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Abstract

This article evaluates the effectiveness of sensor network systems for
work zone traffic estimation. The comparative analysis is performed on
a work zone modeled in micro simulation and calibrated with field data
from an Illinois work zone. Realistic error models are used to generate
noisy measurements corresponding to Doppler radar sensors, remote traf-
fic microwave sensors (RTMSs), and low energy radars. The velocity,
queue length, and travel time are estimated with three algorithms based
on i) interpolation, ii) spatio-temporal smoothing, and a iii) flow model
based Kalman filter. A total of 396 sensor and algorithm configurations
are evaluated and the accuracy of the resulting traffic estimates are com-
pared to the true traffic state from the micro simulation. The nonlinear
Kalman filter provides up to 30% error reduction over other velocity esti-
mators when the RTMS sensor spacing exceeds two miles, and generally
offers the best performance for queue and travel time estimation.

1 Introduction

Smart work zones (SWZs) aim to improve work zone safety and mobility through
the integration of traffic sensors, estimation algorithms, and traffic management
strategies. SWZ sensor networks have been deployed in a variety of applications
such as the provision of realtime traveler information [1, 2, 3] including back of
queue warnings [4, 5], and traffic management [6, 7, 8]. Many qualitative and
quantitative benefits of smart work zones are reported from field deployments,
such as a reduction in aggressive maneuvers and crashes [9, 10, 2], smoothed
merging activities [11, 12], reduced speeding [13, 14], increased throughput [11],
and reduced delay [15, 16]. For many SWZ applications, the effectiveness of
the deployment relies on accurate and reliable traffic estimates. For example,
the estimated traffic states used to produce safety critical messages on portable
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changeable message signs (PCMSs) must be accurate and credible to be effec-
tive [17].

Given the increasing number smart work zone deployments, cross-studies
have been performed to summarize the lessons learned and the benefits of each
smart work zone [10, 18, 9, 19]. Recently, the Federal Highway Administration
(FHWA) published a work zone implementation guideline [20] to determine the
feasibility and design of work zone ITS for a given application. The guideline
also reports that trade offs typically exist between the number and type of work
zone components, but it lacks a quantitative assessment of the trade offs. A
main reason for the knowledge gap is due to the difficulty of collecting detailed
performance data from a large number of configurations in an active work zone.

To address this gap, the main contribution of this article is the quantita-
tive assessment of the influence of the sensor type and spacing, and the traffic
estimation algorithms used to monitor the traffic state in a work zone. The eval-
uation framework used to identify the importance of each factor is illustrated
in Figure 1. A microscopic traffic simulation software AIMSUN is calibrated
with field data to model traffic dynamics around a work zone on I80 in Illinois.
AIMSUN generates trajectory data for each vehicle traveling through the work
zone, and is used to define the true state to be estimated by the traffic esti-
mation algorithms. A total of 396 sensor network configurations are evaluated
to measure the importance of the number and spacing of sensors, the types of
sensors, the accuracy of individual sensors, and the estimation algorithms.

Three algorithms are implemented to estimate the traffic state. The algo-
rithms are representative of the i) spatial interpolation approaches often used in
practice by state Departments of Transportation, ii) spatial-temporal filtering
algorithms that can incorporate the temporal dynamics of traffic, and iii) state-
of-art nonlinear Kalman filtering methods conventionally applied on highways
outside of work zone environments [21, 22]. The algorithms directly estimate
the traffic velocity, from which the length of the queue and the travel time can
be computed.

The main findings of the analysis are the following. Advanced algorithms
such as nonlinear Kalman filtering can be used to significantly reduce the ve-
locity, length of queue, and travel time error when flow is accurately measured
by the sensor. It is also found that all algorithms are able to perform well with
existing sensor technologies, and little additional benefit can expected from im-
provements to the quality of the individual sensors. Finally, it is noted that all
classes of algorithms perform poorly on travel time estimation during the rapidly
changing traffic conditions, which motivates the need for predictive analytics for
smart work zone monitoring systems.

The remainder of this article is organized as follows. Section 2 presents the
implementation of three traffic estimation algorithms used to estimate critical
traffic quantities in work zones. Section 3 details the methods used to translate
the micro simulation trajectory data into sensor measurements containing realis-
tic measurement errors. Section 4 is devoted to the comparative analysis across
sensor network configurations and algorithms. Finally, Section 5 summarizes
the findings from the comparative analysis.
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Figure 1: The framework for the evaluation of various sensor networks and
algorithms.

2 Traffic State Estimation Algorithms

Consider a segment of roadway of length L containing a work zone, observed
over a period of time T . The velocity along the roadway is denoted v(t, x),
where t ∈ [0, T ] and x ∈ [0, L]. If a queue develops on the segment due to the
bottleneck created by the work zone, the length of the queue is denoted l(t) ≥ 0.
Finally, the travel time of a vehicle entering the roadway at time t traveling the
length of the road segment L is denoted τ(t). In this work the velocity along
the roadway is directly estimated, which is then used to estimate the travel time
and the length of the queue when it occurs. The evaluated traffic estimation
algorithms are described next.

2.1 Spatial Interpolation

A common class of algorithms infer the traffic conditions along the roadway
by spatially interpolating the measurement data obtained from sensors. Such
strategies include constant interpolation [23], min interpolation [24] adopted
by the Texas Department of Transportation, averaging interpolation [25], the
mid-point algorithm [26] adopted by the Illinois and Wisconsin Departments
of Transportation, and the three segment algorithm [27]. More sophisticated
interpolation strategies, such as linear interpolation [28] and quadratic interpo-
lation [29] have also been proposed.

Considering the performance and ease of implementation, a linear interpola-
tion is selected as a representative interpolation algorithm for further evaluation.
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To estimate the velocity v(t, x) between a pair of sensors located at x1 and x2
(> x1) with corresponding measured velocities ṽ1 and ṽ2, the estimated velocity
v̂(x, t) for x ∈ [x1, x2] computed as:

v̂(t, x) =
x2 − x
x2 − x1

ṽ1(t) +

(
1− x2 − x

x2 − x1

)
ṽ2(t). (1)

The same process is repeated for each pair of adjacent sensors to obtain the
estimated velocity field throughout the spatial domain.

2.2 Spatio-temporal Smoothing

A criticism of the interpolation algorithms is that they do not directly account
for the spatio-temporal dynamics of traffic. Approaches to exploit the structure
of traffic include two-dimensional interpolation [30], trajectory reconstruction
based methods [31], and kernel smoothing techniques [32, 33, 26, 34].

The main idea of the spatio-temporal estimator [32] considered in this work is
to estimate the traffic using a weighted spatio-temporal average of the available
measurements. Van Lint [26] showed that estimating the pace of traffic, p(t, x) =
1/v(t, x), rather than the velocity is necessary to avoid the structural bias in the
travel times constructed from the velocity field estimated by the spatio-temporal
method. The pace estimate p̂(t, x) at time t and space x is:

p̂(t, x) = γ(t, x)pcong(t, x) + (1− γ(t, x))pfree(t, x), (2)

which is a convex combination of two pace estimates pfree and pcong weighted by
γ(t, x). The freeflow and congested pace estimates are computed by averaging
a set of measurements M(t, x) in the neighborhood of (t, x) along the freeflow
and congested wave speeds of traffic flow respectively, given by kinematic wave
theory [35, 36]. In order to generate realtime estimates required in work zone
applications, the measurement setM(t, x) includes only measurements obtained
up to time t.

Let p̃m = 1/ṽm denote the corresponding pace of a velocity measurement
obtained at (tm, xm). The congested pace pcong is a weighted average of the
measurements M(t, x):

pcong(t, x) =
1∑

m∈M(t,x)

φcong (tm − t, xm − x)

∑
m∈M(t,x)

p̃mφcong (tm − t, xm − x) .

(3)
The weight of each measurement is computed with a decaying exponential
aligned with maximum congested wave speed w:

φcong(t, x) = exp

(
−|t− x/w|

ζ
− |x|

κ

)
, (4)

where κ and ζ are parameters to control the decay rates. The freeflow pace
estimate pfree traffic is obtained similarly, with the modification that traffic is
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smoothed along the freeflow wave speed vmax instead of the congested wave
speed w.

The weighting coefficient γ(t, x) is defined as:

γ(t, x) =
1

2

[
1 + tanh

(
vc − u∗(t, x)

∆V

)]
. (5)

In (5), vc is the critical velocity (i.e., where traffic transitions from freeflowing
to congested), ∆V is a smoothing width for the traffic state transition, and
u∗(t, x) is given as:

u∗(t, x) = min

{
1

pcong(t, x)
,

1

pfree(t, x)

}
. (6)

The purpose of u∗(t, x) is to determine if pcong or pfree indicate traffic conditions
are congested. As a result, (5) produces coefficients that favor the congested
estimate when either pcong or pfree indicate congestion (i.e., γ(t, x) → 1), and
favors the freeflow estimate otherwise.

A final step to recover the velocity estimate is to invert the resulting pace
estimate v̂(t, x) = 1/p̂(t, x).

2.3 Kalman Filtering

The Kalman filter [37] is an algorithm used to estimate the state of a linear
system by correcting a model based prediction with measurement data. The
Kalman filter and its nonlinear extensions necessary for traffic estimation can
be understood by posing the model and sensor measurement processes in state
space form as follows: {

xn = F(xn) + ηn,
ỹn = H(xn) + εn.

(7)

The first equation of (7) is known as the evolution equation, where xn is the
traffic state vector at time step n to be estimated, F denotes the traffic flow
model used to predict the traffic state at time n given the traffic state at time
n− 1, and ηn ∼ (0,Q) is a white noise process with covariance Q. The second
equation of (7) is the observation equation which relates the vector of mea-
surements ỹn received at time n with the traffic state variables xn through the
measurement model H. The random variable εn ∼ (0,R) denotes the measure-
ment error distribution which is modeled as a white noise with covariance R.
The Kalman filter and its nonlinear variants are sequential state estimators that
are optimal estimators (in the best linear unbiased sense) of the state xn given
a sequence of measurements ỹ0, · · · , ỹn.

Considering the nonlinearity of the traffic models, a number of variations of
Kalman filter have been explored for traffic estimation, including the extended
Kalman filter (EKF) [21], the unscented Kalman filter (UKF) [38], the mixture
Kalman filter (MKF) [39, 40], the particle Filter (PF) [41, 42], and the ensemble
Kalman filter (EnKF) [43]. The EKF, UKF, MKF, EnKF rely linearization of
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the system F or closure assumptions on the state error distributions, while the
particle filter is a fully nonlinear Bayesian estimator that can be computation-
ally expensive for large systems. Consequently the EnKF is implemented as
representative filtering algorithm for work zone traffic state estimation, and is
briefly summarized next.

2.3.1 Evolution Equation

The traffic dynamics on a road segment is governed the LWR model [35, 36],
which expresses conservation of vehicles on the roadway:

∂ρ(t, x)

∂t
+
∂ψ (ρ(t, x))

∂x
= 0, (8)

where ψ(ρ) = ρV(ρ) is the fundamental diagram describing the relationship
between the density and flow on a highway. The model is closed by assuming
an empirical relationship between the velocity and density of traffic, defined by
the velocity function V. In this work, the following velocity function is used:

V(ρ) =

{
vmax

(
1− 1

β

)
if ρ ≤ ρc,

w(ρ− ρmax)/ρ if ρ > ρc,
(9)

where the parameter vmax is the maximum free flow velocity, β controls the
slope of the velocity function in free flow, ρc and ρmax are the critical and jam
density, and w is the maximum backwards wave speed.

The LWR PDE is discretized using the Godunov scheme [44] resulting in the
cell transmission model [45]. Suppose the time and space domain [0, T ]× [0, L]
is evenly discretized into time steps of size ∆T indexed by n ∈ {0, . . . , nmax},
and spatial cells indexed by i ∈ {0, . . . , imax} with cell length ∆x. By the
conservation of vehicles, at time step n, the traffic density ρni in cell i evolves
according to:

ρni = ρn−1i +
∆T

∆x

(
qn−1i−1/2 − q

n−1
i+1/2

)
, (10)

where qni−1/2 represents the flow between cell i − 1 and cell i during time step
n. The flow over the cell boundary is computed as the minimum flow that can
be sent from the upstream cell i − 1 and the flow that can be received by the
downstream cell i:

qni−1/2 = min
{
S(ρni−1), R(ρni )

}
, (11)

where S and R are known as the sending and receiving functions. The functions
are constructed from the fundamental diagram as:

S(ρ) =

{
ψ(ρ) if ρ ≤ ρc,
qmax otherwise,

R(ρ) =

{
qmax if ρ ≤ ρc,
ψ(ρ) otherwise.

(12)

In the present application, the system state at time n consists of the den-
sity in each cell. The upstream inflow to the road qn−1/2 and the downstream
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outflow qnimax+1/2 are also modeled as state variables, and are assumed to
have stationary dynamics. The concatenated state vector is given as xn :=
[ρn0 , ρ

n
1 , · · · , ρnimax

, qn−1/2, q
n
imax+1/2]T ∈ RN×1. The forward model F is con-

structed from (10),(11), and the stationary dynamic assumed for the inflow and
outflow states.

The model noise variance selected for the density states in cells with an
onramp or offramp, and the noise variance associated with the inflow and outflow
qn−1/2, qnimax+1/2 are elevated to account for the larger uncertainty in the state
evolution.

2.3.2 Observation Equation

The flow measurements q̃nm and velocity measurements q̃nm time n and indexed by
m are related to the traffic state variables as follows. The flow measurements at
the boundaries are direct observations of the flow state variables. For example,
the inflow measurement is related to the inflow state variable by q̃nm = qn−1/2 for
the appropriate flow measurement m. Consider a flow measurement m on the
interior of the road segment located at the boundary between cells i− 1 and i.
The measurement is related to the density state variable in cell i − 1 or cell i
depending on if traffic is free flowing or congested:

q̃nm = min
{
S(ρni−1), R(ρni)

}
+ εnm, (13)

where εnm is the noise associated with the flow measurement.
Velocity measurements are related to the state variables as follows. Let ṽnm

denote the a velocity measurement at time n at the boundary between cells i−1
and i. The velocity is linked to the density state variable in either the upstream
or downstream cell depending on the traffic conditions as:

ṽnm =

 V(ρni−1) + εnm if S(ρni−1) < R(ρni ),
V(ρni ) + εnm if R(ρni ) < S(ρni−1),
V(ρc) + εnm if R(ρni ) = S(ρni−1),

(14)

where εnm is represents the noise on the velocity measurement.
The complete set of measurements at time n is written as a vector

ỹn := [q̃n1 , · · · , q̃nMq
, ṽn1 , · · · , ṽnMv

]T ∈ RMv+Mq , (15)

where Mq and Mv denote the number of flow and velocity measurements re-
spectively. The nonlinear observation equations (13),(14) and the appropriate
measurement error models are used to construct the observation equation in
(7).

2.3.3 Ensemble Kalman Filter

The general algorithmic steps of the ensemble Kalman filtering algorithm are
briefly summarized following [46]. The interested reader is referred to [47]
for the theoretical foundation and detailed interpretation of the technique.
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Consider the discrete-time nonlinear system (7). Since the observation equa-
tion is nonlinear, an augmented state approach [46] is adopted to linearize
the observation equation. In the augmented system, the state is denoted by

sn =
[
(xn)

T
(H(xn))

T
]T

, which has the following observation equation:

ỹn = Hsn + εn =
[
0(Mv+Mq)×N I(Mv+Mq)×(Mv+Mq)

]
sn + εn. (16)

Given the augmented state s with a linear observation equation (16), the
EnKF algorithm consists of the following steps, namely, initialization, predic-
tion, and correction. After the algorithm is initialized, it predicts the best esti-
mate at time n with measurements through time n−1, denoted ŝn|n−1, using the
traffic evolution equation and the best estimate ŝn−1|n−1. After measurements
are received at time n, the predicted state ŝn|n−1 is updated to ŝn|n by incor-
porating the new information contained in the measurements. The algorithm is
as follows:

1) Initialize a set of state ensembles ŝ0|0(k),∀k ∈ {1, · · · , kmax} from the
initial state distribution with covariance P0|0.

2) Predict the traffic states ŝn|n−1(k) for all ensembles using F and H where
the model noise ηn(k) is independently sampled for each ensemble k from
a distribution with model noise covariance Q.

Then the predicted state error covariance can be computed as

Pn|n−1 =
1

kmax − 1
En|n−1

(
En|n−1

)T
. (17)

In (17), En|n−1 is the state error matrix which is computed by subtracting
the estimated state ŝn|n−1(k) for each ensemble k by the mean of estimated
states s̄n|n−1:

En|n−1 =
[
ŝn|n−1(1)− s̄n|n−1, . . . , ŝn|n−1(kmax)− s̄n|n−1

]
, (18)

where s̄n|n−1 = 1
kmax

∑kmax

k=1 ŝn|n−1(k).

3) Given the measurement data ỹn, the predicted state ŝn(k) for each en-
semble is corrected by the prediction error on the output multiplied by a
Kalman gain Kn,

ŝn|n(k) = ŝn|n−1(k) + Kn(ỹn −Hŝn|n−1(k)), (19)

where the Kalman gain is computed using the predicted state error co-
variance (17):

Kn = Pn|n−1 (Hn)
T
(
HPn|n−1HT + R

)−1
. (20)

The second and third steps are repeated sequentially for each time step n
until the estimated state over the entire time horizon is obtained. The final
velocity estimate is directly computed from the density estimate by applying
the velocity function V to the estimated density field.
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2.4 Back of Queue and Travel Time Estimation

Given an estimate of the velocity v̂(t, x) in space and time, a standard approach
across algorithms is used to estimate the length of the queue and the travel
time. The estimated length of the queue l̂(t) is determined as the maximum
length of any consecutive segment in the velocity field such that v̂(t, x) < α,
where α is a threshold denoting congested traffic velocities. The travel time is
computed using an instantaneous [48] travel time estimate:

τ̂(t) =

∫ L

0

1/v̂(t, x)dx. (21)

The instantaneous travel time is valid under the assumption that the velocity
field is constant along over the time interval [t, t + τ(t)], which may fail in
scenarios with rapid queue growth or dissipation. The primary benefit of the
instantaneous travel time is that it does not require the future traffic state to
be predicted.

3 Construction of a Virtual Testbed

With the algorithms defined, it is now shown how micro simulation trajecto-
ries are used to generate noisy traffic sensor data that reflects the true errors
observed in the field.

The microscopic simulation environment is developed in a traffic simulation
software AIMSUN, which uses a modified Gipps’ car-following model [49] to
generate individual vehicle trajectories at a 0.2 second resolution. AIMSUN
allows error free sensors to be plased in the simulation environment, but lacks
realistic traffic sensor error models representative of sensors deployed in work
zone environments.

3.1 Overview of Sensor Types

To better assess how different types of sensors featuring distinct measurement
errors affect the traffic estimation accuracy, realistic sensor models are developed
to degrade the simulated traffic measurements to be consistent with the data
quality observed in practical field deployments. Sensor models are developed
for the three commonly used traffic sensors, including the Doppler radars, low
energy radar (LER) units (e.g., the iCone sensor), and remote traffic microwave
sensors (RTMSs).

Doppler radars are widely used in traffic sensing due to the maturity of
the technology and low cost. Doppler radars rely on the Doppler effect for
measuring the velocity of vehicles, and provides accurate velocity measurement
for vehicles (less than one mph [50]), although performance degrades at lower
velocities where the Dopplar shift is not as prominent. The traffic flow data
is obtained by counting the number of velocity measurements recorded during
each detection cycle. For best performance, Doppler radars are also commonly
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mounted relatively low to the ground (e.g., at minimum three ft [50]). Conse-
quently the sensor is prone to occlusion issues (e.g., where one vehicle blocks
another vehicle from being detected by the sensor), which may result in biased
velocity and flow measurements when deployed on multi-lane freeways.

Low energy radar units are deployed in construction barrels for ease of de-
ployment, but with limited energy available for detection. For long term de-
ployments, LER sensors operate for only a portion of the detection cycle (e.g.,
30 seconds of detection in a 60 second detection window). Consequently, these
sensors have similar types of measurement errors as radar units for velocity and
count data, and an additional sampling error due to the discontinuous operation.

An RTMS measures the distance to objects in the path of its microwave
beam, hence is able to detect moving and stationary vehicles in multiple detec-
tion zones (lanes). The RTMS is commonly mounted in an elevated position
(i.e., at least 17 ft [51]), which reduces the occlusion potential and increases the
counting accuracy compared to lower sensors. With proper field calibration,
the RTMS produces velocity measurements with 10% error, with larger velocity
errors in high congestion [51].

3.2 Generation of Noisy Measurements

A multistep process is used to convert the detailed trajectory data from AIM-
SUN into noisy sensor data to mimic the field data collected from the sensors
described above. The first step is to determine which vehicles pass through the
detection zone of a given sensor. The detection zones for each sensor are mod-
eled based on the recommended installation guidelines [50] and the reported
field of view. For example, the radar and LER sensors are aimed at oncom-
ing traffic, resulting in a detection zone approximately 140 ft upstream of the
sensor as shown in Figure 2. The detection zone of the LER is assumed active
for only the first half of the detection cycle, resulting in the detection of only
a subset of vehicles. The RTMS sensor detection zone is located at the instal-
lation point. For a given detection cycle, the vehicles that pass through the
detection zone are potentially available to contribute to the average velocity or
count measurements.

The next step is to discard any vehicle that passes through the detection zone
whose trajectory is occluded by another vehicle. As illustrated in Figure 2, two
vehicles, labeled A and B, travel through the sensing area in the outside and
inside lane respectively. Vehicle A is considered occluded if more than po percent
of the trajectory of vehicle A overlaps with the trajectory of B in the detection
zone. The parameter po is selected as po = 0.3, which results in the occlusion
of approximately 40% of vehicles in heavy congestion. Occluded vehicles are
removed for radar and LER sensors, while RTMS sensors are assumed to be
mounted in a position to prevent occlusion, but the count is still perturbed by
a counting error consistent with the reported accuracy [51].

After occluded vehicles are removed, any vehicle with a velocity outside the
measurement range of the sensor is also discarded. The radar and LER sensors
have a measurement range [5, 99] mph [50], while the RTMS has a range of
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Figure 2: Illustration of an occluded vehicle A caused by the presence of vehicle
B in the detection zone.

[0, 110] mph [51].
For vehicles that remain, the measured velocity is assumed to be a noisy

reading of the true vehicle velocity. Measured velocities are constructed by
adding a measurement error generated from N (0, σ) to the true velocity, where
σ takes two distinct values in freeflow and congested traffic. For the radar
and LER sensors, σ is chosen such that the true vehicles are measured with
an accuracy of 1 mph, while the RTMS velocities are measured to within 10%.
At low vehicle velocities, the errors are increased to 2 mph for radar and LER,
and 15% for the RTMS devices. Note that although the measurement noise is
assumed unbiased, the average velocities and counts are biased due to the sample
set (i.e., removing occluded vehicles, which are predominantly from the faster
lane of traffic). Finally, the harmonic mean of the noisy velocity measurements
is taken as the average velocity reported by the sensor, and the number of
measurements is the count.

To model the realistic missing data rates that occur in field deployments, a
subset of measurement detection cycles are also discarded resulting in no data
available for estimation during the cycle. Up to fifteen percent of the data from
the radar and LER sensors and three percent of the data from RTMS sensors
is dropped in congestion, based on the missing data rates observed from work
zone field data in Illinois.

4 Comparative Analysis

4.1 Experimental Setup and Micro Simulation Calibra-
tion with Field Data

A work zone on the I-80 freeway near the Des Plaines River in Illinois is modeled
in micro simulation. The work zone included an active sensor network that
recorded velocity and flow data at sensors placed approximately once every
half mile, which is used to calibrate the micro simulation. Severe congestion
was observed in the field from 3:30 PM and 6:00 PM on May 1, 2015, which
is the time period selected for calibration. This period provides varying traffic
conditions, including queue formation and dissipation, and is suitable for testing

11



the performance of various sensor networks and algorithms.
Calibration of a micro simulation model from field data is a challenging prob-

lem due to the large number of correlated microscopic parameters. Automated
calibration of the microscopic parameters using a variety of optimization pro-
grams has been explored [52, 53, 54, 55], and a comprehensive comparison of
nonlinear optimization programs on the effectiveness of calibrating microscopic
model parameters was reported in the MULTITUDE project [55]. Recently,
an advanced nonlinear optimization by mesh adaptive direct search (NOMAD)
[56] software was also used for the calibration of microscopic traffic models [57].
Considering the software availability and the implementation effort, this arti-
cle adopts NOMAD as the nonlinear optimization software in the calibration
process. The root-mean-square error (RMSE) is selected as the error metric
considering its reliable performance for measuring the goodness of fit [55].

Because of the lack of high quality flow data from the work zone sensor net-
work, only the velocity data is used in the error metric to calibrate the micro
simulation. Based on a literature review and a sensitivity analysis of the model,
a total of eight parameters were selected for automatic calibration. Using the
calibrated parameters, the RMSE error of the model is reduced by approxi-
mately 40% from the default values in AIMSUN. A detailed description of the
calibrated parameters is available in the supplemental source code associated
with this article (https://github.com/Lab-Work/IDOT-SmartWorkzone).

4.2 Traffic Estimation Error Metrics

The error metrics used to assess the performance of the various estimators are
briefly described. In order to calculate the errors, the true state to be esti-
mated is first calculated from the AIMSUN trajectory data. The true velocity
field (Figure 3(a)), true queue length (Figure 3(b)), and true travel time (Fig-
ure 3(c)), are constructed on a finely discretized spatio-temporal grid with cells
of length 50 m and duration 5 s and within each grid the true velocity is com-
puted using Edie’s definitions [58]. The mean absolute error (MAE) of the
velocity, the travel time, and the length of the queue are reported. The true
travel time is taken as the average travel time of all vehicles entering the road-
way during the time step, and the true length of the queue is computed as the
maximum length of a segment with a velocity of less than 40 mph. For each
reported experiment, the MAE is the average MAE of five simulations with
different micro simulation seed values.

4.3 Estimation Algorithm Implementation

To calibrate the fundamental diagram (9), a variety of traffic conditions are
simulated in AIMSUN, where two RTMS sensors are modeled to extract the
velocity and flow measurements. Using this data, the fundamental diagram
parameters in (9) calibrated are vmax = 60.82 mph, β = 1000 veh/mile, w =
−9.29 mph, and ρmax = 500 veh/mile. The parameters are determined following
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Figure 3: True state of the (a) velocity field, (b) queue length, and (c) travel
time. The true travel time was not obtained in the last period because vehi-
cles that entered the road after approximately 120 min did not exit before the
simulation stopped.

the calibration procedure [59] except the maximum density is computed directly
from the minimum spacing of stopped vehicles.

The parameters of the spatio-temporal algorithm w, vmax and vc are also set
as −9.29 mph, 60.82 mph and 56.52 mph, respectively, based on the calibrated
fundamental diagram. The parameter ∆V is set to 12.43 mph as in [32, 34].
The decay rate controllers κ and ζ are fixed at 0.75 times the sensor spacing
and sensor aggregation, respectively, based on an optimization procedure that
evaluated the performance of multiple combinations of values that fell in the
ranges recommended in [34]. To avoid using excessively old measurements and
unnecessarily long computation times, the measurements older than 2.5 minutes
are ignored.

4.4 Algorithms and Sensor Spacings

In the first set of experiments, the influence of the sensor spacing and traffic
estimation algorithm on the travel time, queue length, and velocity estimation
error are analyzed. For each algorithm, eleven spacings ranging from five miles
to 1/8 mile are considered. All sensors are assumed to be RTMS sensors in
these experiments.

For each experiment, the MAE on the velocity estimate is computed both as
an average over the entire spatio-temporal domain, as well as in the area imme-
diately around the true back of queue (+/-0.5 mile) as identified in AIMSUN.
The resulting errors as a function of the algorithm type and sensor spacing is
shown in Figures 4(a) and Figure 4(b). As expected, as the density of sensors
increases, all algorithms result in lower velocity errors, with the best perfor-
mance (about 5 mph error overall and 6 mph around the queue) by the linear
interpolation algorithm with sensors placed every 1/8th of a mile. Not surpris-
ingly, all algorithms perform worse in the neighborhood of the queue compared
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to the MAE reported over all space and time, which is unfortunately where
the errors may be most safety critical. The spatio-temporal algorithm has the
highest error around the queue, which results in higher total MAE compared to
the spatial interpolation algorithm. Note the algorithm was originally proposed
as an offline algorithm [26], and the performance may change if additional mea-
surement data is available for smoothing. At very dense sensor spacings, the
EnKF performs worse than the interpolation and smoothing algorithms due to
the fact that the velocity is computed from the density estimate through (9),
rather than directly estimated as in the better performing algorithms. However,
in the neighborhood of the queue, the EnKF localizes the queue more accurately
which generally results in higher quality velocity estimates in the neighborhood
of the queue.

The general trend of the MAE for the queue length estimation (Figure 5(a))
is similar to the velocity MAE. This is a direct result of the fact that the queue
length is estimated from the velocity field, and consequently improvements on
the velocity field result in better queue length estimates. The true maximum
true queue length during the simulation is approximately 3 miles. The EnKF
uses a traffic model and utilizes the flow measurements from RTMS sensors,
to consistently outperform the other estimators across a wide range of sensor
spacings.

Finally, the MAE of the travel time estimation is shown in Figure 5(b). The
travel time of the road section in free flow is around five minutes and the longest
travel time during congestion is 40 minutes. The EnKF is generally the best
performing travel time estimator, and offers slightly improved performance over
the spatio-temporal smoother. Recall the spatio-temporal algorithm directly
estimates the pace of traffic, which results in a better estimate of the travel
time than the purely spatial interpolation algorithm. The MAE for travel time
is relatively large for all algorithms independent of the spacing, and the largest
source of error is due to the use of the instantaneous travel time calculation (21),
not the underlying velocity estimate. In fact, the true instantaneous travel time
has a MAE of over six minutes, which is comparable to the MAE observed in
the travel time estimates of the best performing algorithms. In traffic conditions
with slower dynamics (e.g., in free flow or in complete congestion), the use of
the instantaneous travel time may result in lower errors.

4.5 Type of Sensors

In the next set of experiments, the influence of the sensor type (i.e., RTMS,
the radar, and the LER) and the errors they introduce is compared across al-
gorithms. Recall that the RTMS offers the lowest quality velocity measurement
of individual vehicles but provides more reliable count data compared to the
radar based sensors. The MAE for the estimated traffic velocity, the queue
length, and the travel time are shown in Figure 6(a), Figure 6(b), Figure 6(c)
respectively, for sensors placed at a spacing of one mile.

To understand the potential benefit of improved sensor technologies, traffic
estimates using an ideal sensor are also generated. The ideal sensor is assumed
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Figure 4: MAE of velocity estimation over (a) the entire time space horizon and
(b) around the queue using RTMS sensors.

5 2.5 1.25 1 7/8 6/8 5/8 4/8 3/8 2/8 1/8
Spacing of sensors (mile)

0.0

0.2

0.4

0.6

0.8

1.0

q
u
e
u
e
 e

rr
o
r 

(m
ile

)

MAE of queue

Spatial

Spatio-temporal

EnKF

(a)

5 2.5 1.25 1 7/8 6/8 5/8 4/8 3/8 2/8 1/8
Spacing of sensors (mile)

0

5

10

15

20

tr
a
v
e
l 
ti

m
e
 e

rr
o
r 

(m
in

)

MAE of travel time

Spatial

Spatio-temporal

EnKF

(b)

Figure 5: MAE of the (a) queue length estimation and (b) travel time estimation
using RTMS sensors.
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Figure 6: MAE of the (a) velocity estimation, (b) queue estimation, and (c)
travel time estimation at 1 mile spacing.

to have zero error (i.e., it measures the velocity of every vehicle exactly, and has
no occlusion or dropped packets). It does have a quantization error due to the
fact that the count and velocity is computed within a single detection cycle. For
example, if the aggregation interval is 30 s, the quantization error (e.g., including
or excluding a single vehicle near the cycle boundary) introduces a change in
the flow of 120 veh/hr/lane, which is around five percent of the lane capacity.
Algorithms running with measurements from the ideal sensor have velocity,
queue, and travel time errors that are similar to the RTMS sensors, which
indicates that quantization error is the largest source of remaining error from
the existing sensors. Indeed, the existing commercial RTMS sensors already
achieve flow measurements to within five percent error, which indicates that the
measurement accuracy will be dominated by the quantization error even if the
sensor accuracy is improved. Marginal benefit will be obtained if the quality of
the sensing device is improved beyond the current market technologies, and the
general trends are similar at other sensor spacings.

The analysis also indicates that the EnKF algorithm is the most sensitive
algorithm to the sensor type, and provides the poorest velocity estimates when
combined with LER sensors. This is due to the reliance of the EnKF algorithm
on accurate flow data, which is degraded in the LER devices due to the fact
that vehicles are recorded only for a portion of the detection cycle (resulting in
increased quantization error), and the counts are prone to larger occlusion errors.
Across all traffic quantities and all algorithms, the radar and RTMS sensors offer
at least as good or better performance compared to the LER devices. The use
of LER devices may still be warranted if the deployment cost, maintenance, and
portability make the sensor competitive with other sensing technologies.
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5 Conclusion

This article evaluated a variety of sensor network configurations and algorithms
with different levels of sophistication to estimate the traffic velocity, from which
back of queue and travel time were estimated. The main findings are as follows.
The spacing of sensors is an important factor for improving the accuracy of
traffic estimation, especially at sparse sensor spacings. When the sensor spac-
ing is smaller than 0.5 miles, the benefit of additional sensors or the choice of
algorithm is marginal (i.e., less than five percent except in the neighborhood of
the queue). A major benefit from the RTMS sensor is the significant reduction
in error on the measured flow. For the flow model based Kalman filter, the
improved flow measurements allow the estimator to perform well, even when
sensors are sparsely placed. For spatio-temporal and spatial interpolation algo-
rithms, the flow data is ignored and consequently the improved flow data offers
no estimation algorithm performance benefit. Finally, the fact that all algo-
rithms perform relatively poorly for travel time estimation highlights the fact
that the instantaneous travel time calculation is a poor estimator of the true
travel time in a dynamic traffic environment. Further predictive analytics are
needed to reduce the travel time error.

The main limitation of the study is that the analysis is conducted in a micro
simulation environment. Further field testing is needed to validate the findings.
Furthermore, the present analysis is restricted to the accuracy of the traffic state
estimate only, and did not consider deployment and maintenance costs, which
may also play a critical role in the development of practical sensor network
configuration guidelines.
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