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ABSTRACT1
This work explores the challenges associated with calibrating parameters of microscopic models2
with aggregate speed data, e.g., obtained from roadside sensors. Using the Intelligent DriverModel,3
we explore how reliably parameters that do not influence the equilibrium flow (i.e., the Fundamental4
Diagram), but do control the stability of those equilibria, can be determined from aggregate speed5
data. Using a carefully controlled computational setup, we show that standard loss functions used6
for calibrating microsimulation models can perform poorly when the true parameters result in an7
unstable traffic state. Precisely, it is found that all of the considered loss functions frequently return8
different and incorrect parameter sets that minimize the expected value of the loss function. These9
results highlight the need for improved loss functions, or even fundamental additions to the model10
calibration procedure.11

INTRODUCTION12
The calibration of models frommeasured data is a core problem to many transportation engineering13
applications, particularly when examining models that describe the flow of vehicular traffic. In14
general, calibration is concerned with finding numerical values for otherwise unknown parameters15
within a model, with the goal that the model becomes capable of reproducing recorded data to an16
acceptable degree. While vehicular traffic can be described on various scales, including large-scale17
macroscopic models [1, 15, 16, 19, 20, 25, 34], here we focus on microscopic models [2, 18, 21]18
that describe the interactions between nearby vehicles via systems of ordinary differential equations19
(ODEs).20

Microscopic calibration commonly means that a certain model structure is postulated with a21
handful of free parameters that are to be fitted so that the model reproduces available measurement22
data suitably well. Specifically, the “best fit” parameters are determined as the solution of an23
optimization problem24

minimize
)

! (.real, .sim(\, _)) (1)

where ) are the free decision variables to be determined, , are (non-free) hyper-parameters that25
are known a-priori, .real are the measurement data, .sim are the corresponding data generated26
by the simulated model under a given parameter choice, and ! is a loss function that defines a27
suitable distance between data and model prediction. The data itself can be either macroscopic28
measurements (e.g., from roadside sensors such as inductive loops or radar units), microscopic data29
(e.g., collected from individual vehicles with GPS devices or on-board sensors); or a combination30
of microscopic and macroscopic data. In this work we restrict to car-following calibration, i.e., we31
do not consider perimeters associated with origin destination calibration or lane changing logic.32

Real traffic flow is known to exhibit (in certain flow regimes) instabilities and nonlinear33
waves, and certain microscopic models reproduce this behavior [2, 12]. This paper studies the34
fundamental question of to what extent the calibration problem (1) can reliably and robustly35
identify the decision variables that govern instability and waves behavior for models that do have36
the capability of exhibiting such features. To that end, synthetic data are generated from a realizable37
model, the Intelligent Driver Model (IDM) [12, 31], and a number of commonly used loss functions38
are systematically investigated. We focus on calibration using macroscopic data, and assess the39
potential (or lack thereof) to calibrate microscopic models potentially containing instabilities.40
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Foundations and related work1
The difficulty of the task of calibrating a traffic model depends critically on what scales and features2
of the real flow should be resolved. In real traffic, three scales must be distinguished: (i) the vehicle3
scale, on which heterogeneities across vehicles/drivers matter; (ii) the waves scale, on which non-4
equilibrium phenomena manifest, such as nonlinear traffic waves; and (iii) the fully macroscopic5
scale on which non-equilibrium effects average out. Given that commonly available data do not6
resolve vehicle-specific information, models usually aim to capture traffic on scale (ii) or on scale7
(iii). For the latter, simple first-order models or fully stable car-following models suffice, and the8
task reduces to calibrating the fundamental diagram (FD) of traffic flow, i.e., a function that relates9
the flow rate, @, vs. the vehicle density, d. In contrast, for the former, in addition to calibrating for10
an averaged FD, one also needs to calibrate for instabilities and waves. It is this situation that this11
paper explicitly considers.12

Traffic waves are fundamental features of highway traffic flow. Trafficmodels that reproduce13
them do so via instabilities at uniform flow that grow into nonlinear traveling waves; both in car-14
following [2, 12] and macroscopic [6] models. The fact that traffic waves can arise via dynamic15
instabilities from uniform flow has been demonstrated experimentally [29]; and understanding these16
waves is of practical interest because of their adverse effects on flow efficiency, fuel economy, and17
emissions [27, 35], and the impact of vehicle automation [28].18

In car-following models, such as the IDM, traffic waves arise when a uniform flow state19
fails to be “string stable”, i.e., a vehicle’s velocity perturbation generates a larger perturbation on20
the vehicle that follows. As shown below, two parameters in the IDM govern the model’s stability21
properties.22

Traffic data frequently come in aggregated form. Here we consider data from traditional23
stationary detectors, or cameras on highways that directly count passing vehicles and their speeds,24
and from those recover average flow rates and vehicle densities (density = flow/speed) over short25
time intervals (30 sec to 5 min) [5, 10]. If considered without temporal ordering, these data points26
can be used to form a FD cloud, and a suitably fitted function can be obtained as the FD curve27
@ = &(d) [24]. The presence of instabilities and waves, however, will produce a spread in the FD28
data (cf. [26]), and one may attempt to employ the temporal information encoded in the aggregated29
data to obtain information about these non-equilibrium features, or here: the model parameters that30
shape them.31

With regards to that last aspect, the aggregation time of the measurements is important:32
traveling waves are known to exist on scales as short as 230m [29], and an aggregation time of 533
min would completely average them out. In contrast, an aggregation time of 30 sec (which is not34
an uncommon practical choice) would conduct some averaging, but still retain a temporal signature35
of waves. Thus, we consider precisely that latter aggregation time in this study.36

Calibration of traffic models to data can come in many facets. Here, we consider the37
problem of calibrating a second-order car-following model (all vehicles identical) to aggregate38
measurements. The calibration task of constructing a FD function @ = &(d) from aggregated data39
is reasonably well established (see [4] and references therein), and proper choices of measurement40
locations, observables, aggregation times, and parameter choices have been established [7, 22].41
Hence, for this study, we make the simplifying assumption that the model parameters determining42
the FD have already been calibrated and thus are known (without error). In contrast, the task of43
calibrating car-following models explicitly for non-equilibrium features, particularly via aggregated44
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data, is far fromwell-established. Some specific effort has been done in [14, 33], with characteristics1
of waves and the regions they form employed to inform the model parameters. However, due to the2
complexity of instabilities and nonlinear waves, there is no general procedure; and this study aims3
to highlight some fundamental challenges incurred with the calibration problem in models and data4
with waves.5

It is also worth stressing that the related, but different, task of micro-to-micro calibration,6
i.e., determining model parameters based on trajectory data, is significantly better understood7
[11, 13, 23, 30]. Specifically, the robust calibration of the IDM has been studied based on genetic8
algorithms [11] and based on parameter reduction [23].9

Contributions and paper outline10
The main contribution of this work is to highlight intrinsic challenges incurred with calibrating car-11
following model parameters from aggregated data, in the presence of instabilities. Focusing on the12
IDM this study specifically zooms in on the question howwell the model parameters responsible for13
the strength of instability and waves can be determined. To facilitate a clean problem formulation,14
the IDM itself is used to generate a time series of aggregated speed measurements under a set15
of known “true” parameters. Given these measurements, we then explore the inverse problem to16
recover these “true” parameters. Using a Monte Carlo approach and on a fixed grid in parameter17
space, we demonstrate that commonly used loss functions for (1) are not reliable indicators (i.e.,18
they are not minimal) of the true model parameters. We illustrate that the challenges appear even in19
the most simplified settings, i.e., on single lane roadways when the inflow and outflow conditions20
are known.21

The remainder of the article is organized as follows. In the Section Model Specifications22
we review the IDM, its equilibrium properties, and string stability. In the Section Methods, the23
setup for the computational experiments is laid out. The Section Results contains the findings of24
the numerical experiments, highlighting the challenges of calibrating the IDM model using only25
macroscopic data. Finally, the Conclusions Section highlights potential next steps for investigation.26

MODEL SPECIFICATIONS27
The different components of the simulation environment are discussed in this section. We briefly28
review the IDM car-following model used in the numerical experiments presented later. We also29
isolate the parameters corresponding to equilibrium features (and correspondingly the fundamental30
diagram), and describe how to determine the regions in which the model is string stable.31

Intelligent Driver Model32
In order to describe the trajectories of individual vehicles, each vehicle is modeled via an ordinary33
differential equation that either describes the vehicle velocity (first order models), or the velocity34
and acceleration (second-order models). Second-order car-following models are of the form35

¤E(C) = 5 () , B(C), E(C),ΔE(C)) , (2)

where 5 () , B(C), E(C),ΔE(C)) models the acceleration of the vehicle at time C. Here B represents36
the spacing between the ego vehicle and the vehicle ahead, E the speed of the vehicle, and ΔE is37
velocity gap between the vehicle and the vehicle ahead (which is also the rate of change in the38
space gap, or the negative approach rate). The vector ) contains the parameters that characterize39
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the behavior of the model. The IDM [31] is a special case of (2), and reads1

5 () , B, E,ΔE)IDM = 0

[
1 −

(
E

E0

)X
−

(
B∗ (E,ΔE)

B

)2
]
, (3)

where B∗ (E,ΔE) is defined as2

B∗ (E,ΔE) = B0 + E) +
max{0, EΔE}

2
√
01

. (4)

The IDM has six parameters ) = [0, 1, E0, ), X, B0]. The parameter E0 > 0 represents the desired3
empty road velocity, and B0 > 0 represents the minimum desired spacing between vehicles. In4
addition, ) > 0 is the desired time headway, which is the minimum possible time to reach the5
vehicle ahead, and X is called the acceleration exponent, which is usually set to X = 4 [17]. The6
parameters 0 and 1 are both positive and measured in m/s2, and they correspond to the maximum7
vehicle acceleration and minimum comfortable deceleration, respectively. In fact, the last four8
parameters in ) (i.e., E0, ), X, B0) determine the FD of the traffic flow. In contrast, the parameters9
0 and 1 do no affect the FD, but they affect the traffic flow dynamics via stability and waves.10

To allow instabilities to manifest, the model (2) is augmented by a noise term (Gaussian with11
zero mean and standard deviation f), i.e., we actually integrate the stochastic differential equation12
(written in derivative form)13

¤EIDM(C) = 5IDM() , B(C), E(C),ΔE(C)) + `(0, f) . (5)

Determining parameters that influence the fundamental diagram14
The fact that 0 and 1 do not determine the shape of the (equilibrium) FD [31] can be found15
by deriving an equation to define the equilibria for the IDM. This is done by solving ¤EIDM =16
5IDM() , B, E, 0) = 0 for B in terms of E. Put differently, this means finding the equilibrium spacing17
function B4@ (E), that gives an equilibrium spacing value for a given speed. For 0 > 0, the18
equilibrium spacing function reads19

B4@ (E) =
√√√ B0 + E)

1 −
(
E
E0

)X , (6)

and its inverse is the equilibrium velocity function E4@ (B). Realistic car-following behavior is20
generally assumed to require that B4@ (E) and its inverse E4@ (B) are strictly increasing functions.21
For the IDM, this is indeed the case when E < E0, for any admissible parameter choices of ) . As22
a consequence, all equilibrium states can be parametrized by a single state variable. Moreover,23
with the vehicle density d = 1/B + ℓ, where ℓ is the vehicle length, we also obtain the FD function24
&(d) = E4@ (1/d) ∗ d. As E4@ (B) depends only on the parameters B0, ), E0, X (see (6)), the FD25
depends only on the same parameters as well.26

Stability of the IDM equilibria27
To study the stability of a given equilibrium state, a linear stability analysis is usually employed
[3]. First, consider vehicles on a single-lane road with positions G8 (C), where vehicle 8 follows
vehicle 8 − 1, and the motion of all vehicles is described by the car-following model (2). Second,
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equation (2) is linearized around an equilibrium state, by choosing the position of vehicle 8 to be
G8 (C) = (B4@ + ℓ)8 + E4@C + H8, where H8 is an infinitesimal perturbation. Then, substituting these
vehicle positions into (2), Taylor-expanding around the equilibrium state, and keeping only the
linear terms, the perturbation equation is obtained

¥H8 (C) = U1(H8−1 − H8) − U2 ¤H8 + U3 ¤H8−1 , (7)

where U1 =
m 5

mB
, U2 =

m 5

m (ΔE) −
m 5

mE
, U3 =

m 5

m (ΔE) , (8)

and all the partial derivatives are evaluated at the equilibrium state in consideration. Then, the1
growth/decay behavior of solutions to (7) is characterized by performing a Laplace transform ansatz2
H8 (C) = 284lC , where 28, l ∈ C. This yields to the interpretation of (7) as an input/output (I/O)3
system, 28 = � (l)28−1, with the transfer function4

� (l) = U1 + U3l

U1 + U2l + l2 . (9)

Re(l) and Im(l) in equation (9) represent, respectively, the temporal growth/decay and the5
frequency of oscillation of the lead vehicle’s velocity profile. The transfer function’s modulus |� |6
is the growth/decay of the perturbation amplitude from one vehicle to the next.7

With this setup, string stability means that |� (l) | ≤ 1 ∀l ∈ 8R.8
This stability criterion can be written as a condition on the partial derivatives of 5 , as9

follows:10
U2

2 − U
2
3 − 2U1 ≥ 0 . (10)

Hence, an equilibrium state’s stability is determined by the partial derivatives of 5 () , B, E,ΔE) with11
respect to the state variables at that equilibrium state.12

As discussed above, the parameters 0 and 1 of the IDM are not involved in determining the13
shape of the FD, but they do play a critical role in determining whether an equilibrium state is stable14
or unstable. In Figure 1, two FDs are generated under the same set of parameters (E0, ), X, B0),15
but different 0 and 1. The equilibrium points in which the model is string unstable are marked in16
red, while stable regions are marked in blue. The figure shows that the choice of 0 = 0.7 m/s2 and17
1 = 1.5 m/s2 leads to instabilities at higher flow-rates than 0 = 1.4 m/s2 and 1 = 1.0 m/s2.18
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FIGURE 1 : Comparison between the string stability regions for two different choices of 0 and 1
in the IDM.
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FIGURE 2 : A graphic representing the road geometry combined with a single radar sensor
generating aggregate speed measurements.

EXPERIMENTAL SETUP1
To illustrate the challenges of calibration using macroscopic data, we set up a test environment2
under carefully controlled settings. Recalling that all parameters in the IDM except 0 and 1 control3
the shape of the fundamental diagram, we assume those parameters are known (estimated) from4
historical aggregate data.5

Instead, we focus on understanding the choices of 0 and 1, the two parameters that cannot be6
estimated from equilibrium data. Note that even though 0 and 1 do not affect equilibrium states (and7
thus the FD shape), they do change the non-equilibrium behavior and the stability of the equilibria.8
As a result it is in principle possible to see changes in macroscopic/aggregate measurements that9
are a result of changes in these microscopic parameters.10

In the experiments below, we fix the following equilibrium parameters according to nominal
values reported in [12]:

E0 = 30 m/s ,
B0 = 2 m ,

) = 1 s ,
X = 4 .

The magnitude of the additive noise (see (5)) is fixed at f = 0.1 m/s2. In order to numerically solve11
the simulations, a ballistic integration method, as described in [32], is employed at a step size of12
0.4 seconds, with a simple Euler-Maruyama treatment of the noise term.13

Network geometry14
To isolate the effects of 0 and 1, we consider a highly structured setup. A single lane road segment15
is considered to remove the potential confounding effects of lane changing or routing logic as16
specified through Origin/Destination demand data. An overview of the setup is shown in Figure 2.17
The road is the domain G ∈ [0, 2100m], and a single sensor is located at G = 500m. The sensor18
reports the average speed of vehicles passing the sensor, aggregated over 30 second increments.19
These values were chosen to allow for suitable space for waves to develop and be sensed.20

Traffic flow conditions21
The traffic is loaded onto the network with a free-flowing inflow rate of 2250 vehicles per hour.22
The outflow rate is restricted to generate congestion, resulting in an outflow rate of 1600 vehicles23
per hour. The simulation is run for 1800 seconds (30 min), but only the final 750 seconds are24
used for the study to avoid the influence of the simulation warm up or the propagation of the traffic25
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FIGURE 3 : Contour plot showing the growth rate of waves with respect to parameters 0 and 1
under the experimental setting. A growth rate above 1 indicates string instability.

congestion conditions to the sensor location. As a result, the generated sensor data are contained1
entirely in a congested traffic state. Under these traffic conditions, the stability of traffic can be2
computed following the analysis presented in the SectionModel Specifications. The resulting wave3
growth rate is shown for a range of parameter values for 0 and 1 in Figure 3.4

METHODS5
Optimization approach6
Given the simplified experimental setting described above, the resulting calibration problem stated7
in (1) amounts to ) containing only 0 and 1, which can then be compared to the true 0 and 1 used to8
generate the data. In order to isolate the consequences of the loss function from the consequences9
of the optimization solver, here we adopt a brute force parameter sweep solution approach (which is10
costly but it eliminates any error in the optimization procedure itself). Namely we consider solving11
the optimization problem on a fixed grid in the (0, 1) parameter space, by varying the parameters12
in increments of 0.1 within ranges of [0.5, 1.3] and [1.0, 1.5] respectively (with units m/s2, for13
simplicity omitted here and below). As we will illustrate in the Results section, the loss function14
hinders the ability to correctly calibrate the model, even when solved via a brute force approach.15

Loss functions16
Numerous loss functions have been proposed in the literature to determine a parameter set that best17
matches (in the measurement space) the observed data. An excellent review of the use of these loss18
functions can be found in [8]. The definitions of the considered functions are given in Table ??.19
Because some loss functions operate on the data point-wise, we summarize the notation used in the20
loss functions. Let .A40; ∈ R# denote the vector of the true (or real) sensor data, and .B8< ∈ R# is21
the simulated sensor data under a given parameter set. The notation. (8) represents the 8-th element22
(or measurement) from the data set of length # .23

A loss function is needed to compare two sets of measurements, in this case to define24
the distance between the true (real) data set, and one that is simulated under a candidate set of25
parameters. Given that the model in question is stochastic in nature (and may exhibit instabilities26
that amplify perturbations), it is not the case that two different simulation runs that use the same27
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Loss Function Name Abbreviation Function Definition

Mean error !"�
1
#

∑#
8=1 (.B8< (8) − .A40; (8))

Mean normalized error !"#�
1
#

∑#
8=1

.B8< (8)−.A40; (8)
.A40; (8)

Root mean normalized squared error !'"(#�

√
1
#

∑#
8=1

(
.B8< (8)−.A40; (8)

.A40; (8)

)2

Mean absolute normalized error !"�#�
1
#

∑#
8=1
|.B8< (8)−.A40; (8) |

.A40; (8)

Squared sum error !((�
∑#
8=1(.B8< (8) − .A40; (8))2

Root mean squared error !'"(�

√
1
#

∑#
8=1(.B8< (8) − .A40; (8))2

Mean absolute error !"��
1
#

∑#
8=1 |.B8< (8) − .A40; (8) |

Thiel’s inequality coefficient !*

√
1
#

∑#
8=1 (.A40; (8)−.B8< (8))2√

1
#

∑#
8=1 (.A40; (8))2+

√
1
#

∑#
8=1 (.B8< (8))2

TABLE 1 : A summary of the loss functions considered in this study.

parameter set will return the exact same time series of measurements, even under the highly1
structured simulation setting considered in this work. This means that for a given parameter, one2
might record a non-zero loss value between two measurement time series corresponding to the3
exact same parameter set.4

In order to account for this, ensemble averages of multiple simulations must be considered.5
Specifically, it is generally recommended that a number of simulations are repeated on a given6
parameter set and that the collection of simulations are used, are used rather than just single7
simulation [9]. This involves evaluating the loss function to compare each simulation under the8
same parameters .B8< to the single .A40; time series, and then minimizing the sample average of the9
loss function evaluations.10

In particular, to evaluate the loss function under a given parameter set ) , suppose a total of11
" simulations are conducted. Then, the effective loss function between the simulated data for this12
) and real data is given by13

!̂ (.A40; , .)) =
1
"

"∑
9=1

! (.A40; , . 9) ) , (11)

where ! (.A40; , . 9) ) is one of the loss functions summarized in Table 1 above, evaluated between the14
real data and the 9-th set of simulated data (of the total " simulations) at the parameter choice ) .15
From now onward, the hats will be omitted for notational simplicity, and ! will refer to the average16
of " loss functions evaluated using " simulated data sets that share the same ) .17
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FIGURE 4 : Three time space diagrams colored by speed in (m/s) produced from identical
simulations except for the random seed, with (0, 1) = (0.5, 1.3). Waves are present and small
variations occur in the phase and amplitude of the waves.

RESULTS1
This section details the computational experiments conducted on the IDM under the experimental2
settings defined in the Experimental Setup Section. The parameters of the IDM that can be3
determined from the Fundamental Diagram of a roadway are fixed, while a parameter sweep on 04
and 1 is conducted that performs multiple simulations at each parameter set in order to account for5
stochasticity in the simulation. Several loss functions are then evaluated on this data set by using a6
hold-out simulation for each parameter set considered as a “true” measurement and then comparing7
the loss for each parameter set to these hold-outs. It is found that all loss functions considered have8
limitations in performance in terms of returning lowest expected losses at the true parameter values9
used to make a hold-out measurement set, suggesting that currently utilized objective functions in10
micro-model calibration incur fundamental challenges when applied to calibrating traffic in which11
instabilities are present.12

Investigation of the influence of stochastic forcing and model instability13
Given the stochastic and linearly unstable nature of the microsimulation model in question, sim-14
ulation runs for the exact same set of parameters may return different measurement values when15
run multiple times (which is representative of unstable systems in reality). A consequence of this16
is that no single simulation run is completely representative of a choice of parameters. Since the17
goal of calibration is to choose an optimal set of parameter values, one must be able to compare the18
performance of a candidate parameter choice both back to a set of true measurements and to other19
parameters.20

A demonstration of possible variation across simulations for the same parameter set can21
be seen in Figure 4. Here three space-time plots are shown, all generated using the same set of22
parameters, (0, 1) = (0.5, 1.3). All three simulations are conducted under the exact same set of23
model parameters but with different random seeds. The waves that are present have similar shape,24
but no two of the simulations are exactly the same, nor are the resulting measurement values. As25
a result, a loss function that calculates a difference between a set of recorded measurements (what26
is being calibrated for) and a set of simulated measurements has the potential to return different27
evaluations depending on the simulation run.28

In comparison to Figure 4, Figure 5 shows the same setup: three different space-time29
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FIGURE 5 : Three time space diagrams colored by speed in (m/s) produced from identical
simulations except for the random seed, with (0, 1) = (1.2, 1.3). Waves are present and small
variations occur in the phase and amplitude of the waves.

FIGURE 6 : Illustration of the time series measurements recorded for the three simulations under
(0, 1) = (0.5, 1.3) (left) and (0, 1) = (1.2, 1.3) (right).

diagrams from three simulations, except now with (0, 1) = (1.2, 1.3). Again the same intra-1
parameter variation in the wave formation is observable. It is worth noting however, that the waves2
that form from this parameter set are distinct in behavior from those in Figure 4, occurring more3
frequently and with lower magnitude. This result suggests that while certain variations happens4
across simulations for the same parameter choice, there are more fundamental differences in the5
simulation results across different parameters.6

The core of the calibration problem is to exploit the differences between the parameters, as7
manifested through the measurement data, so that the correct parameters can be found. Figure 68
shows how the variations across simulations with the same parameter sets result in variations in the9
measurement data time series. Under the two parameter choices, notable differences are present10
again both within each parameter set across multiple simulations, and also between different11
parameter sets.12

Investigation of the RMSE loss function to recover true parameters13
We next consider the distribution of the loss function when evaluated under the same and distinct14
parameter settings. The setup is as follows. We first generate the true measurement data by15
a single run of the IDM under the true parameters (0, 1) = (0.5, 1.3). Next we conduct 5016
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FIGURE 7 : Histogram of RMSE loss function evaluations comparing a holdout .B8< generated
under the true parameters (0, 1) = (0.5, 1.3). 50 simulations are conducted to generate 50 sets
.B8< timeseries each under (0, 1) = (0.5, 1.3) (blue), and (0, 1) = (1.2, 1.3) (orange). The sample
average is lower under the true parameters than the incorrect ones (sample average RMSE 4.91
compared to sample average RMSE 5.38).

simulations under the same IDM parameters (i.e., (0, 1) = (0.5, 1.3)). For each run, we evaluate1
the RMSE loss function to quantify the consistency of the measurement data with the true data,2
and the resulting histogram is shown in Figure 6 (blue). Next, we evaluate the RMSE loss function3
with 50 additional simulations under incorrect parameters (i.e., (0, 1) = (1.2, 1.3)), with the4
resulting RMSE histogram shown in orange in Figure 6. The sample average RMSE under the true5
parameters (4.91) is lower than the sample average RMSE under the incorrect parameters (5.38).6
When used as a loss function for calibration, we could correctly rule out the incorrect parameter set7
from the sample average RMSE. However, the fact that there are realizations of the loss function8
for the incorrect parameter set that are lower (better) than the loss function realizations for the9
correct parameter set illustrates the importance of using multiple runs to evaluate the loss function.10
Moreover, the fact that the loss function under the true parameters has a wide variance indicates11
that a large number of samples might be necessary to obtain an accurate estimate.12

The analysis so far has considered the distribution of the loss function when evaluated on13
a single incorrect parameter set, compared to an evaluation on the correct parameter set. We now14
repeat the analysis but for all 54 parameter pairs in the discrete search space. Again, given a true15
set of measurements .A40; generated from a single run of the IDM under (0, 1) = (0.5, 1.3) we16
evaluate the sample average of the loss function for all parameter pairs in the search space. This17
requires running 50 simulations for each of the 54 parameter pairs, extracting.B8< for each run, and18
computing the loss function.19

Herewe find a discouraging result, illustrated in Figure 8. The objective function evaluation,20
which is the expected loss function value, is shown in blue, while the minimum and maximum loss21
function evaluations are shown in yellow and green, respectively. Those metrics are shown in red22
specifically for the set corresponding to ) true. All values are presented in sorted order according23
to their expected loss function evaluation. Of the 54 parameter pairs, 42 pairs resulted in a lower24
sample RMSE than the sample RMSE when evaluated at the true parameters. In other words, in the25
setting where one minimizes the sample expected loss in order to determine the values of (0, 1),26
the optimization solver can easily find an incorrect but smaller (in sample average loss) parameter27
pair. Figure 8 also shows the minimum and maximum of the loss function evaluations for the 5428
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FIGURE 8 : Loss function evaluations using !'"(� and a true parameter set of (0, 1)=(0.5, 1.2)
are shown for every parameter set, sorted by order of expected loss.

parameter pairs, highlighting that other statistical measures beyond the sample average (e.g., the1
sample minimum), will not circumvent the problem.2

Investigation of the RMSE loss function to recover true parameters: sensitivity to the true3
parameters4
To further expand on the issue raised in the previous section, we next consider if the challenge is5
localized for the single choice of the true parameters (0, 1) = (0.5, 1.3), or if the problem appears6
for other choices of the true parameters. We remind the reader (see Figure 3) that the search space7
of parameters corresponds to string unstable traffic in the controlled numerical settings considered8
here, so all true parameter sets will generate instabilities. For each of the 54 points in the parameter9
search space, we first generate a true measurement data set .A40; under those true parameters. Then10
we repeat the analysis above. Namely, we evaluate, under each of the 54 parameter pairs and using11
50 simulations for each pair, the loss function distribution and its sample average. We then check12
to see if the lowest sample average loss function corresponds to the true parameters.13

We quantify the rate of failure through the Point-wise Percentage Failure (PPF). The PPF for14
a given ) true is how many other parameter sets return lower expected loss values normalized by the15
number of parameter sets considered in total. For example, when the sample average loss function16
is lowest on the true parameter, the PPF is 0%, while if the sample average loss is highest on the17
true parameter set, the PPF is 100%. The PPF when the true parameters are (0, 1) = (0.5, 1.2)18
(Figure 8) is 42/54 = 78%.19

Figure 9 plots the PPF for each true parameter pair in the parameter space. Some parameter20
pairs have low PPF, while others have PPF in excess of 80%. The large variance in the performance21
of !'"(� suggests that for certain zones of parameters it may perform better or worse in terms of22
convergence to ) true.23

To better understand how much error occurs when minimizing the sample average loss24
function when the incorrect parameters are recovered, two other metrics are calculated. The Point-25
wise Divergence in 0 (%�0) and the Point-wise Divergence in 1 (%�1) determine the average26
difference on the parameter values. Figure 10 and Figure 11 plot these measures as functions of the27
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FIGURE 9 : The RMSE loss function is evaluated by calculating the percentage of points with a
lower objective function score than the evaluation on the true parameter set.

FIGURE 10 : Average Divergence in the parameter 0 using !'"(� as the loss function.

FIGURE 11 : Average divergence in the parameter 1 using !'"(� as the loss function.
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Loss Function Average % Failure Average Divergence in 0 Average Divergence in 1

ME: 49.1 0.40 0.25
MNE: 49.0 0.40 0.25

RMSNE: 47.5 0.39 0.24
MANE: 47.1 0.37 0.24
SSE: 44.4 0.28 0.20

RMSE: 43.5 0.26 0.17
MAE: 42.1 0.24 0.19
U: 31.4 0.19 0.18

TABLE 2 : Reporting of three different error metrics on each candidate loss function. All loss
functions are found to have similar and high degrees of error in their performance.

true parameters. From the figures it is clear that the largest %�0 are realized for small true 0 values.1
Generally the %�1 values are lower than the corresponding differences in 0. The consequences of2
these differences depends on the goal of the simulation, but these results indicate that the difference3
on 0 is likely to be higher than on 1.4

Another important observation is that the curves of comparable PPF in Figure 9 tend to5
exhibit some interesting qualitative agreements with the growth rate contours shown in Figure 36
(except for 0-values towards the lower boundary). This observation appears to indicate that there7
is some fundamental connection between the (lack of) robustness of the calibration problem and8
the strength of waves growth.9

Comparison of Loss Functions10
So far the analysis has been restricted to a single loss function, namely the RMSE. Table ?? shows11
the aggregate performance scores for each loss function across all parameter sets. Each of PPF,12
%�0, and %�1 are averaged across all 0, 1 pairs and reported as a total score.13

From the summary statistics it is apparent that the challenges observed with the RMSE loss14
function are also present in the majority of other loss functions. The average failure rates across all15
parameters and for all loss functions are in the range of 31%–49%. Similarly the average divergence16
values range from 0.18-0.40 on 0, and 0.17-0.25 on 1. While small performance improvements are17
observed depending on the loss function used, no loss function has overall excellent performance.18
The best performing loss function is Thiel’s inequality coefficient (*) scores the lowest of all19
considered loss functions in both average PPF and average %�0, while only scoring behind !'"(�20
in average %�1, suggesting it may be the best of all loss functions considered for the calibration21
task proposed.22

CONCLUSIONS23
Motivated by a desire to calibrate car-following model parameters from aggregated traffic measure-24
ments that cannot be found through standard techniques, a comprehensive review of the suitability25
of several commonly used loss functions is performed using a simulation environment. Each loss26
function is assessed on its ability to recover known parameter values that were used to create syn-27
thetic measurements, where well-performing loss functions would return a globally lowest value at28
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the parameter set used to create those measurements. Despite the advantageous test configuration1
(with data generated from the model, and equilibrium parameters known), it is nevertheless found2
that out of all loss functions considered, none have satisfactory performance, meaning: for many3
parameter sets used to create measurements a different parameter set returns a lower loss value.4
In three different metrics of performance for a given candidate loss function, Thiel’s inequality5
coefficient performs the best in two, and second best in a third, suggesting it may be the best choice6
out of those considered. In general however, the poor performance of these standard loss functions7
suggests that better loss function formulations past what is currently employed are needed in order8
to reliably calibrate microscopic models from aggregate data; or even more: loss functions that9
explicitly distill fundamental characteristics of traffic waves that arise in the unstable regime of10
traffic.11
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