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Abstract. This article proposes a numerical scheme for computing the evolution of vehicular
traffic on a road network over a finite time horizon. The traffic dynamics on each link is modeled
by the Hamilton–Jacobi (HJ) partial differential equation (PDE), which is an equivalent form of the
Lighthill–Whitham–Richards PDE. The main contribution of this article is the construction of a
single convex optimization program which computes the traffic flow at a junction over a finite time
horizon and decouples the PDEs on connecting links. Compared to discretization schemes which
require the computation of all traffic states on a time-space grid, the proposed convex optimization
approach computes the boundary flows at the junction using only the initial condition on links and
the boundary conditions of the network. The computed boundary flows at the junction specify the
boundary condition for the HJ PDE on connecting links, which then can be separately solved using
an existing semi-explicit scheme for single link HJ PDE. As demonstrated in a numerical example of
ramp metering control, the proposed convex optimization approach also provides a natural framework
for optimal traffic control applications.
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1. Introduction. Efficient numerical schemes for solving traffic dynamics mod-
eled by a conservation law on a transportation network are critical and the basis for
traffic applications, such as real-time traffic estimation and optimal traffic control.
This article proposes a numerical scheme which solves the traffic dynamics in a con-
vex program without the discretization of the time-space domain and can be used as
the framework for optimal control on transportation networks.

The road network is represented by a directed graph G(L,V) consisting of links l ∈
L and vertices v ∈ V. Each link l represents a road segment with spatial coordinates
x ∈ [al, bl] and homogeneous physical parameters, such as the free flow speed and the
capacity. Each vertex v represents a junction in the transportation network, consisting
of at least one incoming link and one outgoing link. The link endpoints that are not
connected to a junction are referred to as the network boundaries while endpoints at
junctions are called internal boundaries.

Describing the dynamics of traffic on a network consists of two modeling compo-
nents, namely a model for the traffic evolution on each link, and a model of traffic flow
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1494 Y. LI, C. G. CLAUDEL, B. PICCOLI, AND D. B. WORK

through each junction. The standard first order model for traffic flow on a single link
indexed by l is the Lighthill–Whitham–Richards (LWR) partial differential equation
(PDE) [31, 38]:

(1)
∂ρl(t, x)

∂t
+
∂ψl (ρl(t, x))

∂x
= 0,

which describes the evolution of the traffic density ρl(t, x) in the time and space
domain [0, tmax]×[al, bl]. In (1), ψl(·) is the flux function which describes the empirical
relationship between the density and flow on each link. The initial and boundary
conditions are respectively defined as ρl(0, x) = ρl,0(x), x ∈ [al, bl] and ρl(t, al) =
ρal

(t), ρl(t, bl) = ρbl
(t), t ∈ [0, tmax].

There is an increasing interest in an equivalent representation of the LWR PDE (1)
which is known as the Hamilton–Jacobi (HJ) PDE [2, 5, 6, 11, 12, 13]. By integrat-
ing (1) in space x, the following HJ PDE can be obtained:

(2)
∂Ml(t, x)

∂t
− ψl

(
−∂Ml(t, x)

∂x

)
= 0.

In formulation (2), the traffic state is described by a real scalar function Ml(t, x),
known as the Moskowitz function [34, 35, 36, 37]. Intuitively, Ml(t, x) is a continuous
analogue of a sequentially indexed vehicle ID (or cumulative vehicle count) and is
related to the density by ρl(t, x) = −∂Ml(t, x)/∂x. All vehicles (including vehicles
on the road at t = 0) are labeled incrementally in the order they enter the link,
where negative labels are assigned to vehicles initially on the link. As a convention,
the continuous analogue of the vehicle ID at (t, x) = (0, al) is set as Ml(0, al) = 0.
The initial and boundary conditions are respectively Ml(0, x) = Ml,0(x), Ml(t, al) =
Mal

(t), Ml(t, bl) = Mbl
(t), where the boundary Moskowitz data is related to the

density data by Ml,0(x) = −
∫ x
χ=al

ρl,0(χ)dχ, Mal
(t) =

∫ t
τ=0 ψl (ρal

(τ)) dτ , and

Mbl
(t) = Ml,0(bl) +

∫ t
τ=0 ψl (ρbl

(t)) dτ . The HJ PDE formulation (2) enables the
use of variational theory [11] to compute the vehicle ID Ml at any point (t, x) by
minimizing a functional given a concave Hamiltonian ψl(·) (i.e., a concave flux func-
tion).

The classic numerical schemes for computing the traffic evolution on a single link
are based on discretization of the governing PDE. These schemes include the Godunov
scheme [17] and the discrete velocities kinetic scheme [3] for the LWR PDE (1), or
the dynamic programming approach [11] for the HJ PDE (2). Recently, Claudel and
Bayen [5] and Mazaré et al. [33] proposed a semi-explicit HJ PDE solver based on the
Lax–Hopf formula for a single link, which has been demonstrated to be more efficient
than discretization-based schemes [6]. Built upon the semi-explicit HJ PDE solver on
single link, this article develops a numerical scheme for extending the HJ PDE solver
to a network.

To extend the link traffic flow model to networks, a junction model is required to
describe how the traffic sent from links s ∈ Sv ⊂ L entering the junction v is received
by links r ∈ Rv ⊂ L exiting the junction at any point in time. It is well known that
conservation of vehicles across the junction, i.e.,

∑
s∈Sv

qs(t, bs) =
∑
r∈Rv

qr(t, ar),
is insufficient to uniquely define the flows at the junction. To address this issue, a
variety of junction models [10, 15, 18, 19, 20, 22, 23, 24, 27] have been proposed to
define a unique internal boundary flow solution using additional rules governing the
distribution or priority of the flows. Compared to the merge junction, for which rel-
atively few models have been proposed, the diverge junctions have led to a number
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A CONVEX FORMULATION OF TRAFFIC DYNAMICS 1495

of modeling efforts. The diverge models can be classified as first-in-first-out (FIFO)
and non-FIFO models. The FIFO model is directly applicable to single-lane roadways
while the non-FIFO model can be applied to multilane scenarios. In this article, we
adopt a merge junction model [15, 18] and propose a new (FIFO) diverge junction
model which allows rerouting behaviors while maintaining consistency (or equiva-
lently invariance [26]). Moreover, both junction models allow the junction flows to
be computed pointwise in time as a convex optimization program, which is an im-
portant feature used in the proposed numerical scheme. It should be noted that the
computed boundary flow values can be posed as the strong boundary condition to the
PDEs which is commonly discussed using the concept of Riemann solver [15].

The difficulty of solving the LWR PDE or HJ PDE on the network comes from the
coupling nature of the PDEs at the junction. Given the initial condition on each link
and the network boundary conditions, solving the HJ PDE (2) on each link requires
the internal boundary condition for the entire time domain, which is unknown unless
the junction model is solved. On the other hand, solving the junction model at any
point in time requires the knowledge of the current local traffic condition on connecting
links which comes from the solution of the governing HJ PDEs. We refer the reader
to [15, 21] on the integration of junction models in the network PDEs models, as well
as the discussion on the well-posedness of the LWR PDE and HJ PDE on a network.

To approximate solutions to the models on networks, several of the numerical
schemes for solving the LWR PDE or HJ PDE on a single link have also been extended
to the network with an additional treatment at the junction. Like the link schemes, the
network schemes discretize each link into cells and time into steps. At the junction, the
internal boundary flows are computed using the traffic density for the LWR PDE [10]
or the cumulative number of vehicles for the HJ PDE [8] at the previous time step in
the boundary cells of connecting links. After the boundary flow at the next step is
obtained, the single step evolution of the traffic state on each link is computed using
the link update scheme, such as the Godunov scheme [17].

Similarly, the single link semi-explicit HJ PDE solver [5, 6] can also be extended to
the network using a sequential update scheme. Suppose a time grid (not necessarily
uniform) with jmax intervals is provided at a junction v. At each time interval j,
a junction solver can be formulated as a convex program (CP) CPj as shown in
section 3.2, which computes the optimal internal boundary flow with respect to the
distribution or priority parameters. However, the construction of CPj relies on the
optimal internal boundary flow solutions up to interval j−1. Consequently, computing
the internal boundary flows over the entire time horizon requires solving the sequence
of convex programs CPj ∀j ∈ J consecutively.

Alternatively, this article develops a numerical scheme which reformulates the
sequence of convex programs CPj ∀j ∈ {1, 2, . . . , jmax} as an equivalent single convex
program. We show the dependency of CPj on the optimal solutions up to interval
j − 1 can be relaxed if the objective function of the equivalent single convex pro-
gram is properly constructed. The constraint set of the single convex program over
the entire time horizon is simply the union of the constraint sets of the sequence of
convex programs with the optimal internal boundary flow solutions at each interval
substituted by the corresponding decision variables. Then, the objective function is
designed to guarantee the equivalence of the single convex program to the sequence
of CPs CPj ∀j ∈ {1, 2, . . . , jmax}. Finally, the obtained internal boundary flows are
used as the boundary conditions to solve the corresponding HJ PDE on each link
using the semi-explicit single link HJ PDE solver [5, 6].

The main contribution of this article is the development of the single convex
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1496 Y. LI, C. G. CLAUDEL, B. PICCOLI, AND D. B. WORK

program scheme for computing the internal boundary flows at a merge or diverge
junction. Compared to the discretization based methods [8, 10, 17], the proposed
convex optimization scheme does not require discretization of the time-space domain
except at the initial time, and at the link spatial boundaries. Moreover, it provides
a natural framework for optimal traffic control applications as demonstrated in an
example.

Note that there are other related approaches that also do not require discretiza-
tion of the time-space domain, including our earlier result on optimal traffic control
on networks [29] and a recent continuous-time solver of traffic dynamics on the net-
work [18]. Our earlier work [29] investigates control of the HJ PDE on a network and
assumes all junctions are fully signalized by traffic actuators. Therefore, it does not
require a model of the traffic dynamics at the junction and, consequently, it cannot be
used to solve the HJ PDE on a network when the junction dynamics are prescribed.
The continuous-time numerical solver [18] for computing the evolution of traffic dy-
namics on a network uses a link-based kinematic wave model for the link and a mixed
integer optimization program for solving the junction problem. In contrast, this arti-
cle formulates a single convex program to solve the HJ PDE on the network over the
entire time horizon.

The remainder of the article is organized as follows. Section 2 reviews the semi-
explicit HJ PDE solver on a single link, which enables explicit formulation of the
upper bound of the internal boundary flows that can be sent or received on each link
at any time. These upper bounds define the feasible set of the convex program for
computing the internal boundary flows. In section 3, we first describe the behavioral
models of the merge and the diverge junction used in this article. Then we show at any
time interval, the selected junction models can be posed as a convex program. Sec-
tion 3.3 presents our main contribution, where we formulate a single convex program
for solving the junction model over the entire time horizon. Finally in section 4, an
on-ramp metering controller which improves the safety at a work zone by alleviating
congestion is proposed to demonstrate the potential of the framework.

2. Sending and receiving boundary flows on a single link. This section
first reviews the semi-explicit HJ PDE solver on a single link [5, 6]. Given the initial
condition, the upstream and downstream boundary conditions, the HJ PDE modeling
the traffic dynamics on a single link can be semi-explicitly solved. Based on this
semi-explicit HJ PDE framework, we then show that if the upstream or downstream
boundary condition is unknown, then the upper bound for the boundary flow can be
obtained, which denotes the maximum traffic flow that can be sent or received on a
link. The obtained bounds are equivalent to the maximum supply and demand [25],
but it can be computed without discretizing the time and space domain as required
in the cell transmission model [9]. The upper bounds are later used to compute
the internal boundary flow solution to the junction models. This section discusses
the formulation of the upper bounds for a single link l. The link ID subscript l is
included in the notation in this section indicating that the same formulation will later
be applied to each link in a network.

2.1. Semi-explicit HJ PDE solver on a single link. This subsection reviews
the semi-explicit HJ PDE solver [5, 6, 33]. In the remainder of this article, we further
assume the Hamiltonian ψl(·) on the link is defined as a piecewise affine function [9,
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11]:

(3) ψl(ρ) =
{
vfl ρ if ρ ∈ [0, ρκl ] ,
wl(ρ− ρml ) if ρ ∈ [ρκl , ρ

m
l ] .

The parameters ρκl , ρml , vfl , and wl represent the critical density, the maximal den-
sity, the free flow speed, and the maximum negative congestion wave speed on link
l. The capacity is then computed as qmaxl = vfl ρ

κ
l . These parameters are assumed

to be known, and can be obtained either from the Highway Capacity Manual [1]
or calibrated from measurement data [14]. Besides the triangular fundamental di-
agram, the proposed convex scheme can be applied to all concave piecewise linear
fundamental diagrams, which allows the formulation of piecewise linear constraints.
Other concave fundamental diagrams (e.g., the quadratic Greenshields diagram) can
be approximated by concave piecewise linear functions for the convex scheme to be
applicable.

In the semi-explicit HJ PDE solver, the initial and boundary conditions of the HJ
PDE (2) on the link l are given by piecewise affine functions defined on an arbitrarily
discretized grid. Note that the discretized grid is only required at the boundary of
the time-space domain {{0} × [al, bl]} ∪ {[0, tmax]× {al, bl}}, which is fundamentally
different from the discretization of the entire time-space domain [0, tmax]× [al, bl] into
cells and steps in other schemes [9, 17]. Specifically, the initial condition at t = 0
is defined over an arbitrary space grid {x0, xi ∀i ∈ I := {1, 2, . . . , imax} | x0 =
al, xi = al +

∑i
η=1 ∆xη}, where ∆xη is the length of spatial interval η. Similarly,

the upstream x = al and downstream x = bl boundary conditions are defined over
a time grid {t0, tj ∀j ∈ J := {1, 2, . . . , jmax} | t0 = 0, tj =

∑j
η=1 ∆tη}, where ∆tη

is the duration of the temporal interval η. For conciseness of notation, we omit the
subscript l for the grids, which may be link specific in the general case.

On the time space grid {t0, t1, . . . , tjmax} × {x0, x1, . . . , ximax}, the initial and
boundary conditions for the HJ PDE (2) are defined as piecewise affine functions,
which are piecewise linear in closed intervals:

(4)
Ml,0(x) =

{
cil,0(x) if x ∈ [xi−1, xi] | i ∈ I

}
,

Mal
(t) =

{
cjal

(t) if t ∈ [tj−1, tj ] | j ∈ J
}
,

Mbl
(t) =

{
cjbl

(t) if t ∈ [tj−1, tj ] | j ∈ J
}
.

The terms cil,0(x), cjal
(t), cjbl

(t) respectively represent the affine initial or boundary
condition defined in the ith space or jth time interval. For compactness, we denote
the set of affine initial and boundary conditions for all intervals by Cl:

Cl := {cil,0(x), cjal
(t), cjbl

(t) | ∀i ∈ I, j ∈ J }.

In general, the Moskowitz solution Ml(t, x) to the HJ PDE (2) cannot be com-
puted explicitly for arbitrary piecewise affine initial and boundary conditions (4).
However, each affine initial and boundary condition defined in their respective in-
terval, e.g., cil,0, c

j
al
, cjbl

, can be used to compute an explicit partial solution in the
time-space domain [0, tmax] × [al, bl] by the Lax–Hopf formula. At each point (t, x),
a partial solution for each affine initial or boundary condition in Cl can be obtained.
The main result of the single link HJ PDE solver [5, 6, 33] shows that the Moskowitz
solution is the minimum of all partial solutions at (t, x), which is known as the inf-
morphism property. Using the Lax–Hopf formula and the inf-morphism property,
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the Moskowitz solution Ml(t, x) in the domain [0, tmax] × [al, bl] can be computed
semi-explicitly as shown next.

Proposition 1 (explicit partial solution [2, 5, 6]). The partial solution, i.e.,
Mc

l (t, x) in the domain [0, tmax]×[al, bl] associated with each affine initial or boundary
condition c ∈ Cl (4), can be explicitly expressed as a linear function of the initial and
boundary conditions using the Lax–Hopf formula.

The partial solution M
cj

al

l (t, x) associated with the upstream boundary condition
cjal

(t) ∀j ∈ J is written as follows:

(5)

M
cj

al

l (t, x) =


cjal

(tj−1) +
(
cj

al
(tj)−cj

al
(tj−1)

∆tj

)(
t− x−al

vf
l

− tj−1

)
if tj−1 + x−al

vf
l

≤ t

and t < tj + x−al

vf
l

,

cjal
(tj) + ρκl v

f
l

(
t− tj − x−al

vf
l

)
if t ≥ tj + x−al

vf
l

,

+∞ otherwise.

The explicit solutions M
ci

l,0
l (t, x) and M

cj
bl

l (t, x) associated with the initial and down-
stream boundary conditions are defined similarly; see [33] for a complete description.

The partial solution domain (i.e., where M
cj

al

l (t, x) is finite) for each affine initial
or boundary condition c ∈ Cl consists of two parts, namely the characteristic domain
and the fan domain. In the partial solution associated with the upstream boundary
conditions (5), the characteristic domain is

{
(t, x) | tj−1 + (x − al)/vfl ≤ t < tj +

(x−al)/vfl
}

in the first line of (5) and the fan domain is
{

(t, x) | t ≥ tj +(x−al)/vfl
}

in the second line. The vehicle speed and density are constant in the characteristic
domain, while the fan domain represents a rarefaction wave connecting the charac-
teristic domain of adjacent affine initial or boundary conditions. We refer the reader
to [33] for a detailed interpretation of the partial solutions. Physically, the partial so-
lution gives the largest possible vehicle ID in the solution domain by only considering
the information in each affine initial or boundary condition.

By the explicit formula (5), a partial solution Mc
l (t, x) can be computed for each

c ∈ Cl at each point (t, x). For the Moskowitz solution at (t, x) to be compatible with
all affine initial and boundary conditions, it must be less than or equal to the smallest
vehicle ID computed by all partial solutions. The following proposition constructs the
solution to HJ PDE (2) from the set of partial solutions.

Proposition 2 (inf-morphism property [2, 5, 6]). The Moskowitz solution Ml(t, x)
to the HJ PDE (2) with piecewise affine initial and boundary conditions (4) can be
computed as the minimum of all partial solutions defined in Proposition 1 associated
with each affine initial and boundary condition:

Ml(t, x) = min
c∈Cl

Mc
l (t, x) ∀(t, x) ∈ [0, tmax]× [al, bl] .

In summary, the traffic density on a single link can be computed as follows: (i)
compute the partial solutions Mc

l (t, x) ∀c ∈ C; (ii) compute the minimum among the
set of partial solutions at (t, x) to obtain the Moskowitz solution Ml(t, x); (iii) take
the derivative of Ml(t, x) with respect to x to recover the traffic density ρl(t, x).

2.2. Linear constraints on the boundary flows. The semi-explicit single
link HJ PDE solver assumes the initial and boundary conditions of the link are given.
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In the cases when the downstream or the upstream boundary condition is unknown, a
feasible set can be computed denoting the maximum flow that can be sent or received
on the link based on the initial condition and the boundary condition at the other
end of the link.

By Proposition 3, any boundary flow value in the feasible set can be prescribed as
a strong boundary condition for the link while guaranteeing the existence of a unique
weak solution to the HJ PDE.

Proposition 3 (compatibility conditions [7]). Suppose the initial and the down-
stream boundary conditions are given in a piecewise affine form for the HJ PDE
for a link l; the upstream boundary flow data q̃al

(t) in the continuous time do-
main prescribes the boundary condition to the HJ PDE (2) in the strong sense,
a.e. t ∈ (0, tmax],Ml(t, al) = Mal

(t) =
∫ t
τ=0 q̃al

(τ)dτ if and only if

(6) Mal
(t) ≤ min

∀c∈Cl

Mc
l (t, al) ∀t ∈ [0, tmax].

Similarly, given piecewise affine initial and upstream boundary conditions, the down-
stream boundary flow data q̃bl

(t) in the continuous time domain prescribes the bound-
ary condition to the HJ PDE (2) in the strong sense, a.e. t ∈ (0, tmax],Ml(t, bl) =
Mbl

(t) =
∫ t
τ=0 q̃bl

(τ)dτ + cimax

l,0 (bl) if and only if

(7) Mbl
(t) ≤ min

∀c∈Cl

Mc
l (t, bl) ∀t ∈ [0, tmax].

The magnitude of the term cimax

l,0 (bl) gives the number of vehicles initially on the
link.

The compatibility conditions give the upper bound of the boundary flows in a
continuous functional space in which it is difficult to be used for analyzing the junc-
tion dynamics. In addition, as shown in [5, 6], if the given initial and boundary
conditions are piecewise affine and the fundamental diagram is triangular, then the
unknown boundary flow belongs to a piecewise constant functional space. Therefore,
in the numerical implementation, we assume an arbitrary boundary grid with interval
length ∆tj , j ∈ J , is provided. At each interval j, the continuous boundary flow
data q̃al

(t) is approximated by the average flow, i.e., qal
(j) = 1

∆tj

∫ tj
tj−1

q̃al
(τ)dτ, t ∈

[tj−1, tj ], at the upstream boundary. Similarly, q̃bl
(t) is approximated by qbl

(j) =
1

∆tj

∫ tj
tj−1

q̃bl
(τ)dτ, t ∈ [tj−1, tj ] at the downstream boundary. This approximation

allows the construction of an explicit form of the constraints for the boundary flows
which is essential for solving the junction models.

By applying the compatibility conditions at the boundary grid points (t, x) ∈
{t0, t1, . . . , tjmax

}×{al, bl}, the explicit feasible set of boundary flows that can be sent
Fl,s or received Fl,r on the link can be obtained. Recall the relationship between the
the Moskowitz downstream boundary condition and the boundary flow, i.e., Mbl

(tj) =∑j
η=1 qbl

(η)∆tη + cimax

l,0 (bl). Given the initial condition cil,0 ∀i ∈ I and the upstream
boundary condition cjal

∀j ∈ J , the feasible set of downstream boundary flows that
can be sent on the link at each interval is defined as

(8) Fl,s :=

{
q(j) ∀j ∈ J |

j∑
η=1

q(η)∆tη + cimax

l,0 (bl) ≤Mc
l (tj , bl) ∀j ∈ J ,∀c ∈ Cl

}
,

where the subscript s denotes the sending flow and l is the link label. Similarly, given
the initial condition cil,0 ∀i ∈ I and the downstream boundary condition cjbl

∀j ∈ J ,
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1500 Y. LI, C. G. CLAUDEL, B. PICCOLI, AND D. B. WORK

the explicit feasible set Fl,r of the upstream boundary flows that can be received on
the link is formulated as follows:

(9) Fl,r :=

{
q(j) ∀j ∈ J |

j∑
η=1

q(η)∆tη ≤Mc
l (tj , al) ∀j ∈ J ,∀c ∈ Cl

}
,

where the subscripts l, r denote the receiving flow on link l. It is easy to verify that
the inequality constraints are linear in the unknown boundary flows q(j) by using the
explicit forms of Mc

l (t, x) in (5), and realizing the relationship q(j)∆tj = cjal
(tj) −

cjal
(tj−1) for the downstream boundary flow (8), and q(j)∆tj = cjbl

(tj)− cjbl
(tj−1) for

the upstream boundary flow (9). Moreover, the capacity constraints, i.e., q(j) ≤ qmaxl ,

are built into the feasible set by the constraints Mal
(tj) ≤M

cj−1
al

l (tj , al), Mbl
(tj) ≤

M
cj−1

bl

l (tj , bl).
In the extension of the single link HJ PDE solver to a network, the feasible sets

of the sending and receiving flows of links are used to compute the internal boundary
flows based on the junction models which is discussed in detail in the next section.

3. Convex formulation of traffic on networks. This section focuses on junc-
tion models and the development of a junction solver which computes the internal
boundary flows on the network. Since the emphasis of this article is the formulation
of a convex program for solving the selected junction models, we focus on a network
consisting of three links connected by a merge or diverge junction as shown in Figure 1
in the remainder of this article. In addition to the merge and diverge, a simpler junc-
tion is the connection where one upstream link is connected to a downstream link.
The connection junction is useful in modeling the road network when the physical
property of the road changes (e.g., reduction of lanes).

! = 3

(a) Merge

! = 1

(b) Diverge

Fig. 1. A transportation network containing a merge or diverge junction with links indexed by l.

3.1. Junction models on a network. A junction model describes how the
internal boundary flows are distributed across the junction. Specifically, a junction
model defines a unique internal boundary flow solution which reflects realistic physical
behavior of traffic, such as flow maximization and routing preferences.

Merge model. This article adopts an existing model [15, 18] for the merge junction
in Figure 1a. The merge model can be summarized into the following three rules:

(A1) The mass across the junction is conserved.
(A2) The throughput flow is maximized subject to the maximum flow that can be

sent or received on each connecting link.
(A3) The distribution of the internal boundary flows, i.e., qa3 7→ (qb1 , qb2), satisfies

a priority equation qb2 = Pqb1 , where P is a prescribed parameter that models
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the priority of upstream flows. When (A3) conflicts with (A2), that is, the
internal boundary flow solution that satisfies the priority equation does not
maximize the throughput, then (A3) is relaxed, i.e., the solution satisfies
(A2) and minimizes the deviation from the prescribed priority parameter,
e.g., ‖qb2/qb1 − P‖1.

Diverge model. At a diverge junction in Figure 1b, this article proposes a model
defined by the following rules:

(A1’) The mass across the junction is conserved.
(A2’) The throughput flow is maximized subject to the maximum flow that can be

sent or received on each connecting link.
(A3’) The distribution of the internal boundary flows, i.e., qb1 7→ (qa2 , qa3), satisfies

qa3 = Dqa2 , where D is a prescribed parameter that models the routing pref-
erence to the downstream links. When (A3’) conflicts with (A2’), that is, the
internal boundary flow solution that satisfies the distribution equation does
not maximize the throughput, then (A3’) is relaxed, such that the solution
satisfies (A2’) and minimizes the deviation from the prescribed distribution
parameter, e.g., ‖qa3/qa2 −D‖1.

The proposed diverge model is a FIFO model with a varying distribution pa-
rameter. The classic FIFO diverge model maximizes the throughput subject to the
distribution rule qa3(j) = Dqa2(j) with a constant distribution parameter D. The
classic FIFO model circumvents the difficulty of resolving the conflicts between the
throughput maximization and flow distribution, but it produces unrealistic solutions
in some applications. For example, using the classic FIFO model, a blocked offramp
will completely stop the traffic on all lanes of a multilane highway, which is unlikely.
To resolve this issue, several diverge junction models were proposed previously, such
as a multilane junction model (non-FIFO) [19], a dynamic distribution parameter [24],
and a junction model with internal dynamics [27]. In the same spirit of these models,
this article proposes a diverge junction model that produces similar traffic condition
dependent solutions without introducing additional complexity of non-FIFO models
on the traffic dynamics. The main assumption of the proposed diverge model is that
drivers will reroute to the other link if the initially desired link becomes congested [20].
The rerouting assumption makes the composition of queuing vehicles on the upstream
link time-invariant which is critical for the unique solution to be consistent [26].

The connection junction model is significantly simpler compared to the merge
and diverge models since there is no distribution or priority parameters involved.
Therefore, the connection model simply maximizes the throughput.

The structure of the merge and diverge models used in this article are similar, i.e.,
both maximize the throughput and then minimize the deviation from the prescribed
priority or distribution parameters. Therefore, the remainder of this section will focus
on the formulation of a junction solver for the merge model and note the same analysis
can be easily transferred to the diverge. The connection junction solver will be briefly
discussed considering its simplicity.

3.2. Junction solver over a single interval. This subsection proposes a junc-
tion solver in the form of a convex program that computes the internal boundary flow
solution at a single time interval for the merge model.

To compute the unique internal boundary flows qb1(j), qb2(j) at time interval j,
we assume that the unique internal boundary flow solutions up to interval j − 1 are
given and denoted by q∗al

(η), q∗bl
(η), η ∈ {1, 2, . . . , j − 1}. It should be noted that this

assumption requires the merge junction problem to be solved sequentially in time.
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1502 Y. LI, C. G. CLAUDEL, B. PICCOLI, AND D. B. WORK

Accordingly, the convex set (8) of the internal boundary flows that can be sent on
link l for all time interval up to j is reduced to a convex set of internal boundary flows
that can be sent at interval j:

(10) F jl,s :=

{
q(j) | q(j)∆tj ≤Mc

l (tj , bl)−
j−1∑
η=1

q∗bl
(η)∆tη − cimax

l,0 (bl) ∀c ∈ Cl

}
.

Similarly, the internal boundary flows that can be received on link l at time interval
j are subject to a reduced feasible set of (9):

(11) F jl,r :=

{
q(j) | q(j)∆tj ≤Mc

l (tj , al)−
j−1∑
η=1

q∗al
(η)∆tη ∀c ∈ Cl

}
.

The terms Mc
l (tj , bl) − c

imax

l,0 (bl) and Mc
l (tj , al) denote the maximum number of ve-

hicles that can be sent or received during time (0, tj). The summations of the given
boundary flows

∑j−1
η=1 q

∗
bl

(η)∆tη and
∑j−1
η=1 q

∗
al

(η)∆tη represent the number of vehicles
that have been sent or received during (0, tj−1). Hence, the right-hand side terms
in (10) and (11) are constants representing the maximum number of vehicles that can
be sent or received during interval j, i.e., (tj−1, tj).

As shown next, the merge junction solver is posed as a convex program with a
carefully constructed objective function to accommodate the throughput maximiza-
tion (A2) and the flow priority (A3) objectives. The equations (10) and (11) combined
define the constraint set of the convex program.

Definition 4 (merge junction solver over a single interval). The junction solver
for computing the internal boundary flow solution (qb1(j), qb2(j)) at a merge during
interval j is formulated in the form of a convex program as follows:

(12)

Maximize
q1(j),q2(j)

f (q1(j), q2(j))

s.t . q1(j) ∈ Fj1,s (10),
q2(j) ∈ Fj2,s (10),
q3(j) ∈ Fj3,r (11),
q3(j) = q1(j) + q2(j),

where f(q1(j), q2(j)) is a convex function of q1(j), q2(j) and satisfies

∂f

∂ql(j)
> 0 ∀l ∈ {1, 2},(13a)

∂f

∂q1(j)
>

∂f

∂q2(j)
when q2(j) ≥ Pq1(j),(13b)

∂f

∂q1(j)
<

∂f

∂q2(j)
when q2(j) < Pq1(j).(13c)

The junction solver CP (12) computes the unique internal boundary flow solution
defined by the merge junction model (A1), (A2), and (A3), as stated in the following
proposition.

Proposition 5. The merge junction solver CP (12) computes the unique inter-
nal boundary flow solution q∗(j) =

(
q∗b1(j), q∗b2(j), q∗a3

(j)
)

at interval j, where q∗(j)
satisfies (A1), (A2), (A3):
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A CONVEX FORMULATION OF TRAFFIC DYNAMICS 1503

(i) The internal boundary flows satisfy mass conservation rule (A1), q∗a3
(j) =

q∗b1(j) + q∗b2(j).
(ii) The throughput flow at the junction is maximized subject to the feasible sets

on connecting links (A2), i.e.,

q∗(j) ∈ Qj := argmax
q(j)∈Fj

1,s×F
j
2,s×F

j
3,r

qa3(j).

(iii) The deviation from the priority equation is minimized (A3), e.g.,

q∗(j) = argmin
q(j)∈Qj

‖qb2(j)− Pqb1(j)‖1.

Proof. A sketch of the proof is provided here, and a detailed proof appears in the
arXiv version of this article [30]. By construction of the junction solver, the constraint
set of the convex program is nonempty, which guarantees the existence of a solution.
The property (i) is satisfied since it is explicitly included in the constraint set in
CP (12). The property (ii) is guaranteed by the condition (13a) since the gradient
with respect to each internal boundary flow is strictly positive. The intuition of
conditions (13b), (13c) is that the gradient of the objective function f points towards
the line qb2(j) = Pqb1(j) from both sides in the feasible set. Consequently, the points
closer to the distribution line have a smaller deviation ‖qb2(j)/qb1(j)−P‖1 as defined
in (iii). The uniqueness of the solution is proved in the detailed proof using conditions
in (13).

The consistency (equivalently invariance) of the merge junction solver can be
verified by direct application of the definition of invariance [26].

The unique solution during a single time interval j computed by the junction
solver (12) for the merge is illustrated in Figure 2. There are in total three scenarios
depending on the feasible sets on links (10), (11), namely, (i) when the maximum
receiving flow on link 3 exceeds the total sending flow from links 1 and 2 in Figure 2a;
(ii) when the maximum receiving flow is smaller than the total sending flow from links
1 and 2 but the prescribed priority ratio cannot be followed exactly in Figure 2b; (iii)
when the maximum receiving flow is smaller than the total sending flow on links 1
and 2 and the prescribed priority ratio can be followed exactly in Figure 2c. The
feasible set of the convex program is denoted by the shaded area, where the upper
bounds of the feasible internal boundary flows for three links are, respectively, N̄1 =
max

{
q1(j) | q1(j) ∈ Fj1,s

}
, N̄2 = max

{
q2(j) | q2(j) ∈ F j2,s

}
, and N̄3 = max

{
q3(j) |

q3(j) ∈ F j3,r
}

. The solid lines denote the maximum sending flows from links 1 and
2. The dashed line denotes the maximum receiving flow on link 3. The dotted line
denotes the prescribed priority of the boundary flows, i.e., q1(j) = q3(j)

1+P , q2(j) =
Pq3(j)
1+P . The unique solution computed by the diverge junction solver CP (12) is

marked at point Q.
In scenario (i), see Figure 2a, the maximum receiving flow on link 3 exceeds the

the total flow that can be sent by links 1 and 2 combined. Hence, the single point
that maximizes the throughput admits the maximum sending flow from links 1 and
2, and is the optimal solution to CP (12).

In scenario (ii), see Figure 2b, the total sending flow is higher than the maximum
receiving flow on the downstream link, and the sending flows cannot be distributed
exactly following the priority rule. In this case, link 3 first admits all flows from
the higher priority link (i.e., link 1 in Figure 2b), and then admits as much flow as
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1504 Y. LI, C. G. CLAUDEL, B. PICCOLI, AND D. B. WORK

possible for the lower priority link to maximize the throughput. Consequently, the
optimal solution to CP (12) is the solution Q that is closest to the dotted line among
the solutions on the dashed line within the feasible set.

In the last scenario (iii), see Figure 2c, the total sending flow from upstream
links combined is higher than the maximum receiving flow on link 3, and the sending
flow can be distributed exactly following the priority ratio. In this case, there is no
conflict between maximizing the throughput (A2) and following the flow priority (A3).
Therefore, the solution at Q that satisfies both (A2) and (A3) is the optimal solution
to the merge junction solver CP (12).

Similar to the merge model, the diverge model also has three scenarios for de-
termining the unique solution. The three scenarios are depicted and discussed in the
arXiv version of this article [30].

0

&+())

&.())

,+

,.

Q

,'

,'

(a) Merge Case One

0

,+

,.

Q

,'

,'

&+())

&.())

(b) Merge Case Two

0

,+

,.

Q

,'

,'

&+())

&.())

(c) Merge Case Three

Fig. 2. Three scenarios at a merge. Links 1 and 2 merge to link 3. The two solid lines represent
the maximum sending flow on links 1 and 2. The dashed line denotes the maximum receiving flow
on link 3. The dotted line denotes the prescribed priority of sending flows. The shaded area is the
feasible set of boundary flows (10), (11). The unique solution computed by CP (12) is depicted by Q.

The junction solver CP (12) applies to an arbitrary convex objective function
f(q1(j), q2(j)) that satisfies (13), and subderivatives can be used if f(q1(j), q2(j)) is
not differentiable. Though no explicit form of the objective function is used to define
the solver, selecting a suitable objective function is straightforward, as shown in the
following example.

Example. At a merge, a convex objective function to maximize the through-
put (A2) and then minimize the deviation from prescribed flow priority ratio (A3) for
any flow maximizing solution can be defined as follows:

(14) f(q1(j), q2(j)) = α (q1(j) + q2(j))− β (q2(j)− Pq1(j))2
,

where α and β are weights defined by

α = 1− β, β = min
(

1
1 + 2P 2qmax1 + ε

,
1

1 + 2qmax2 + ε

)
, and ε = 0.01.

The derivation of the coefficients is presented as follows. Define the objective function
as (14) and assume α > 0 and β > 0. The conditions (13b) and (13c) in Definition 4
are trivially satisfied given β > 0. Then by condition (13a),
∂f

∂q1(j) = α− 2β(q2(j)− Pq1(j))(−P ) > 0 and ∂f
∂q2(j) = α− 2β(q2(j)− Pq1(j)) > 0.

Let α = 1− β and β ∈ (0, 1), and rearrange the above inequalities as

1 > β
(
1− 2Pq2(j) + 2P 2q1(j)

)
and 1 > β (1 + 2q2(j)− 2Pq1(j)) .
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A CONVEX FORMULATION OF TRAFFIC DYNAMICS 1505

To guarantee the above inequalities hold for all possible values of q1(j) and q2(j), we
use the following chain rule:

β
(
1 + 2P 2qmax1

)
≥ β

(
1 + 2P 2q1(j)

)
≥ β

(
1− 2Pq2(j) + 2P 2q1(j)

)
,

β (1 + 2qmax2 ) ≥ β (1 + 2q2(j)) ≥ β (1 + 2q2(j)− 2Pq1(j)) .

Hence, it suffices to require

1 > β
(
1 + 2P 2qmax1

)
and 1 > β (1 + 2qmax2 ) .

Then the value of β can be selected as

β = min
(

1
1 + 2P 2qmax1 + ε

,
1

1 + 2qmax2 + ε

)
∈ [0, 1],

where ε is a small positive constant (e.g., 0.01) to guarantee the strict inequality.
Accordingly, α is computed then by α = 1− β.

The connection junction model only requires the mass conservation and maximiza-
tion of the throughput. Therefore, the connection junction solver can be formulated
by maximizing the throughput (i.e., downstream flow of upstream link) subject to the
maximum sending and receiving boundary flows defined in (10) and (11).

3.3. Junction solver over the entire horizon. As shown in the previous
subsection, the unique solution over a single time interval can be computed by a
junction solver in the form of a convex optimization program. When constructing the
constraint set of CP (12) at interval j, the unique solutions up to interval j − 1 were
assumed to be known (10), (11). As a result, computing the internal boundary flow
solution over the entire time horizon requires consecutively constructing and solving
a convex program at each time interval. This subsection presents a merge junction
solver in the form of a single convex program for computing the interval boundary
flows over the entire time horizon.

The intuition of the junction solver as a single convex program is that the union
of the constraint set for each interval F jl,r or F jl,s is a subset of the constraint set
Fl,r or Fl,s over the entire time horizon. Given the structure of the constraint set,
it is possible to design the objective function for a single convex program such that
the solution over the entire time horizon is equivalent to the solution computed by
sequentially solving a convex program at each time interval. The following definition
articulates the conditions required for the objective function.

Definition 6 (merge junction solver over the entire time horizon). The junction
solver for computing the internal boundary flows at a merge (qb1 , qb2) where qb1 =
{qb1(j) ∀j ∈ J } and qb2 = {qb2(j) ∀j ∈ J } for the entire time horizon is defined as
the following convex program:

(15)

Maximize
q1,q2

f(q1, q2)

s.t . q1 ∈ F1,s (8),
q2 ∈ F2,s (9),
q3 ∈ F3,r (9),
q3(j) = q1(j) + q2(j) ∀j ∈ J ,

where q1 = {q1(j) ∀j ∈ J }, q2 = {q2(j) ∀j ∈ J }, q3 = {q3(j) ∀j ∈ J }. The function
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f(q1, q2) is convex in q1(j), q2(j) ∀j ∈ J and satisfies

∂f

∂q1(1)∆t1
>

∂f

∂q1(2)∆t2
> · · · > ∂f

∂q1(jmax)∆tjmax

> 0,(16a)

∂f

∂q2(1)∆t1
>

∂f

∂q2(2)∆t2
> · · · > ∂f

∂q2(jmax)∆tjmax

> 0,(16b)

and ∀j ∈ {1, 2, . . . , jmax − 1},

∂f

∂q1(j)∆tj
− ∂f

∂q2(j)∆tj
− ∂f

∂q1(j + 1)∆tj+1
> 0 if q2(j) ≥ Pq1(j),(17a)

∂f

∂q2(j)∆tj
− ∂f

∂q1(j)∆tj
− ∂f

∂q2(j + 1)∆tj+1
> 0 if q2(j) < Pq1(j),(17b)

and when j = jmax,

∂f

∂q1(jmax)
− ∂f

∂q2(jmax)
> 0 if q2(jmax) ≥ Pq1(jmax),(18a)

∂f

∂q1(jmax)
− ∂f

∂q2(jmax)
< 0 if q2(jmax) < Pq1(jmax).(18b)

Before stating the formal proposition on the equivalence of the junction solver
CP (15) to the single interval junction solver CP (12) solved sequentially for all in-
tervals, we briefly interpret the conditions (16), (17), (18) on the objective function.

The conditions (16) assign higher weights to the internal boundary flows at earlier
time intervals, such that the throughput at earlier intervals is first maximized. Con-
sequently, the convex program will produce a solution that satisfies the throughput
maximization rule (A2) for all intervals. The unique solution also requires minimum
deviation of the solution from the prescribed parameter (A3), i.e., qb2(j) = Pqb1(j)
for all intervals j ∈ J . The conditions (17), (18) define the direction of the gradient of
the objective function as pointing towards the line qb2(j) = Pqb1(j) from both sides.
If (17), (18) are satisfied for CP (15), then conditions (13b), (13c) are satisfied for all
CPj at all intervals ∀j ∈ J .

Proposition 7. The junction solver (15) gives the same unique solution {qb1(j),
qb2(j), qa3(j) | ∀j ∈ J } obtained by sequentially solving CP (12) at each time interval.

Proof. A detailed proof is presented in the arXiv version of this article [30] and
the intuition is briefly described as follows. The proof of Proposition 7 relies on
the equivalence of the Karush–Kuhn–Tucker (KKT) conditions associated with the
sequence of CPs (12) and CP (15). The main idea is to show that the set of KKT
multipliers associated with the optimal solution to CP (15) also satisfies the KKT
conditions associated with the same solution to CP (12) for each time interval. Since
the constraints in CP (12) are linear, the KKT conditions are also sufficient conditions.
Therefore, the solution to CP (15) is also the optimal solution to CP (12) for each
time interval.

The junction solver CP (15) does not provide an explicit form of the objective
function. Similarly, as in Proposition 5, one can first define a weighted objective
function with undetermined weights and then select values for the weights to satisfy
the proposed conditions on the objective function. This process is illustrated in the
following example.
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Example. For simplicity, suppose the number of time steps jmax = 2. Define the
following objective function for a diverge with weights α > 0, β > 0, ω1 > 0, ω2 > 0:

f(q1, q2) =
2∑
j=1

wj (α · (q1(j) + q2(j))− β · ‖q2(j)− Pq1(j)‖1) .

The term q1(j) + q2(j) maximizes the throughput at time interval j and the term
‖q2(j) − Pq1(j)‖1 penalizes the deviation from the prescribed priority ratio. In ad-
dition, weights wj are selected for the two intervals to assign higher weights to the
internal boundary flows at earlier intervals, so the vehicles are not stopped and sent at
later time intervals, which is unrealistic at a junction without actuators. By applying
the conditions (16), (17), (18) on the objective function f(q2, q3), the parameters and
weight coefficients can be set as follows:

α = 1 + P + max(1, P ), β = 1, ω1 =
α+ max(1, P )

1 + P
+ ε, ω2 = 1,

where ε > 0 is a small positive constant to guarantee the strict inequality.

At the connection junction, the throughput must be maximized at all time inter-
vals. The following lemma shows the unique solution over the entire time horizon for
a connection can be computed in a single convex program.

Lemma 8. Consider a junction in which one upstream link (link 1) connects to
one downstream link (link 2). The unique boundary flow solution qb1(j) for all time
intervals j ∈ J can be solved by

(19)

Maximize
qb1

f(qb1)

s.t . {qb1(j) | ∀j ∈ J } ∈ F1,s (8),
{qa2(j) | ∀j ∈ J } ∈ F2,r (9),
qb1(j) = qa2(j) ∀j ∈ J

if f(qb1) satisfies ∀j ∈ J ,

(20) ∂f
∂qb1 (1)∆t1

> ∂f
∂qb1 (2)∆t2

> · · · > ∂f
∂qb1 (jmax)∆tjmax

> 0.

The condition (20) assigns a higher weight to the internal boundary flow at an
earlier interval, hence satisfying the throughput maximization rule for all intervals.
The proof of Lemma 8 can be derived using the same technique in the proof of
Proposition 7 and is not detailed here.

Compared to a sequential scheme, such as the sequential convex program scheme
or the cell transmission model (CTM) [10], the single convex program framework
allows a natural extension to optimal traffic control which is demonstrated in section 4.

4. Application: On-ramp metering control for work zones. This section
demonstrates how the convex optimization scheme for computing the internal bound-
ary flows can be reformulated as a control framework. An example for on-ramp meter-
ing control in work zones is provided. The proposed on-ramp metering controller uses
historical data and the real-time measurement data at the entrance and exit of each
road section to predict the traffic states in the work zone, and then avoids congestion
upstream of the work zone by directly penalizing the congested traffic states.
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4.1. Optimal on-ramp metering control framework. The convex optimiza-
tion framework in the previous section computes the internal boundary flows on a
network using the HJ PDE link model and proposed junction solver. Particularly,
the junction models are encoded in the objective function in the convex program in
Definition 6. Without the conditions on the objective function in Definition 6, the
junction dynamics are no longer modeled and the internal boundary flow solution can
be any value that is optimal for a given arbitrary objective function. In this sense,
the convex program is an optimal controller assuming all directions of traffic are sig-
nalized at the junction. We refer the reader to our earlier work [29] for a detailed
discussion.

The optimal controller for an on-ramp meter, however, is more complicated since
both uncontrolled freeway flows and controlled on-ramp flows appear in the convex
program. The CP (15) is used for solving the joint PDEs in the unsignalized merge
and hence needed to be modified such that one upstream link (i.e., the on-ramp)
allows control input. Meanwhile, the two freeway links preserve the unique internal
boundary flow solution, which is similar to the problem of solving the joint PDEs
at a connection junction in Lemma 8. Therefore, in the formulation of the optimal
controller, the convex program for the connection (19) is first used to guarantee the
unique solution to the uncontrolled boundary flows. The remainder of this section
shows how to include additional constraints and objectives into the convex program
such that the on-ramp flows are controlled optimally to minimize the congestion.

4.2. Penalty on the congested states. In the convex optimization frame-
work, the congested states on links can be directly penalized via sampling the traffic
condition at a set of points of interest P which we refer to as congestion sampling
points. For example, the set of congestion points is defined at discrete time points at
a fixed location xq, i.e., P := {(tk, xq) | k ∈ {1, 2, . . .}}. If the congestion does not ex-
tend past the fixed location xq, the traffic state is considered to be lightly congested
and no penalty will be computed. Otherwise, the objective function penalizes the
congested states depending on its severity. This subsection shows how this penalty
mechanism is incorporated in the convex program by including additional constraints
and variables. We briefly summarize the main ideas on the formulation of the con-
straints relying on the property of the partial solutions, and we refer the reader to
[33] for detailed interpretation of the property of partial solutions.

By Proposition 2, the Moskowitz solution at each congestion sampling point
(tk, xq) ∈ P is computed as the minimum of the partial solutions computed from
the affine initial conditions, the upstream boundary condition, or the downstream
boundary condition. The affine initial conditions can be further grouped into two
categories by whether the initial condition interval is in free flow or congested states,
i.e., ρl,0(i) ≤ ρκl or ρl,0(i) > ρκl , noting the density is related to the initial condi-

tion (4) by ρl,0(i) = ci
l,0(xi)−ci

l,0(xi−1)
∆xi

. Denote the sets of affine initial conditions that
are in free flow and congested states, respectively, as Cff = {cil,0(x) | ρl,0(i) ≤ ρκl }
and Ccs = {cil,0(x) | ρl,0(i) > ρκl } and the sets of affine upstream and downstream
boundary conditions as Cus = {cjal

(t) ∀j ∈ J } and Cds = {cjbl
(t) ∀j ∈ J }.

The partial solutions associated with Cff and Cus imply free flow traffic conditions,
and the partial solutions of Ccs and Cds indicate congested traffic conditions in their
respective characteristic solution domain. A congestion sampling point (tk, xq) ∈ P
is in a free flow condition if and only if

(21) Ml(tk, xq) = Mff (tk, xq) := min (Mc
l (tk, xq) ∀c ∈ Cff ∪ Cus) .
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In other words, the solution at (tk, xq) is in free flow if it is defined by the upstream
condition or the free flow initial condition. Similarly, the congestion sampling point
is in a congested state if and only if

(22) Ml(tk, xq) = Mcs(tk, xq) := min (Mc
l (tk, xq) ∀c ∈ Ccs ∪ Cds) .

In addition, the partial solutions have the following properties: (i) if a point (t, x)
is located in the characteristic domain of an affine initial or boundary condition, then
the partial solution associated with the affine initial or boundary condition is equal
to the solution Ml(t, x) [33]; (ii) the characteristic solution domains for c ∈ Cff ∪ Cus
do not overlap; see (5). Utilizing the above properties, the nonlinear operator min
in (21) can be removed by precomputing to which characteristic domain the point
(tk, xq) belongs. Similarly, the min operator in (22) can be removed by applying the
same technique.

For each congestion sampling point (tk, xq), the following constraints are added
to the convex program (15):

(23)
∀(tk, xq) ∈ P,{

Mff (tk, xq) ≤Mcs(tk, xq) + pk,
pk ≥ 0,

where pk is a variable that denotes the penalty associated with the congested states
at each point (tk, xq). These constraints guarantee pk > 0 when the point (tk, xq)
is congested, i.e., Mff (tk, xq) > Mcs(tk, xq) and pk = 0 otherwise. The penalty
variables pk for all congestion sampling points in P are regarded as decision variables
and minimized in the objective function.

4.3. Simulation configuration. This subsection briefly describes the experi-
ment setup and the next subsection constructs an optimal on-ramp metering controller
using the convex program (19) and the additional constraints (23).

The experiment setup for validating the optimal on-ramp metering controller is
shown in Figure 3. A microscopic traffic simulation software, AIMSUN, is used to
simulate a traffic environment and collect aggregated traffic data. The microscopic
traffic simulator simulates the behavior of individual vehicles as a proxy for a real
freeway network composed of human drivers, and is commonly used to validate traffic
controllers based on macroscopic models [39]. The simulated data is then streamed to
the optimal on-ramp metering controller implemented in MATLAB, which computes
the optimal control signals based on the traffic dynamics modeled by the HJ PDE.
Finally, the optimal on-ramp meter control is applied in the AIMSUN environment
to simulate the evolution of traffic.

A 6 km stretch of freeway and an on-ramp is modeled in AIMSUN as in Figure 3:
a two-lane freeway (link 1) merges with a single-lane on-ramp (link 2) and connects to
a two-lane freeway (link 3). A downstream work zone creates a single-lane bottleneck
which induces congestion if the traffic is not controlled. Loop detectors are assumed
to be installed at the entrance and exit of each link with a detection cycle set at 30
seconds. An on-ramp meter is installed at the exit of the on-ramp. Due to the limited
work zone capacity, severe congestion will be generated upstream of the work zone if
the on-ramp is not controlled. In comparison, the proposed controller can limit the
level of congestion by regulating on-ramp inflows.

The total simulated time horizon in this example is one hour. The controller is
embedded in a model predictive control (MPC) scheme [4, 16, 32] which updates the
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Work zone

Detector

On ramp meter

𝑞"#

ℓ = 1 ℓ = 3
Optimal On-ramp

Metering 
Controller

Real-time Data

Control SignalAIMSUN Microscopic Traffic Simulator

𝑞(# 𝑞")

𝑞"*

𝑞(*

𝑞()

Fig. 3. On-ramp metering control for a work zone: AIMSUN simulates a microscopic traffic en-
vironment and collects and feeds data to the optimal controller. The optimal controller implemented
in MATLAB computes the optimal on-ramp signals and applies to AIMSUN.

control signals based on real-time measurements. The MPC scheme is illustrated in
Figure 4: (i) the optimal controller predicts the traffic states over the next 10-minute
time horizon and computes the optimal ramp meter signal; (ii) AIMSUN applies only
the first minute of the control signal to the on-ramp meter, simulates the evolution
of the traffic, and feeds back the aggregated traffic data to the controller; (iii) the
controller reoptimizes the ramp meter signal over the next 10-minute time horizon
using the new traffic measurement data from AIMSUN; (iv) repeat steps (ii) and (iii)
to adjust the optimal control signal to the realtime traffic measurement data.

In this example, the historical data is used for computing the optimal traffic
signals over each 10-minute time horizon. The error of the measurement data is not
modeled in this example and we refer the reader to our earlier work [28] on robust
optimal control with incorporates measurement uncertainty.

0 Time (min)

Computation Time

1 2

Applied signal Predicted Horizon

103

…Iteration

Fig. 4. MPC scheme for the on-ramp metering control: Once new data is received, the optimal
controller initializes a 10-minute predicted horizon for computing the optimal meter signals. New
data is received each minute, and hence only the first minute of the control signal during the 10-min
horizon is applied to the on-ramp meter.

4.4. Formulation of the optimal controller. This subsection summarizes
the constraints, designs the objective function, and formulates an optimal on-ramp
metering controller.

4.4.1. Decision variables. During each 10-minute time horizon, the on-ramp
boundary flows qb2(j) ∀j ∈ J are controlled and the freeway downstream flows
qb1(j), qb3(j) ∀j ∈ J are computed using the junction model. Therefore, they are
regarded as the decision variables in the convex program.
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A CONVEX FORMULATION OF TRAFFIC DYNAMICS 1511

The inflow to the downstream freeway link l = 3 satisfies qa3(j) = qb1(j) +
qb2(j) ∀j ∈ J and does not need to be explicitly included as a decision variable.
The inflows to the upstream freeway and the on-ramp qa1(j) and qa2(j) ∀j ∈ J are
assumed to be known from the historical data.

In addition, the penalty pk associated with each congestion sampling point (tk, xq)
∈ P is also used as the decision variable to penalize congestion in the workzone.

In summary, the decision variable of the convex program is defined as follows:

X = {qb1(j), qb2(j), qb3(j), pk | ∀j ∈ J , (tk, xq) ∈ P} .

4.4.2. Linear constraints. The constraints in the convex program for the op-
timal controller consist of the following linear inequalities and equalities:

• The boundary flows on each link l subject to the feasible constraints Fl,s and
Fl,r defined in (8), (9).

• The internal boundary flows at the on-ramp junction satisfy mass conserva-
tion for all time steps.

• The congestion sampling points are selected as P = {(tk, xq) | tk = 30k s ∀k ∈
{0, 1, 2, . . .}, xq = 50m}. The penalty variable associated with each conges-
tion sampling point is subject to the constraints defined in (23).

4.4.3. Objective function. One of the main safety concerns in work zones is
the high-speed rear-end crashes which can be caused by the congestion upstream of
the work zone. Therefore, the primary objective used in this example is to improve
the safety for traveling through the work zone by alleviating the congestion on the
freeway at the upstream of the work zone. Meanwhile, a secondary objective is to
minimize the total travel time by sending on-ramp flow to the freeway as much as
possible without causing congestion. The objective function f is defined as a linear
combination of several objective components.

• The first component of the objective is to alleviate the congestion upstream
of the work zone by directly penalizing the congested states at the congestion
sampling points:

Maximize
pk

− w0

∑
(tk,xq)∈P

pk,

where w0 is a weight parameter which can be adjusted.
• The second component of the objective is to maximize the on-ramp flow which

is metered by the controller:

Maximize
qb2 (j)

jmax∑
j=1

w1(j)qb2(j).

Note that if the weights w1(j) are the same for all time intervals j ∈ J ,
the optimal controller may hold on-ramp flows to later time intervals, which
increases the waiting time of vehicles on the on-ramp. Therefore, we assign
higher weights to on-ramp flows at earlier time intervals. Specifically, the
weights w1(j) satisfy

(24) w1(j) >
∆tj

∆tj+1
w1(j + 1) ∀j ∈ J \ {jmax}.

• In this example, the downstream boundary flows on the two freeway sections
are not controlled. To obtain the unique solution at those two boundaries,
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1512 Y. LI, C. G. CLAUDEL, B. PICCOLI, AND D. B. WORK

the objective function f must satisfy the conditions (19):

(25)

{
∂f

∂qb1 (j) >
∆tj

∆tj+1

∂f
∂qb1 (j+1) ,

∂f
∂qb3 (j) >

∆tj
∆tj+1

∂f
∂qb3 (j+1) .

The following objective component is added to the objective function to guar-
antee the unique solution:

Maximize
qb1 (j),qb3 (j)

jmax∑
j=1

w2(j)qb1(j) +
jmax∑
j=1

w3(j)qb3(j).

It should be noted that pk relates to qb1(j) in (23) and minimizing pk implicitly
minimizes qb1(j). The selection of w2(j) using conditions (25) should subtract
the implicit weight on qb1(j) induced by penalizing the congested states. In
addition, to prevent the on-ramp flows from blocking the upstream freeway
flows, the objective function should satisfy

(26)
∂f

∂qb1(j)
>

∂f

∂qb2(j)
.

In summary, the objective function f is to maximize

f = −w0

∑
(tk,xq)∈P

pk +
jmax∑
j=1

w1(j)qb2(j) +
jmax∑
j=1

w2(j)qb1(j) +
jmax∑
j=1

w3(j)qb3(j).

Specifically in this simulation, we select w0 = 1, w1(jmax) = ∆tjmax , and other weights
according to conditions (24), (25), (26). The weights w0 and w1 can be adjusted to
balance the congestion on the highway and the queue on the on-ramp.

4.5. Simulation results. A one-hour time horizon was simulated in AIMSUN
for the optimal on-ramp metering control. A scenario with uncontrolled on-ramp
meter was also simulated for comparison. The simulation result is shown in Figure 5,
where Figure 5a plots the traffic states for the uncontrolled scenario and Figure 5b
plots for the optimal on-ramp metering control scenario.

As shown in Figure 5a, the on-ramp flow is not controlled and all on-ramp traffic
merges to the downstream freeway. On the downstream freeway, the work zone re-
duced the road capacity and caused severe congestion which could cause safety issues.
In comparison in Figure 5b, the optimal on-ramp metering controller regulated the
on-ramp traffic to the downstream freeway such that no severe congestion formed.
The additional delay time of the vehicles waiting on the on-ramp is compensated by
the shorter travel time on the uncongested downstream link.

In summary, this section demonstrated the feasibility of reformulating the convex
optimization scheme to optimal traffic control applications. The general idea is to
relax the junction models encoded by the conditions on the objective function in
Definition 6. A variety of objectives, such as maximizing the boundary flow, or
penalizing the congested states can be directly formulated in the objective function.

5. Conclusion. This article proposed a numerical scheme which can compute
the traffic evolution modeled by HJ PDEs on a network using a convex optimization
program, which could also be applied for optimal control.
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Freeway traffic

T
im

e 80

mph

0

40

Congestion

(0.5 mile)

(a) Uncontrolled on-ramp. On-ramp flows caused severe congestion on the downstream
freeway link before the work zone bottleneck.

T
im

e 80

mph

0

40

Freeway traffic

(b) Optimal on-ramp control. On-ramp flows were restricted to prevent the formation of
congestion on the downstream freeway link. Meanwhile, on-ramp flows were admitted to the
freeway when there was space on the downstream freeway link. Overall, no severe congestion
was generated on the downstream freeway link except for slightly slower traffic due to the
reduced speed limit and merging activities upstream of the work zone.

Fig. 5. True speed states on the freeway and the on-ramp. Grey arrows denote the freeway
and on-ramp links. Green arrow denote the time ( 1 hr). (a) Uncontrolled on-ramp. (b) Optimally
controlled on-ramp.

The proposed framework relies on a semi-explicit single link HJ PDE solver, and
does not require discretization of the time-space domain. In addition, it computes
the internal boundary flows at a merge, or diverge, or connection over the entire time
horizon using a single convex program. The convex optimization scheme provides a
natural framework for optimal traffic control applications which is demonstrated in a
work zone on-ramp metering control example.
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