator that has the earthquake input and traffic sensor
data. The assumed damage state of the bridge due to the earthquake is high.

The second column shows that the running time per simulation grows approximately
linearly with the number of ensembles. Thus, the number of ensembles used in the EnKF
is a key factor to reduce computational cost. The third column is the BEEQ computed
using Equation (20). The fourth column is the computed geometric standard deviation
of the Nr error ratios used to compute the BEEQ. Unlike the standard deviation, the
geometric standard deviation is a dimensionless, multiplicative factor. Thus, a data set
with no geometric variance will give a σg of 1.

From the table, it is observed that for N > imax (i.e. the number of ensembles is
greater than the number of cells in the network) β has a small variance, suggested by
a σg near unity. Thus, using N = 200 ensembles in Section 4.3 is reasonable for both
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accurate and efficient traffic estimation for the traffic network. As N increases, there is
a reduction in β, which is intuitive since the more ensembles that are used, the better
estimate the filter can give for the traffic states. However, for this particular numerical
experiment, for an increasing number of ensembles, the decrease in β is small compared
to the increase in computation cost. If the network were to change (i.e. expand), a larger
number of ensembles would have to be used or localization approaches (Evensen 2009)
are necessary since imax would also increase.

All simulation results in this work were produced using MATLAB R©. The experiments
performed in Sections 4.5 and 4.6 were done on a server running four Intel R© Xeon R©

E5620 2.40 GHz CPUs and 24 GB of RAM. From Table 8, a single simulation took 22
minutes for 100 ensembles up to 223 minutes for 1000 ensembles, running on a single
core. For efficiency, the code is parallelized at the simulation level (each of four cores
runs) when multiple simulations are run to generate the results in Tables 7 and 8.

5. Conclusions

This article illustrated a proof of concept estimation technique for determining the post-
disaster traffic behavior due to a reduction of traffic capacity from an earthquake. The
standard additive noise model of the model prediction step of sequential estimators is
altered using a non-additive model to allow for the conservation of vehicles of the macro-
scopic cell transmission model. An ensemble Kalman filter is proposed to predict traffic
conditions using a stochastic process which draws earthquake characteristics (magni-
tude, distance) centered around the true earthquake characteristics for each ensemble.
Synthetic traffic data using the true state is used to propagate the observation equation
in time. Our results show that there are moderate improvements when either the earth-
quake input or traffic sensor data is integrated into the model. We show that having
both of these elements results in a significant improvement in filter performance. The
error in the filter is approximately 30% that of the error in the open loop model with no
earthquake input across the three earthquake objects we tested.

There are several areas which are open for further exploration. In addition to state
estimation, a joint state and parameter estimation problem could result in a better
estimate of the model parameters. This joint state and parameter problem is known
as parameter estimation and requires the state vector to be augmented by the desired
parameters.

The fragility model is another aspect that could be expanded. Though we use a uni-
variate model that is only dependent on the peak ground acceleration, there are also
bivariate models which make use of fragility surfaces (Huang et al. 2010). Using bivari-
ate fragility surfaces may give a more accurate representation of the probability of being
in different damage states.

In terms of a practical application, increasing the network size would result in higher
computational costs and scaling techniques such as the distributed local Kalman consen-
sus filter (Sun and Work 2014) or the parallelized filter (Mihaylova et al. 2012) may be
required.

The methodology presented in this article assumes that sensor data will be available
following an earthquake event. Damage to sensors following an earthquake could result
in inaccurate observations and is a potential hurdle to overcome for a practical imple-
mentation. However, the intent of this work is to show that if traffic sensors are available
and if earthquake data is available, it might provide better information in post disaster
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response environments.
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