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ABSTRACT1
In this work, we address the question of whether driver behavior can be modified to improve2
the ability of a driver to maintain a constant time gap using only data from stock sensors on a3
commercial car reported on the controller area network (CAN). We introduce the CAN Coach,4
which is a system that continuously feeds time gap sensor information from the CAN bus back to5
the driver in real time. Three sets of preliminary experiments are conducted in which the study6
vehicle follows a lead vehicle driving a specified driving profile to assess the potential of the CAN7
Coach to modify driver behavior. The experiments consider Normal driving (the driver is given8
no prompt and no feedback), Instructed driving (driver is given a prompt to drive at a two second9
time gap, but is not given any realtime feedback from the CAN Coach), and Coached driving (two10
second prompt and CAN Coach feedback). The mean time gap errors from the 2 second target are11
0.39 s (Normal Driving), 0.09 s (Instructed Driving), and 0.01 s (Coached Driving). The standard12
deviation of the time gap error with the CANCoach reduced by 72% and 68% fromNormal Driving13
and Instructed Driving respectively. Given this reduction of mean and standard deviation of the14
time gap error, we conclude that it is possible to “coach” drivers using only data from the CAN.15
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INTRODUCTION1
Modern cars have controller area networks (CANs) that are in place to facilitate communication2
between electronic control units (ECUs) on the vehicle. CAN uses a multi-master data bus where3
all messages are multicast. There are dozens of systems on the CAN, featuring hundreds of sensors,4
that support everything in the car from optimal engine function to climate control to driver safety.5
Year by year, more electronic features are added (e.g., adaptive cruise control, blind spotmonitoring,6
lane keep assist). The amount of data produced on the CAN will continue to accelerate as cars7
become increasingly automated. The data that is multicast on the CAN bus provides information8
on the car, the driver, and the external environment. CAN messages are often sent in the order of9
hundreds of Hertz, and the thousands of data signals are typically a standard eight bytes in size.10
This means gigabytes of data per hour are sent on a vehicle’s CAN bus.11

Considering the ubiquity of CAN technology and the holistic nature of the data it provides,12
there is substantial potential for finding insights about drivers under various levels of vehicle13
automation [1, 2]. Moreover, considering the real-time nature of the CAN and the increased14
number of sensors reporting data on it, it is now possible to implement CAN applications that15
augment safety, improve eco-driving, or adjust car following behavior. Since CAN data is available16
widely within today’s vehicle fleet, these applications could scale broadly and at low cost.17

The demonstrable value of CAN data is already established in commercial aftermarket18
applications. Insurance companies offer discounts on rates in exchange for a relatively reduced19
set of data on a driver available through the on board diagnostics (OBD-II) interface (a subset20
of the data available on the CAN) to characterize driver behavior and ultimately risk. Major car21
manufacturers now collect data on their vehicles, and collaborate on CAN data research [3, 4, 5].22
Like the rapid introduction of mobility applications that were created during the transition from23
traditional cell phones to smartphones, we expect a similar transition to occur on vehicles using24
data available on the CAN bus. The goal of this work is to illustrate such an application, that is25
able to change driver car following behavior using only CAN data.26

Though there has been discussion of the potential of CAN data to support application27
development [1], there have not yet been studies published showing real-time driver feedback to28
achieve a precise human-in-the-loop control objective. The literature features machine learning29
work characterizing data traces from CAN to categorize emergent driving behavior like changing30
lanes, making turns, and identifying drivers [1, 2]. These analyses were all done in post-processing.31
Because the data from the CAN has potential to be processed in real time, it can also be used in32
real time to modify driver behavior.33

In this work, we address the question of whether driver behavior can be modified to improve34
the ability of a driver to maintain a constant time gap (i.e., the time separation between a lead35
vehicle’s rear bumper and the following vehicle’s front bumper when the follower travels at a36
constant speed) using only data from the CAN1. We introduce CAN Coach, a system that provides37
real-time time gap feedback to the driver based on sensor data already available on the CAN bus.38
We illustrate through preliminary experiments the potential for feedback using CAN data to change39
driver behavior.40

1This work was conducted under IRB approval #200343
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FIGURE 1 : CAN Coach system. Stock sensors on the vehicle report measurements on the CAN,
which are used to determine the error between a desired time gap (to the car ahead) control objective
and the current time gap. The magnitude and direction of the error is fed back to the driver, who
adjusts the vehicle. The changes are measured by the sensors and the feedback loop is closed.

Related Work1
This section discusses related work on time gap control, driver behavior intervention, and audio2
feedback to drivers. The work [6] provides continuous auditory feedback to the driver whenever3
the time gap is below one second. Because of the feedback, drivers spend less time driving at4
time gaps below or near one second. Cautious drivers do not change their following behavior as5
much, because the feedback only occurs at the one second threshold which is not often reached by6
these drivers. In contrast to [6], [7] gives drivers discrete feedback on their time headway. Human7
subjects placed in a driving simulator change their behavior in the correct direction, with error of8
0.3 s to 0.8 s [7].9

Behavioral intervention is also done for goals other than time gap control. For example,10
eco-driving experiments are done with behavioral training as the method of intervention [8]. The11
work [8] measures driver’s eco-driving in simulated environments, then does offline training on eco-12
driving, and puts the driver back in the simulator to measure the effects of behavioral intervention.13

Choosing the correct sound is an important design consideration in auditorywarning systems14
(e.g., as is already used in lane departurewarnings and blind spotmonitoring systems). Thework [4]15
examines which sounds help in discrete intervention (i.e., a single warning when a minimum time16
gap threshold is violated) to stop dangerously close following. It investigates which sounds are17
informative but least irritating and therefore effective as a feature in production systems designed18
to increase safety for long-haul truckers without annoyance. Because [3] uses continuous ambient19
sounds to give truckers complete information on the state of the vehicle, e.g., lane position, it was20
determined through truck driver surveys that the lack of sound is the preferred mechanism to give21
feedback to drivers. In contrast to [4] which only aims to avoid very low time gaps, our work aims22
to coach drivers affirmatively to follow a specific time gap. Our more ambitious aim comes at the23
cost that it would make sounds too often to be usable in a production-level system.24

The time gap is a quantity that can be readily computed from sensor data on a follower25
vehicle. The time gap is the space gap (distance between lead vehicle rear bumper and follower26
vehicle front bumper) divided by the velocity of the follower car. Time gap is a surrogate safety27
metric for cars [9, 10, 11], in which larger time gaps are associated with increased safety. In freeway28
driving, drivers drive at nearly half the recommended safe time gap [12]. It is also relevant to note29
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that the time gap and total throughput of the roadway are inversely related, so it is important to1
prevent the time gap from becoming too large. Accordingly, feedback to promote a safe and overall2
throughput-efficient time gap is desired.3

The work in [5] informs drivers in a simulator about the time headway of the car to4
promote appropriate reliance on automation and support effective transitions between manual and5
ACC control. Drivers who were given continuous information about time headway are better6
at controlling time headway and managing braking interventions. They argue that continuous7
feedback is more effective than discrete driver warnings.8

Contribution and Outline9
The main contribution of this article is a preliminary demonstration of a CAN-based controller for10
time gap. In other words, using on-board stock vehicle sensors to give feedback in real-time is11
effective in changing the time gap driving behavior. A real-time feedback system, CAN Coach, is12
built to read CAN data and compute the error between the desired time gap and the current time13
gap. A set of experiments are conducted to compare the time gap distribution of a driver under i)14
Normal Drivingwith no coaching and no prompting; ii) Instructed Drivingwith a prompt to follow15
a two second time gap but no coaching; and iii) Coached Driving with CAN Coach that provides16
real time feedback to assist the driver in achieving a two second time gap. Compared to normal and17
instructed driving, The mean time gap error using CAN Coach is reduced from 0.39 s (Normal)18
and 0.09 s (Instructed) to 0.01 s. The standard deviation of time gap error is also reduced using19
CAN Coach by 72% (compared to Normal) and 68% (compared to Instructed).20

We caution that the results presented here are from a preliminary study on a single driver,21
so the generalizablity across multiple drivers remains an open question we are exploring in our22
future work. This work provides a starting point to motivate the need for a comprehensive study in23
the next phase of our work.24

The remainder of this article is organized as follows. In the Section CAN Data Background,25
we provide an overview of CAN and a description of the data obtained from the vehicle platform. In26
the SectionMethodology, we describe the data processing required to transform multiple raw CAN27
messages into relevant time gap data that can be used as feedback to the driver. The implementation28
of the auditory feedback is also discussed, and the description of the driving experiments is provided.29
The Section Results describes how the validity of the CAN data is assessed, and provides the30
analysis of the experiments conducted to determine the impact of CAN Coach on driver behavior.31
The Section Conclusions and Future Work outlines the planned extensions from our preliminary32
work presented here.33

BACKGROUND ON CAN34
This section provides a brief background on CAN data, the hardware used to collect it for this study,35
and details on the relevant CAN signals used. For this study the precision, accuracy, and recency36
of the data provided for feedback contribute directly to the performance of the CAN Coach. The37
ceiling of the potential performance is set by the quality of the real-time CAN data that are the38
basis of the driver feedback (i.e., bad sensor data or incorrect processing will provide inaccurate39
feedback to the driver).40

To build the time gap controller in CAN Coach, we need measurements of the velocity of41
the following vehicle and the distance from the front of the following vehicle to the tail of the42
leading vehicle. By accessing the CAN data in the following vehicle, this information can be found43
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TABLE 1 : Example of CAN Messages that must be deciphered and translated to build CAN
Coach.

CAN Messages
Time (s) Bus Address Data Signal Data Length (B)
3.048295 0 945 00000105000800ca 8
3.048318 1 865 8053460056005c7c 8
3.048447 1 384 a8fff80000000028 8

... ... ... ... ...

via wheel encoder and radar sensors. Radar sensors are increasingly common on stock vehicles1
today that directly measure information needed to compute the space gap and relative velocity, so2
the relative trajectories of the follower and the leader are evident in the data. To have relevant3
feedback in real-time, there are two related challenges with radar data. First, incoming radar data4
tracks many objects in a wide field of view and needs to be processed to extract a high quality5
estimate of the location and relative velocity of the lead vehicle. Second, any processing on the6
radar data must be done quickly so that the feedback to the driver remains relevant. Latent data7
could substantially degrade the quality of control achievable using CAN Coach.8

Collecting CAN Data9
Each message recorded from the CAN includes a timestamp of record, the bus the message was10
sent on, the data signal(s) contained within the message, and the length of the data in bytes, which11
is critical for proper decoding (i.e., translating into human understandable values).12

Asubset of this data is shown inTable 1. From this data, we can understandwhat the vehicle’s13
sensors are reporting after translation. The address gives the context to decipher the information14
embedded in the hexadecimal message. A separate CAN database (referred to as a DBC) provides15
information and instruction on how to read CAN signals. The DBC has stringent formatting rules16
that define the messages, the signals subset of the message, the start, size, scale, offset, min, max,17
units, endian-ness, and signed-ness of the message. Some messages are multiplexed too. The DBC18
is critical for successful decoding of the CAN data, since any errors in the DBC result in errors or19
complete failure of the ability to interpret the information contained in the CAN message.20

Relevant CAN Signals21
This section details the CAN signals that are used in this work, summarized in Table 2. Many22
types of velocity signals are reported on the CAN. Each wheel reports an associated velocity, the23
speedometer has an associated velocity, and the driver support unit reports a velocity. In this work24
we use the velocity corresponding to the speedometer because it reflects the movement for the25
vehicle as a whole, and is reported for reference by other vehicle systems on multiple busses. The26
brakes message has a binary Brake Pressed signal, and an 8-bit sized proportional signal. The27
proportional signal is helpful for testing feedback to the driver, because it is sensitive to small28
changes in the brake pressure. The gas pedal signal contains a binary Gas Pressed signal, and a29
proportional signal analogous to the brakes. Acceleration is reported in x,y, and z directions. The30
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x-direction corresponds to longitudinal accelerations, which is informative to validate velocity, gas1
pedal, and brake signals.2

The radar data is perhaps the most informative data to gain context about the conditions3
ahead of the vehicle, but is also the most challenging to interpret. The data is reported on a set4
of tracks, each of which may contain an object in the field of view of the sensor. Each track5
reports the Cartesian (x,y) coordinates of the object, the relative velocity of the object with respect6
to the vehicle, the relative acceleration, a binary validity signal, and a score ranging from 0-100.7
Processing this collection of data to determine the distance to the vehicle immediately ahead,8
critical for the CAN Coach, is explained later in the Section Methodology.9

Hardware10
This section describes the experimental hardware platform used. The base vehicle used in this work11
is a stock 2020 Toyota Rav4 Hybrid vehicle. The vehicle has as standard equipment an Adaptive12
Cruise Control (ACC) system and Lane Tracing Assist (LTA) system. The ACC system depends13
on a stock forward looking radar unit that transmits relevant data on the CAN. To access this data,14
we use a Gray Panda manufactured by Comma.ai as a data logging device. The Gray Panda is15
connected to a standard laptop via USB, where messages are decoded, processed, and used to16
generate an auditory feedback for the driver. The laptop is used for convenience; in our ongoing17
work we intend to replace it with a low cost Raspberry Pi 4.18

METHODOLOGY19
This section details the real time processing approach used to build the CAN Coach, and the20
experimental design. The hardware was chosen with minimized cost in mind for future scalability.21
As much as possible, stock vehicle features were utilized to maximize the value from the vehicle22
CAN.The select data signalswere processed in real time to keep computing costs low and throughput23
quick. Off-the-shelf algorithms are leveraged wherever possible to ensure the flow of real-time data24
was reliable and accurate. The CAN Coach controller itself was kept as minimal as possible. As25
a human-in-the-loop system, digital precision and subtleties get easily lost. There are essentially26
only three discrete options for a human driver following another vehicle: speed up, slow down, do27
nothing. The controller was designed to guide the driver to do one of those three actions.28

Real Time Processing29
This section discusses the decisions made to process CAN data for driver feedback. The general30
approach is summarized as follows. The radar and velocity signals are read and processed to31
compute the current time gap. The current time gap is then compared to the desired time gap (two32
seconds in our experiments). The difference (or time gap error) is then used to generate sounds33
to the driver that indicate if the time gap needs to be increased or decreased. The time gap is34
calculated at 20 Hz, with sounds output to the driver through the vehicle audio system at a reduced35
rate of 3 Hz.36

The most challenging measurement to obtain is the a reliable space gap measurement to the37
vehicle immediately ahead. The CAN includes a pre-filtered space gap signal reporting at 5 HZ,38
which is rounded down to the integer meter. This signal cannot be directly used because it was39
observed that it does not always report when a vehicle is immediately ahead, due to undetermined40
radar processing mechanisms that are not exposed. To improve performance of CAN Coach, we41
elect to instead process the raw radar tracks and estimate the lead vehicle directly from the raw data.42
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TABLE 2 : Summary of CAN Messages Used for CAN Coach and experimental analyses.

Message Name Signals Frequency (Hz) Description
Raw Radar Track 1 Latitude, Longitude,

Relative Velocity
20 Tracks objects in radar field,

their position and velocity.
Also meta-reports data valid
and score 0-100.

Raw Radar Track 2 Latitude, Longitude,
Relative Velocity

20 Tracks objects in radar field,
their position and velocity.
Also meta-reports data valid
and score 0-100.

... ... ... ...

Raw Radar Track 16 Latitude, Longitude,
Relative Velocity

20 Tracks objects in radar field,
their position and velocity.
Also meta-reports data valid
and score 0-100.

Pre-filtered Radar Space Gap 5 Filtered radar data reporting
the space gap of the lead vehi-
cle.

Velocity Speed 40 Speed of the car from the
speedometer.

Acceleration x-direction,y-
direction,z-direction

40 Acceleration of the car from
an accelerometer.

Brakes Brake Pressed,
Brake Proportion

76 A binary brake pressed sig-
nal and an 8-bit (0-256) brake
pressure signal.

Gas Pedal Gas Pressed, Gas
Proportion

62 A binary gas pressed signal
and proportional gas pedal
pressure signal ranging from
0-1.
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(a) All raw radar space gap data. (b) All raw radar space gap data with pre-processed
radar overlaid.

(c) Filtered raw radar space gap data. (d) Filtered raw radar sensor data overlaid with pre-
processed radar.

FIGURE 2 : Progression of radar data processing for the CAN Coach.

Raw radar data contains the space gap data for the lead vehicle, but also space gap data for1
up to 15 other objects in the field of view of the radar unit. Figures 2a and 2b give an illustration2
of the challenge. In Figure 2a, numerous diagonal lines correspond to objects moving towards or3
away from the vehicle over time that are not directly in the same lane as the vehicle. The solid line4
above 300 m corresponds to when a track does not contain an object. Figure 2b contains raw data5
from Figure 2a and also the pre-filtered (but incomplete) signal corresponding to the lead vehicle.6

To clean the raw radar data and improve upon the pre-filtered space gap signal, a Kalman7
filtering problem [13] is solved in real time. The Kalman filter tracks as state the position of the8
lead vehicle. To determine which measurements are associated with the lead vehicle, and thus9
available to perform an update to the tracked position in the filter based on the measurement, a data10
association problem must be solved. The data association problem determines which measurement11
corresponds to the lead vehicle, amongst the many raw radar measurements reported on the CAN.12
The data association problem is solved via the agglomerative clustering algorithm using a standard13
implementation found in [14].14

Figure 2c shows the result of running the Kalman filter and agglomerative clustering.15
Compared to the raw data in Figure 2a, it is apparent a clean signal has been obtained. In Figure 2d,16
we show the pre-filtered space gap data (containing missing data), with the result of our filtering17
methods. Here we can verify that the filtering is consistent with the pre-filtered signal when data18
is present, but also fills in the missing entries and thus gives a reliable space gap signal.19
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Controller Design1
We briefly discuss the decisions used to create driver feedback within the CAN Coach to change2
driver behavior. The CAN Coach has simple feedback, because complexity can be a burden to the3
driver [3]. Specifically, when the driver is a threshold amount away from a two second time gap,4
a signal is output from the controller to alert the driver of the car’s state. Since auditory or tactile5
driving warnings correspond with better driver reaction times than visual warnings or no warning6
at all [15], we select an auditory feedback approach. When the time gap is outside of 2.0s +/- 0.05s,7
a sound is output to increase or shorten the time gap. There are only three discrete options for8
a human driver controlling a car following another vehicle: speed up, slow down, or do nothing.9
High pitch feedback is given to indicate the time gap is high and the driver should speed up to10
shorten the time gap. Low pitch feedback is given to the driver to indicate the time gap is low and11
the driver should slow down to increase the time gap.12

Experimental Design13
This section covers the experimental design to assess the CAN Coach’s ability to change driver14
behavior with respect to following a two second time gap. In each experiment there are two vehicles,15
a leader and a follower; the follower drives in one of three experimental conditions, while the lead16
vehicle drives under one of two protocols, described next.17

Experimental Conditions18
• Normal Driving: Regular driving with no prompt for time gap. The driver is given19
instructions to follow the vehicle ahead without changing lanes. As a safety precaution,20
the driver is alerted that the vehicle ahead may change speeds during the test. This21
establishes a baseline in absence of instruction and feedback. Some evidence shows that22
a mild cognitive task (such as driving for an experiment) induces longer time gap [16], so23
the time gap behavior shown experimentally likely represents a longer time gap than one24
observed candidly.25

• Instructed Driving: The driver is given all information provided during Normal driving.26
Additionally, they are asked to maintain a two second time gap to the vehicle ahead. This27
instruction establishes a baseline in absence of feedback with which to compare the CAN28
feedback.29

• Coached Driving: The driver is given the same instructions as Instructed driving. Ad-30
ditionally, the CAN Coach is activated when driving. The driver is informed that high31
pitches indicate the time gap is too large, and low pitches indicate the time gap is too32
small. No sound indicates no adjustment is necessary.33

Experimental Protocol34
The lead vehicle driving protocol is a subset of the tests designed in [17]. Oscillatory tests are35
designed to collect transient data to understand how the CAN coach performs under non-constant36
headway and lead vehicle speeds. Two speed oscillation magnitudes are considered, namely 2.237
m/s (5 mph) and 4.5 m/s (10 mph). The two protocols are described as follows.38

• Small Dips: The speed is fluctuated between 29.0 m/s (65 mph) and 26.8 m/s(60 mph),39
with each speed being held for at least 30 seconds.40

• Large Dips: The speed is fluctuated between 26.8 m/s (60 mph) and 31.3 m/s (70 mph)41
with each speed being held for at least 30 seconds.42



Nice and Work 10

FIGURE 3 : Acceleration, gas, and brakes signals during the Normal Driving Low Dips test.
Brake Pressed is a binary signal indicating if the brake is pressed. Gas Pedal is a proportional
signal from 0-1.

RESULTS1
This section discusses the tests to assess the CAN data validity, and the primary results from driving2
under Normal Driving, Instructed Driving, Coached Driving. It compares across experimental3
conditions and protocols.4

Data Validity5
The data required for this experiment needed to be precise, accurate, and recent. Without an6
official manufacturer’s DBC, one must always question the identity, accuracy, and precision of the7
measurements found on the CAN. Here we assess the data validity.8

Speed9
The CAN velocity measurements corresponding to the speedometer are precise to 4+ significant10
figures. The speedmeasurements from the CANbus are shown to be valid by comparing the integral11
of the velocity data with a cumulative distance travelled between data points from a high-precision12
GPS sensor used for validation. There was a 0.01% difference in the integrated velocity from the13
GPS distance travelled measurement.14

Gas, Brakes, and Acceleration15
This section confirms the accuracy of the gas pedal and brake data, which are validated using16
acceleration data also available on the CAN. While stationary, the brake pedal measurements are17
tested, where it is confirmed that the brake value linearly scales from 0 when not pressed to the18
largest value when the pedal is maximally pressed. The gas pedal data was validated in relation to19
the acceleration data. In Figure 3 we show how the gas pedal and brake usage are corroborated with20
acceleration data. When the proportion of the gas pedal is higher, the acceleration goes up. When21
the gas pedal is released, the acceleration goes down gradually. When the brakes are engaged, the22
acceleration goes down more sharply. The acceleration was independently validated for accuracy23
bymatching its integral to the velocity signal. The maximum value of the gas pedal is not confirmed24
due to the desire to avoid extreme engine RPMs.25
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Space Gap1
CAN radar messages are used to measure space gap accurately in [18], which are also confirmed2
with high-precision GPS measurements. Since these experiments were performed with a different3
year-model vehicle, here we take additional steps to confirm the space gap measurements are4
accurate. Ten measurements are made in approximately one meter intervals from 0-10 meters5
when the vehicle is at rest and an object is ahead at the set distance. All of the CAN measurements6
match the true object distance empirically measured with a tapemeasure to within +/- 2 centimeters.7
This confirms that the measurements were accurate and precise.8

Normal Driving9
In this section, we show the results of the tests run under Normal Driving (see the SectionMethods).10
Figure 4a and Figure 4b show the timeseries of the velocity of the following car (blue), the lead car11
(green), and the space gap between the vehicles for the Low Dips and High Dips tests respectively.12
It is clear in Figure 4b that when the lead car (green) jumps up from 26.8 m/s (60 mph) and 31.3m/s13
(70 mph), the following car (blue) is delayed in adjusting speed, overshoots, and then settles in14
matching the speed of the lead vehicle.15

In Figure 4c, a Velocity vs. Space Gap scatter plot for the Normal Driving condition under16
both the High and Low Dips tests. Since the time gap is defined as the space gap divided by the17
velocity, the slope of a line on this plot is equivalent to the time gap. To aid interpretability, two18
lines in the figure are added, corresponding to time gaps of 2.2 s (lower line) and 1.8 s (upper19
line). The points on the scatter plot are plotted with the color assigned to their time on the colorbar.20
Normal Driving is primarily outside the time gap lines, showing it is primarily not close to two21
seconds time gap at varying speeds and space gaps.22

Figure 4d is a kernel density estimate of the time gap for the Normal Driving experiments.23
Kernel density estimation (KDE) is a non-parametric statistical method to estimate the probability24
density function (PDF) of a random variable. The time gap for Normal Driving has a mean of 1.6125
s, a standard deviation of 0.27 s, and an interquartile range of 0.32 s. We conclude the driver does26
not follow a two second time gap under normal driving.27

The roughly unimodal shape of the KDE shows that the driver’s following distance is28
dictated by time gap, not a fixed distance. This fact is supported in Figure 4c, where the range of29
velocity (23.3-33.9 m/s) is generally coupled with the range of space gap (30.0-65.6 m).30

Instructed Driving31
In this section, we report the results of the experiments when the driver operates in under the32
Instructed Driving condition.33

Under Instructed Driving, the driver must use rough estimation techniques to both figure34
out their current time gap and then actuate based on that estimate. For example, this can be done by35
finding a fixed point ahead just passed by the vehicle ahead, and counting the time until passing that36
point. Although it is possible for skilled drivers to perform these calculations reliably, it requires the37
reliable estimation of two seconds passing, and is more difficult to adjust to time gaps at sub-second38
resolution (e.g., a time gap of 1.8 s).39

Figure 5 summarizes the results of the experiments. Figure 5a shows the speed-space40
gap plot, and shows that the time gaps under instructed driving are generally near the instructed41
two second time gap. Figure 5b shows the corresponding KDE. The time gap mean is 2.09 s,42
interquartile range 0.28 s, and standard deviation 0.23 s. Using an average speed of the follower,43
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(a) Velocity of lead car (Green) and following car
(Blue), and space gap for Normal Driving Low Dips
test.

(b) Velocity of lead car (Green) and following car
(Blue), and space gap for Normal Driving High Dips
test.

(c) Speed versus space gap for Normal Driving. (d) Kernel density estimate for Normal Driving tests.

FIGURE 4 : Summary of time gap for the Normal Driving condition.

0.09 s mean time gap error corresponds to about 2.5 m error in position, or about a half car length.1
Similarly, the standard deviation of 0.23 s corresponds to about 1.5 car lengths ( 6.5 m) positional2
error at the tested following speeds. Overall the performance by the driver with respect to the mean3
time gap is very good, but the standard deviation (0.23 s) and interquartile range (0.28 s) are fairly4
wide, similar to the Normal Driving condition where standard deviation is 0.27 s and interquartile5
range is 0.32 s.6

Coached Driving7
In this section we examine the Coached Driving test. In Figure 6 we can see a summary of the8
Coached Driving condition. The driver follows the two second time gap very closely. The points9
in the scatter plot Figure 6a are almost totally inside the lines, i.e., very close to two seconds time10
gap at varying speed and spacing. The KDE of the time gap is centered and peaked tightly over11
the targeted 2.0 seconds. The mean time gap is 1.99 s, with a standard deviation of 0.13 s. The12
interquartile range is 0.09 s. Again, using an average speed for conversion, the 0.01 s mean time13
gap error corresponds to a spacing error of less than 28 centimeters. The standard deviation is14
more than two times smaller and interquartile range is more than three times smaller than Normal15
Driving and Instructed Driving, respectively. An interquartile range of 0.09s translates to about 2.516
m at the testing speeds, so the middle 50% of the data is less than +/- 1.25 m away from 1.99 s of17
time gap.18
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(a) Scatter plot of Instructed Driving. (b) KDE of Instructed Driving tests.

FIGURE 5 : Summary of time gap for Instructed Driving (no feedback) tests.

(a) Scatter plot of Coached Driving. (b) KDE of Coached Driving tests.

FIGURE 6 : Summary of time gap for Coached Driving tests.
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(a) Scatter plot of all three driving conditions. (b) KDEs for all three driving conditions.

FIGURE 7 : Summary plots comparing the time gap behavior in all three conditions.

Comparing Driving Conditions1
In this sectionwe compare different conditions to one another. Wewill examine the three conditions’2
time gaps, and acceleration and brake use.3

Comparing Time Gaps4
Figure 7 shows the data from the three driving conditions overlaid on top of each other. This figure5
allows us to clearly see the trends from condition to condition.6

Figure 7b allows us to easily compare the time gap behavior from all three conditions.7
Normal driving establishes the natural driver following behavior, which has a mean time gap lower8
than two seconds with a wide variance. Instructed Driving noticeably improved the accuracy of the9
time headway, but the variance remains large. Coached Driving demonstrates that the feedback is10
successful in changing the driving behavior by giving the driver continuous information about the11
state of the vehicle. The Coached Driving mean is almost exactly two seconds time gap (1.99) with12
standard deviation and interquartile range three times smaller than Normal Driving and Instructed13
Driving.14

Gas Pedal and Brake Usage15
In this section we examine the use of the pedals by the driver in all three experimental conditions.16
For example, a potential negative finding could be that the driver uses the throttle and brake17
significantly more under Instructed or Coached conditions in order to meet the control objective.18
This would be unlikely to be maintainable for extended periods of time and could have implications19
on vehicle wear and tear. We observe that Instructed and Coached driving result in insignificant20
changes to the actuation amount. There are 6, 3, and 4 brake events recorded under Normal,21
Instructed, and Coached Driving respectively. The small number of Brake events is likely due to22
the high speed freeway driving setting under which the tests are conducted.23

Consequently time gap adjustment primarily occurs through the gas pedal. Figure 8a24
shows a normalized histogram of the gas pedal proportion. The distribution of gas pedal use is25
approximately the same. For Normal, Instructed, and Coached Driving gas pedal position the mean26
was 0.29, 0.27, and 0.29, and the standard deviation was 0.14, 0.13, and 0.15 respectively. These27
preliminary results suggest that the driving condition has no effect on the actuation behavior of the28
driver.29

Figure 8b compares gas pedal and time gap data from the Coached Driving High Dips test.30
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(a) Gas pedal proportion in each condition. (b) Gas pedal proportion plotted with time gap.

FIGURE 8 : Figure 8a is an histogram of the gas pedal use in the three experimental conditions.
The gas pedal proportion ranges from 0-1. The frequency of the values is normalized to account
for the slightly different lengths of time for each condition. Figure 8b is a comparison of the gas
pedal proportion and the time gap. It shows how the two signals are associated with each other.

The clear pattern shows that the gas pedal use dictated the adjustments to time gap.1

Comparing Driving Tests2
This section compares the driving tests in each condition and under each protocol. Normal Driving3
(Figure 9a) under high and low dips show two similar shaped KDEs, although a shift is observed4
in the mean time gap to a longer time gap under the higher speed dips. This is intuitive that the5
repeated larger speed variations resulted in the driver shifting away from the low time headway6
in the low dips test. Under Instructed driving, the time gap means are similar, but the time gap7
variance is notably larger for the high dips test (Figure 9b). In Figure 9c, the driving under8
CAN coach shows negligible change in the mean and standard deviation of the time gap. The9
consistency of the CAN Coach under both experimental protocols is distinct compared to the other10
testing condition without feedback. Figure 9d compares the duration of all the tests in all of the11
experimental conditions. They all have similar durations.12

CONCLUSIONS AND FUTURE WORK13
This article illustrates an application that is able to change driver car following behavior using only14
data on the CAN. It is a proof of the concept that CAN data can be processed in near real-time and15
effect driver behavior to a desired outcome, in this case a time gap. The CANCoach was introduced16
as a system to provide real time auditory feedback to achieve the desired time gap using data from17
the CAN. Using the feedback, a single driver is shown to maintain a time gap with smaller error18
and variance compared to normal driving and driving under instructions to maintain a time gap19
(but without feedback).20

The main limitation of this work is the generalizeability of the results, which require testing21
on more drivers. Based on the preliminary evidence shown in this work, we are planning additional22
experiments to test across a range of drivers. We are also interested to test other control objectives,23
including ones designed to improve the so-called string stability of the driver. String stable drivers24
may reduce the presence of phantom traffic jams, which can provide additional aggregate safety25
and and traffic flow benefits.26
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(a) Normal Driving tests KDEs. (b) Instructed Driving (no feedback) tests KDEs.

(c) Coached Driving tests KDEs. (d) Duration of each test for each condition.

FIGURE 9 : Comparing the differences between the two driving tests. 9a, 9b, and 9c show KDEs
for each of the driving tests. 9d compares the two tests by duration of the tests in each condition.
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