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Abstract

In this article, we describe the development of a transit trip planner (TTP) for mobile devices
called Transitr, and evaluate its performance. The system predicts the shortest paths between
any two points in the transit network using real-time information provided by a third party bus
arrival prediction system, relying on GPS equipped transit vehicles. Users submit their origin
and destination through a map-based iPhone application, or through a JavaScript enabled web
browser. A server implementing a dynamic K-shortest paths algorithm with predicted link
travel times returns personalized route directions for the user, displayed on a map. To assess
the optimality and accuracy of the predicted shortest paths, an a posteriori comparison with
a schedule-based transit trip planner and the GPS traces of the transit vehicles is performed
on six-hundred origin destination pairs in San Francisco. The results show that routing using
the predicted bus arrivals marginally increases the accuracy of the total travel time and the
optimality of the route. Suggestions to improve the accuracy and optimality using real-time
information are proposed.
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1 INTRODUCTION
Mobile phones equipped with GPS and Internet access are promising platforms upon which future1

transportation information will be shared and collected. With these devices, real-time monitoring2

of the transportation system will become not only feasible, but ubiquitous. Numerous emerging3

traffic monitoring applications use vehicle probe data collected from on-board GPS devices to re-4

construct the state of traffic (for example, velocity or density maps). This information is used to5

predict travel time of vehicles in the transportation network. Some emerging examples include Mo-6

bile Millennium [29, 16], CarTel [10], JamBayes [17], TrafficSense [22], and systems for surface7

street estimation [31].8

The Internet has expanded these capabilities significantly, with various mapping providers9

(i.e. Google and Navteq) merging static and real-time traffic data to help drivers make the most of10

their commute. Yet, relatively little attention has been paid to public transportation and real-time11

data applications. Services such as 511.org and Google Transit allow users to plan public transit12

trips by generating routes based on static scheduling data. A multi-modal trip planning system13

was developed by Rehrl et al. [26] to address the increased complexity and lack of information14

required by travelers. Their platform includes directions for public transit based on published15

schedules, as well as transfer directions between different transportation modes. An open-source16

multi-modal trip planner, Graphserver, has also been developed by the online transit developer17

community to address the same issues [13]. However, buses and trains do not always run on time.18

Some transit agencies, TriMet in Portland, Chicago Transit Authority, Bay Area Rapid Transit, and19

King County in Seattle have responded by releasing real-time bus arrival feeds online, allowing20

application developers to use this data in new, novel ways.21

Transitr is a real-time public transit trip planning system accessible on mobile devices de-22

signed to use this information. It combines a user’s geographic location with real-time transit23

information provided by transit agencies to determine the fastest route to a desired destination.24

It fuses real-time data feeds with the existing technology of schedule-based transit trip planners25

(TTPs) currently available online. To the best of our knowledge, the research is the first instantia-26

tion and evaluation of a real-time TTP which uses the predicted bus arrival feeds to route users on27

mobile devices.28

This article is organized as follows. In Section 2 the challenges and previous work with29

real-time information in transit. In Section 3, we describe the system architecture of Transitr,30

which has been deployed to serve transit networks in two metropolitan areas. We describe the31

dynamic K-shortest paths algorithm with predicted link travel times in Section 4. Using data from32

hundreds of trips planned in San Francisco, we evaluate the performance of Transitr in comparison33

with a schedule-based TTP in Section 5. From analysis of the data, we describe areas of research34

to improve the accuracy and optimality of the system.35

2 NEED FOR REAL-TIME INFORMATION IN TRANSIT36

Annual system reliability reports are published by most transit agencies to address the issue of37

schedule adherence. Measured at terminals and intermediate points, system reliability of a public38

transit network is defined as the percentage of vehicles that run on time according to schedule39

(up to four minutes late and one minute early) [1]. Schedule adherence in the San Francisco40

area is estimated to be 70% [1]. For the past two years, official Metropolitan Transportation41
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Authority (MTA) numbers for New York, show a system reliability of 80% for subways and 66%42

for buses. In such cases, real-time information may be used to reduce time wasted waiting for43

delayed transit vehicles, and it can also enable users to take faster alternative routes. Hickman44

and Wilson [15] analyzed the benefits of real-time information, limiting the assessment to look45

at travel time improvements, and concluding that real-time information systems may only lead46

to marginal travel time benefits from improved path decisions. Their conclusion was supported47

by the development and subsequent evaluation of a dynamic path choice problem, in which a48

mathematical optimization reflects the decision of a transit rider to board a transit vehicle based on49

the availability of real-time information. Mishalani [21] et al. developed an evaluation method for50

the value of real-time information and noted that the value of information to passengers is affected51

by the type of available information as well as operations characteristics. The research lead to the52

development of a piece-wise linear function to model passenger utility, taking into account waiting53

times at stops as well as projected waiting times given by an arrival time engine. Surveys conducted54

by Caulfield et al. [24] suggest that users are generally unhappy about the on-time performance55

of public transit vehicles, and that the bulk of those surveyed would use real-time information if it56

were available.57

The need for real-time data stems from the unreliable nature of bus schedules, which a58

number of researchers have explored. [27, 23]. One significant problem is the the phenomenon59

of bus bunching, in which multiple buses on the same line arrive at a stop concurrently, followed60

by no subsequent buses for a significant amount of time [7, 5]. This can lead to travel delays, as61

some passengers experience longer wait times than predicted by the published schedules. Various62

control schemes have been proposed to combat this issue, the most popular of which allots slack63

time in the routes in a procedure known as holding [30]. By building some wait time into the64

schedule, a bus can wait at a stop if it is on time or ahead of schedule, or skip the waiting process65

if behind schedule.66

The present paper does not attempt solve the bus bunching issue, but rather aims to enable67

commuters to make informed decisions based on the inherent variability in the system, and to68

quantify the discrepancy of travel time as predicted by published schedules and real-time data.69

This work provides a tool which enables a commuter to use real-time information to find an optimal70

route in the transit system. Transitr leverages bus arrival estimation engines developed by NextBus,71

TriMet, and other agencies which provide a real-time feed for bus arrival predictions.72

Previous studies have focused on transit vehicle arrival prediction, which convert real-time73

bus locations to predictions for arrivals at downstream transit stops. However, none of the studies74

have consider applying the research into a transit trip planning tool. Previous work by Jula et al.75

[14] used historical and real-time data to show that travel times can be estimated confidently along76

arcs of dynamic stochastic networks. Ignoring correlation between adjacent arcs on a network, the77

authors employed a technique based on a predictor-corrector form of the Kalman filter, in which78

historical data were used to predict travel time, and real-time measurements were used to correct79

the predictions at each time instant. Shalaby and Farhan [28]used two Kalman filter algorithms for80

the prediction of running times and dwell times alternately in an integrated framework. Separating81

the bus dwell time prediction from bus running time prediction in this modeling framework cap-82

tures the effects of lateness or earliness of bus arrivals at stops on the bus dwell time at those stops,83

and hence the bus departure from such stops. Other models were developed by Abdelfattah [2]84

and Chien [4] which used a large number of parameters such as live traffic volumes, speeds, and85

passenger counts. In the previous two papers, a very comprehensive models were developed, al-86
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Figure 1: Architecture and system implementation of Transitr.

though many of those parameters featured in these models may be difficult to measure in real-time87

and consolidate for a user-application for transit trip planning. The paper does not propose new88

estimation algorithms; it uses the information as provided from the online real-time data feeds.89

3 SYSTEM ARCHITECTURE90

This section presents the architecture for Transitr, a real–time transit trip-planning system devel-91

oped for mobile devices which incorporates data from a variety of sources. Unlike traditional92

schedule-based services, Transitr integrates a user’s origin obtained by GPS destination select on a93

map with real-time transit vehicle arrival time estimates, allowing transit riders to plan trips from94

their current location. The prototype system relies on three components, described in the following95

sections and illustrated in Figure 1:96

1. Clients: Travelers using location aware mobile devices (such as GPS or cell tower based97

location technology).98

2. Server: A routing engine which determines the K-shortest paths between an origin and des-99

tination100

3. Third Party static and dynamic information providers:101

• A transit vehicle arrival prediction system generating estimates from GPS equipped mass102

transit vehicles103

• A set of static schedules from which to build the transit network graph.104

5
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Figure 2: iPhone and web-browser implementation. Markers on screen indicate transfer points, and
clicking on the markers or swiping the bar at the bottom of the screen reveals more information,
such as the name/location of the stop and waiting times. The arrows on the top right of the touch
screen can be used to toggle between different routes, while an information panel displays the total
travel time for a selected route.

3.1 Client Side: Mobile device implementation105

Transitr was developed on two client-side platforms: the iPhone (programmed in Objective C), and106

JavaScript enabled web-browsers. The two implementations feature a user-interface overlayed on107

top of a map, which eases the use of mass transit without requiring significant knowledge about108

a particular geographic area. Users select their origin and destination, either by using the mobile109

device’s on-board GPS, tower based triangulation, or by manual entry into the device. The origin110

and destination points are geo-coded into latitude and longitude points and submitted as a query to111

the server.112

Upon receiving the above request, the server creates an XML response which contains113

information for the five fastest routes. XML provides a simple, open, and extensible format to114

encode pertinent information about a user’s trip, including such as walking directions, location of115

stops and transfers, and the duration of the trip. Although the application has been developed on116

two platforms, the same XML feed can be generated in response to a request from any mobile117

device or phone, thus making the underlying technology portable to multiple platforms.118

3.2 Server Side: Routing Engine119

The web server contains a routing engine written in Java and deployed as a web application using120

Java Server Pages. The routing engine determines the optimal routes by performing a database121

look-up on a set of feasible routes, which are generated from static schedules and route configura-122

tion information. The routing engine then communicates with external servers to obtain feeds for123

real-time bus arrival predictions. The construction of the optimal routes is described in detail in124

Section 4. The routing engine was implemented on a Linux version 2.6 server, with a QuadCore125

64-bit processor, 1024 MB RAM, 400GB of storage, a MySQL database infrastructure, and a Jetty126

6 web application server. Tests of the application server were conducted in New York City during127

the ITS World Congress on November 14-20th as part of the Federal Safe Trip 21 program. Over128
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five days, approximately 1000 transit riders used the iPhone application to plan trips around Man-129

hattan and the five Burroughs with requests processed within five seconds. Additional load testing130

and benchmarking of server performance revealed that 72% of that process time is due to commu-131

nication with the 3rd party real-time data feed. An additional experiment of the first prototype of132

the system was performed and filmed in Berkeley, CA, which is available online at YouTube [32].133

134

3.3 Third Party Information Providers135

3.3.1 Static Information136

Transitr’s routing engine requires a transit agency’s static schedules and route configuration. With137

the growth in popularity of Google Transit, many transit agencies offer this data in the format138

specified by Google called the Google Transit Feed Specification (GTFS) [12]. The type of data139

needed to by the routing engine is a subset of the Google Transit Feed. Within the GTFS format, the140

data required for each bus stop in the network includes: names of routes which serve the bus stop,141

latitude, longitude, the scheduled times each bus arrives at the stop, and an identifier - typically142

the name of the closest intersection to give directions to transit riders. Other transit agencies store143

the static information in a proprietary format which is parsed into the GTFS format to create the144

routing engine.145

The first implementation of Transitr system was tested in three agencies in the San Fran-146

cisco Bay Area, the San Francisco Municipal Transportation Agency (SFMTA), AC Transit, and147

Bay Area Rapid Transit (BART). For SFMTA and BART, the data was provided in the GTFS for-148

mat. The Metropolitan Transportation Commission (MTC) provided the data for the AC Transit149

network, which serves Oakland, Berkeley, and other cities east of San Francisco Bay. Transitr was150

also implemented for TriMet, which serves the Portland, Oregon area and publishes its static data151

using GTFS.152

153

3.3.2 Dynamic Information154

While static information allows for the transit network graph to be constructed, real-time infor-155

mation is required to update the wait and travel times between links. This real-time information156

is provided in the form of bus arrival predictions from external servers, which aggregate bus data157

from locations of GPS equipped transit vehicles and generate predictions.158

For SFMTA, roughly 1,000 buses equipped with GPS units operate 87 different routes,159

broadcasting their position at approximately one minute intervals to NextBus, a private company,160

which performs bus arrival predictions and provides the real-time estimates via an XML feed.161

NextBus also provides real-time data for a subset of routes run by AC Transit. Delays due to162

factors such as traffic are calculated by NextBus and incorporated into the bus arrival predictions163

that are used by the Transitr routing engine. Some transit agencies internally operate their own164

real-time data feeds which are made available to the public, such as TriMet.165

Transitr is able to serve any transit agency that provides both static schedule information166

along with an interface to real-time bus arrival information.167
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4 ROUTING ALGORITHM168

This section describes the construction of the routing engine running inside the web server de-169

scribed in Section 3.2. The routing is solved using K-shortest path techniques specific to this170

problem, outlined below. The algorithm determines k-shortest paths instead of a single shortest171

path in order for the user to decide between a set of optimal routes, possibly using personal prefer-172

ences not captured by the algorithm. The set of optimal routes is constructed in two steps. First, we173

construct a graph representing all possible ways to go from any point in the network to any other174

point. The construction of the graph requires static schedules and the resulting graph is stored in175

a database. Next, the dynamic updates of the graphs are constructed using real-time information176

in the form of updates to the static graph. The routing operations on the graph utilize the user177

inputs (origin and destination), obtained from geo-positioning. This method was chosen to mini-178

mize computation time when responding to a real-time query while shifting the computation time179

to the process of pre-calculating the feasible routes in the graph with static information. In this180

implementation, the dynamic updates are received from a third party source - thus, the problems181

of finding K-shortest paths and estimation of bus arrivals are decoupled. The bus arrival estimates182

which update the graph are received from online feeds. They do not take uncertainty into consid-183

eration; this is a limitation of the real-time data feeds available online, which only produce a single184

estimate for an arrival time.185

186

4.1 Static network flow framework187

Using a technique similar to time-expanded graphs [3], we construct the transit network as a di-188

rected graph. In this graph, the shortest path represents the minimum time to reach a target from189

a given starting location. For this, we introduce the set of time-indexed vertices V ×T . A vertex190

(v, t) ∈ V ×T corresponds to a physical location v at a given time t. Edges can thus be defined to191

model motion between the different vertices. Three types of edges can be constructed:192

• Waiting. The action of waiting at vertex v from time t to time t ′ is encoded by an edge193

e(v,t),(v,t ′). This mode occurs when someone is waiting for the bus at a bus stop.194

• Walking. The action of walking from vertex v to vertex v′ starting at time t can be encoded195

by an edge e(v,t),(v′,t+d(v,v′)/w) where d(v,v′) is the distance between v and v′ and w is the walk196

speed. It is assumed that the model works in integer increments, i.e. that d(v,v′)/w ∈ N for197

all v, v′.198

• Riding. The action of taking a transit vehicle from vertex v to vertex v′ starting at time t can199

be encoded by an edge e(v,t),(v,t+d(v,v′)/rv,v′,t) where rv,v′,t is the average ride speed between v200

and v′ at time t (note that rv,v′,t depends on t since transit buses’ travel times are contingent201

on traffic conditions).202

We introduce the cost of an edge e(v,t),(v′,t ′) as c(v,t),(v′,t ′) = t ′− t, which is the time to travel from v203

to v′ using the edge e(v,t),(v′,t ′), if this edge is allowed. We first construct a static network problem204

encoding published schedules as follows. Let us introduce T the set of times considered for the205

scheduling problem.206
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• Waiting subgraph. It is always possible to wait everywhere: ∀v ∈ V , ∀t < |T |− 1, assign207

c(v,t),(v′,t+1) = 1.208

• Walking subgraph. For every pair (v,v′) connected by a physical road walkable in time209

d(v,v′)/w, assign c(v,t),(v′,t+d(v,v′)/w) = d(v,v′)/w for all t < |T |− d(v,v′)/w. This encodes210

that it takes d(v,v′)/w time units to walk from v to v′ and thus that this option is open any211

time until |T |−d(v,v′)/w (after that time, the walk exceeds the duration of the considered212

period).213

• Riding subgraph. For every pair ((v, t), (v′, t +d(v,v′)/ rv,v′,t)
)

of the graph connected by a214

transit option at time t, assign c(v,t),(v′,t+d(v,v′)/rv,v′,t) = d(v,v′)/rv,v′,t .215

The published transit graph, which encodes all possible options of a pedestrian starting at any216

vertex v of the physical graph is the union of the waiting subgraph, the walking subgraph and the217

riding subgraph. A path from a given origin o ∈ V at time t, (o, t) to a destination d ∈ V at time218

t ′, (d, t ′) on this graph corresponds to a feasible way to travel from o to d in t ′− t time units,219

and is given as a sequence of vertices {(o, t), · · · ,(d, t ′)}. Given an origin node o ∈ V at time t220

and a destination node d ∈ V , the smallest t ′ such that a path (o, t)→ (d, t ′) exists defines the221

fastest route t ′− t to go from o to d at time t. Assuming all static schedules are known in advance,222

riding edges are constructed using d(v,v′)/rv,v′,t as the cost for these edges. The construction223

of the shortest path for the static (published) schedule can be computed using standard dynamic224

programming tools to answer questions such as the shortest path problem [8], the all points shortest225

path problem [18, 11], and the k shortest paths problem [9]. The set of edges constructed from the226

static (published) schedule is denoted Es.227

4.2 Dynamic network flow problem228

As time t is marched in T , transit schedules are updated based on knowledge of delays from online229

data feeds which run an estimation engine, predicting the arrival time of the transit vehicles.230

When the knowledge of a delay appears at time t in the system, the corresponding edge231

of the transit vehicle in question must be updated. If the vehicle which left stop v ∈ V at θ ≤ t,232

scheduled to arrive at v′ ∈ V at time θ ′ = θ + d(v,v′)/rv,v′,θ , incurs a delay td (known from a233

transit monitoring system), the edge e(v,θ),(v′,θ ′) is removed and replaced by e(v,θ),(v′,θ ′+td) (the234

length of the corresponding edge is thus extended by td). Similarly, adjacent edges e(v′,θ ′),(v′′,θ ′′)235

which represent the same vehicle scheduled to leave v′ at θ ′ to a third vertex (v′′,θ ′′), are removed236

and replaced by e(v′,θ ′+td),(v′′,θ ′′+td) (the corresponding edge is shifted later in time).237

The full dynamic graph is represented similarly to the static graph, using a union of a wait-238

ing, walking and the updated riding subgraphs. The walking and waiting subgraphs are identical239

to the static network; it is always possible to wait everywhere, and walking is always allowed on240

roads which can be physically walked. The static schedule graph is thus updated for all T , leading241

to an online (time varying) set of edges denoted by Et , where Et is revealed at time t.242

243
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4.3 Online shortest paths implementation244

A variety of methods have been proposed for computing the solution to shortest path problems245

on a dynamic graph. A brute force implementation involves recomputing the shortest paths after246

every update, using static algorithms such as the all pairs shortest path algorithms of [18, 11], for247

all t ∈T . Alternatively, one can dynamically maintain the all points shortest paths on the dynamic248

graph as the edges are added and removed [6, 19, 25]. The efficiency gain is made by recomputing249

(or updating) the solution of the all pairs shortest path problem using the previous solution.250

Another implementation technique leverages an offline pre-computation of feasible paths251

on the graph [20]. Since the feasible paths, denoted by the set P are precomputed, the the shortest252

path p(o,t),(d,t ′) in the set of feasible paths P(o,t),(d,t ′)⊆P for an origin destination pair (o, t),(d, t ′)253

can be computed by updating the costs on the feasible paths at the time the user query is generated.254

Thus, the update step is completed on all paths for a given origin destination pair, then the fastest255

path is returned. This implementation has two advantages for the system presented in this article.256

First, the main computation expense is paid once upfront. Second, when the number of updates to257

the graph is large relative to the number of queries, the algorithm is likely to be more efficient than258

algorithms which place the computational burden on the update step.259

In the current system, a pre-computation method is selected. Using the static transit graph,260

a list of feasible paths from all pairs of vertices is computed. When a transit vehicle is delayed,261

the specific feasible path on the static graph becomes infeasible (because the e(v,t)(v′,t ′) edge is262

removed), but a new set of feasible paths can be constructed using the new edge e(v,t+td)(v′,t ′+td).263

We wish to maintain a list of feasible paths on a dynamic graph by modifying the feasible paths on264

the static graph when updated edge data becomes available.265

The static feasible paths are updated with dynamic information as follows. When an edge266

from the static graph is updated, it is replaced by a new edge. If the new edge begins at a later267

time td , and td < |T |, then it is feasible to wait for the later edge. Similarly, at the destination end268

of the edge, if the destination vertex appears in the static feasible path, then the new dynamic path269

remains feasible, and the path is successfully updated. If the destination vertex is not in the static270

feasible path, the new dynamic path is infeasible.271

Since the look up cost of the shortest paths in the pre-compute algorithm is linear in the272

number of feasible paths in the dynamic network, we implement two techniques to decrease the273

number of feasible paths which are stored after the pre-computation step. First, we remove all274

paths which exceed a maximal number of transfers. Second, for a fixed origin destination pair, we275

remove all paths whose fastest historical time is longer than another path’s slowest historical time,276

since no series of updates will likely ever lead to the dominated path becoming the shortest path.277

These steps reduce the size of the database while still maintaining a list of feasible paths.278

4.4 Routing engine summary279

To implement the routing engine, we build the published graph from the transit schedules. Then,280

we compute all of the all pairs feasible paths on the static graph, and store them by origin des-281

tination pair. Then, for each origin destination pair, paths which have more than three transfers,282

or paths which under no edge update scenarios could ever be fastest are removed. The remaining283

edges are stored permanently. At each time t ∈T , the new edge information is obtained. The first284

time a given origin destination is queried at t, the set of static feasible paths and their costs are285

updated to find dynamic feasible paths and their associated costs. The shortest k paths are cached286

10
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for other queries at t for the same origin destination pair, then returned to the user.287

5 SYSTEM EVALUATION288

In this section we present an evaluation of the Transitr system. In order to quantify the effects of289

real-time data in trip planning, a schedule-based transit trip planner (TTP) was developed using the290

same routing algorithm as the real-time trip TTP. The two TTPs differ in two aspects, the sources291

of data for the wait times at bus stops, and the travel time between bus stops. The schedule-based292

TTP uses a static database of bus schedules, while the real-time TTP obtains estimated wait times293

from a real-time bus prediction engine. The real-time TTP takes a snapshot of the actual state of294

the system at the time the user makes a request, and uses historical data to predict the evolution295

of the network, and the user’s trip. By comparing two nearly identical TTPs, we can examine296

the scenarios in which real-time data more accurately estimates travel times and more frequently297

predicts the optimal route.298

This section is organized as follows. First, we present a description of an experimental299

evaluation of the system using the transit system in the San Francisco Bay Area. Next, we char-300

acterize the accuracy of the transit vehicle arrival estimates provided by NextBus, on which the301

real-time TTP relies. For each TTP, the accuracy of the estimated trip travel time along a fixed302

path is assessed by comparing the estimated travel time given by the TTP at the the start of the303

trip to the observed travel time to complete the trip. Because of the errors in the estimated trip304

travel times, the TTPs do not always select the optimal (shortest travel time) route. The frequency305

with which the optimal route is selected, and the degree of sub-optimality of each TTP when the306

optimal route is not returned is also assessed.307

308

5.1 Experimental setting309

Over six-hundred trips were planned using the schedule-based TTP and the real-time TTP using310

real–time data from San Francisco Municipal Transit Authority buses and light rail trains running311

87 routes across the city. The trip origin and destination pairs were generated using a spatially312

uniform random distribution over the city. The trips were planned over the period of July 23 - 28,313

2009 at various times throughout the day.314

Because each transit vehicle is tracked using the on-board GPS receivers, the actual travel315

times along each path between the origin-destination (O-D) pairs can be determined after the trip316

is completed. These travel times serve as a ground truth upon which the transit vehicle arrival317

predictor (NextBus), the schedule-based TTP, and the real-time TTP are benchmarked. These GPS318

tracks also allow for the actual optimal (fastest) route to be determined between the O-D pairs.319

320

5.2 Accuracy of the estimated transit vehicle arrival engine321

The performance of the real-time TTP is dependent on the estimation of the transit vehicle arrival322

times at its upcoming stops, which is provided by NextBus. NextBus generates predictions by323

using historical averages of travel times between segments, calculated at different times of day.324

Fig. 3 shows the error of the arrival time estimate for 23,349 queries to NextBus. Each time325
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Figure 3: Estimated arrival time error. The error in minutes in the estimated arrival time for 23,349
estimates, as a function of the estimated arrival time. X-axis: estimated arrival time in minutes.
Y-axis: error in minutes. Points of the negative half of the Y-axis correspond to bus arriving earlier
than predicted, while points on the positive half correspond to the bus arriving later than predicted.

NextBus is queried, an an arrival time is estimated, and the error is calculated after the bus arrives326

at that stop.327

Estimated arrival times between 0 and 10 minutes have a median error of zero, and the328

interquartile range (the middle 50% of estimates) tend to fall within a minute of the true travel329

time. However, a small number of outliers, specifically for small arrival times, can potentially330

cause significant challenges if the information is used to determine if a transfer between buses can331

be made. As the estimated arrival time increases, variance in error also increases. This variance332

effects the results of real-time TTP in two ways: determining the travel time of the bus to the333

transfer point, and determining the wait time at the transfer point for the next leg of the trip. In334

the set of six-hundred trips planned, there existed over four-hundred trips which required transfers335

over 10 minutes past the time the trip request was made.336

337

5.3 Accuracy of the estimated trip travel time338

The accuracy of of the travel time estimate along the paths suggested by schedule-based and real-339

time TTPs are compared to the ground truth travel time along the same paths. Fig 4 characterizes340

the amount of uncertainty in the estimated travel times, divided by the number of cases in which341

the planned trip required zero transfers, one transfer, or two transfers. Evaluated over all the342

cases, real-time data increases accuracy for travel time prediction, most noticeable in trips requiring343

transfers. The Wilcoxon signed-rank test was used to test for statistically significant difference344

between the two trip planners . The Wilcoxon signed-rank test evaluates the null hypothesis that345

two related samples have the same distribution. The data compared were the percentage error346

of the travel times returned by the schedule-based and real-time TTP, each verified against the347

actual travel times. The median error of the schedule-based TTP is 14.9% vs 11.7% for the real-348

time TTP. Statistical significance was defined as z = 4.08, P < .00001 two-tailed, thus the null349

hypothesis is rejected. It is concluded that the use of real-time data reduces travel time prediction350
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Figure 4: Effect of travel time accuracy when using real-time data. Positive values on the Y-
Axis refer to cases in which real-time TTP more accurately predicted total travel time. Trips with
zero transfers: 40 (41.6%) more accurate, 38 (39.6%) less accurate 18 (18.8%) same prediction.
Trips with one transfer: 232 (51.3%) more accurate, 190 (42.0%) less accurate, 30 (6.6%) same
prediction. Trips with two transfers: 58 (48.8%) more accurate, 47 (39.5%) less accurate, 14
(11.8%) same prediction.

error. However, the small difference between the errors show that the improvement in travel time351

accuracy is marginal.352

353

5.4 Route selection optimality354

The main functions of the TTP are to provide an expected travel time from origin to destination355

as well as suggest a set of routes based on the state of the transit network at the time of the356

user’s request. The routing algorithm calculates the K-shortest paths and returns the five fastest357

routes to the user. This allows the user to make a decision based on the total trip time, as well as358

personal preferences such as walking distances and number of transfers and other variables which359

the application does not factor in. In this analysis done in this section, only one route predicted by360

each TTP - the expected optimal route determined by the shortest travel time, is evaluated. The361

predicted route by both TTPs is compared to the ground truth - the actual optimal route, obtained362

by tracking the position of multiple buses over the duration of the trips.363

Table 1 summarizes the route selection optimality of the TTPs. The percentage of cases364

in which the two TTPs accurately predicted the actual optimal route was determined. These cases365

are split into three rows, when both TTPs predicted the optimal route, and when only either one of366

the TTPs made the correct route prediction. If neither TTP predicted the actual optimal route, the367

actual travel times of the predicted routes were compared. The next three rows show the percentage368

of cases in which one of the sub-optimal routes resulted in a shorter actual travel time, or if the369

same sub-optimal route was predicted by both TTPs. The results are split into four scenarios: long370

trips (trips longer than 30 minutes), short trips (trips shorter or equal to 30 minutes), trips in which371

a transfer was involved, and trips which required no transfers. In most cases, the real-time TTP372
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Long Short With transfers No transfers
Both predicted optimal 27.3 44.4 20.5 75.0
Only real-time predicted optimal 20.3 16.7 23.8 0.0
Only schedule-based predicted optimal 14.1 11.0 15.6 4.1
Neither predicted optimal: real-time faster 12.5 11.2 13.9 4.2
Neither predicted optimal: schedule-based faster 10.2 5.6 11.4 0.0
Neither predicted optimal: same prediction 15.6 11.1 14.8 16.7

Table 1: Optimality of fastest route returned by the schedule-based TTP and the real-time TTP
with respect to the observed fastest route. Values represent percentage of cases.

outperformed the schedule-based TTP by a small margin.373

374

5.5 Implications for further research375

The study shows that the inclusion of real-time information in the Transitr system provides two376

benefits over schedule-based TTPs: more accurate predictions for total trip times, and a larger377

number of cases in which the optimal route was suggested. However, these benefits were found378

to be marginal, leaving room for improvement in three areas: removal or detection of outliers379

as shown in Figure 3, improved long-term estimation of buses arriving in over 15 minutes, and380

incorporation of uncertainty into bus arrival estimates.381

Currently, Transitr is dependent on third party data sources to perform bus arrival esti-382

mation, which is based on time-of-day historical averages of segment trip times. As described in383

Section 2, newer estimation algorithms exist which take into consideration factors such as real-time384

traffic, but have not been tested in the context of a trip planning application. As shown in Figure385

3, NextBus accurately predicts bus arrivals when the expected arrival time is under 15 minutes,386

with the exception of outliers in 1-5% of cases. However, the incorporation of real-time data into a387

trip planner requires estimation of bus arrivals at transfer points, which often occur greater than 30388

minutes from the time the trip is initially planned. In these problems, the current estimation engine389

is less accurate in predicting bus arrivals, leading to missed transfers and large discrepancies in390

estimated trip times and optimality of suggested routes. Further studies will be done to incorporate391

more advanced bus arrival estimation techniques into the Transitr application, while characterizing392

uncertainty into the predictions to compensate for potential missed transfers.393

In addition, the experiment examined the ability of the TTP to determine the optimal route394

based on information only at a single time instant prior to the trip. Table 1showed that the real-time395

TTP performed better in shorter trips. Larger errors in estimation for the total time of longer trips,396

and trips which include transfers, lead to greater number inaccuracies in the suggestion of optimal397

routes. The conclusion from these results is that accuracy drops with respect to the amount of398

time into the future the TTP must predict the state of the system. A solution to this problem is to399

allow for the algorithm to re-calculate the expected optimal route after the trip has been planned,400

allowing a user to receive updated information about their route as the state of the transit system401

evolves. As more recent information becomes available, users will receive new estimates for their402

route travel time. It is also possible that the prediction for the optimal route may change after the403

user has reached a transfer point, or even while riding the bus. Further evaluation of the system404
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includes re-calculating the optimal route at different stages of a trip, and examining the accuracy405

of the total travel time at these stages.406

6 CONCLUSION407

This paper described an implementation of a transit trip planning system, which includes an ap-408

plication developed for mobile phones, a routing engine running a K-shortest paths algorithm, and409

interfaces to bus arrival prediction engines provided by third parties. It was discovered through410

over six-hundred experiments in San Francisco that the real-time data provided marginal improve-411

ments to current schedule-based trip planners. The study showed that there is potential for much412

improvement in transit trip planning by using real-time data in conjunction with more advanced413

estimation techniques which focus on solving long term estimates for bus arrivals, and character-414

izing uncertainty into the predictions. The growth of geo-positioning systems in transportation415

and the availability of real-time data feeds from transit agencies and other transportation modes416

is promising, as more opportunities for research are opened in the field of real-time transit, and417

multi-modal navigation.418
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