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Abstract: We investigate a model of informational nudging in a context inspired by repeated games
in traffic. Starting from a simple payoff–based learning model for an individual decision–maker (DM)
choosing among multiple alternatives, we introduce a recommender who provides possibly misleading
payoff information for unchosen options, so as to drive the DM’s preferences to a desired equilibrium.
This kind of white lie on the part of the recommender can be seen as an informational nudge in the
sense of Thaler & Sunstein, and may thus arguably present some benefits over monetary incentive–
based strategies for the purposes of planning. Considering the fluid limit of our simplified model, we
show that the recommender can create (but not necessarily globally stabilize) any outcome he desires
using constant lying strategies. We also identify a framing effect, in the sense that lies about the least
favorable option has a different effect compared to lies on most favorable option.
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1. INTRODUCTION

One of the current challenges in the design and operation of
large–scale smart infrastructures is the synergetic integration
of cyber, human, and physical components, in other words the
principled engineering of cyber–socio–physical systems. For
example, existing proposals for the next generation of navi-
gation and congestion management systems not only call for
better traffic estimation and sensing algorithms, software, and
hardware, but also for reliable mechanisms to influence com-
muters to modify their route and transportation mode choices.

Such mechanisms continue to be actively explored under the
umbrella of traditional incentive/implementation/auction the-
ory (see e.g. Yang and Huang (2005); Sandholm (2002);
Wardrop (1952)). For example, as reported in Börjesson et al.
(2012), experiments like the Stockholm congestion tax have
shown that relatively small monetary incentives, in the form
of small price variations over the duration of a day and the
extent of the central business district, can successfully reduce
congestion and gain popular acceptance.

There are also grounds for considering other influencing tech-
niques, which rely on informational exchanges between the
system and its users, rather than financial ones. These influ-
encing techniques are increasingly important in transportation,
especially as route guidance applications have become standard
on most smartphone platforms. The applications act as route
recommenders, and issue information on the monetary and
travel time costs, rather than directly charging or paying users
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to influence behavior. These recommender systems are playing
an increasing role in the daily life and decision–making process
of commuters (Kearns et al. (2012)), and motivates our work.

In this paper, we investigate a model of informational nudging
in a simplified context inspired by learning in repeated traf-
fic games. While our model is not directly applicable to the
transportation domain yet (because, in this case, each decision
maker’s reward – the experienced travel time – depends on
the decisions of all others), it is appropriate to describe other
decision maker/recommender interactions such as advertise-
ment, propaganda, or ”true” recommendations about the quality
of a good. Following the work of Saghai (2013); Thaler and
Sunstein (2008), a nudge is defined as an influence which re-
spects a decision–maker’s choice set and is “substantially non–
controlling,” in the sense that it is possible for the decision–
maker to (i) become aware of the influence, (ii) inhibit its result-
ing propensity, and (iii) do so in an “effortless” manner. Thus,
informational nudges have the desirable qualities of preserving
the participant’s freedom of choice, while making relatively
minimal assumptions about her rationality, and requiring no
money exchange between the system and its users.

Using the payoff–based learning model of Cominetti et al.
(2010) (which represents a decision–maker as choosing her
path according to a logit probability distribution dependent on
announced payoff, and is thus consistent with some models
of bounded rationality such as that of McKelvey and Palfrey
(1995)), we introduce a recommender who provides possibly
misleading payoffs for unchosen paths. As pointed out by
Dworkin (2013), this kind of deception can be seen as a bona
fide nudge provided conditions (i)–(iii) mentioned above can be
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ascertained, and in particular, that a mechanism of reaction to
deception is considered.

As a first step, we sidestep this element and study how each
decision–maker’s belief and behavior varies as a function of
the nudge. We specifically consider the case when user payoffs
are decoupled, which allows us to study the behavior of a single
decision–maker.

After describing the model and its fluid limit in more detail
in Section 2, we study simple nudging strategies in Section
3, in which the recommender uses constant lies to try and
steer the system dynamics to a desired equilibrium. We show
that it is possible for the recommender to choose nudges to
create and locally stabilize any desired equilibrium in the fluid
limit model, however, the equilibrium may not be globally
asymptotically stable.

For the case when the user’s choice set contains only two alter-
natives (Section 3.2), we fully characterize the set of equilibria
of the fluid limit model that can be achieved via nudging.
Moreover, we show that some equilibria cannot be created if the
recommender is constrained to lie about only one alternative.
This uncovers a maybe surprising framing effect, in the sense
that the effect of lies are not symmetric: lying about a slow path
being fast (in the traffic recommender example) has different
effects than lying about a fast path being slow.

Finally, in Section 4, we discuss extensions and future work,
including the presence of a recommender credibility feedback
loop to address the substantial non–control conditions (i)-(iii).

2. MODEL DESCRIPTION

We consider a variation of the model originally proposed in
Cominetti et al. (2010). A user repeatedly faces a set A =
{a1, ...,aK} of K alternatives, each of which is associated with
a true reward ra.

After a choice is made at round n, an announced reward
wa(n) is reported by the recommender for each alternative.
These announced rewards depend on the user’s choice and may
differ from the true reward ra due to the recommender’s active
influence. Based on the announced reward, the user updates her
payoff perception vector x according to:

xa(n+1) = (1− γ(n))xa(n)+ γ(n)wa(n), (1)
for all a, where γ(n) is a square summable, non-summable

sequence, i.e., limn→+∞ γ(n) = 0,
∞

∑
n=1

γ(n) = ∞, and
∞

∑
n=1

γ(n)2 <

∞. The user then chooses an alternative in the next round
according to the probability distribution

Prob(Alternative a is chosen) = Πa(x) =
eβxa

K
∑

q=1
eβxq

. (2)

This is the well known logit choice model introduced by Mc-
Fadden (1974) and used extensively in discrete choice theory.
This model also makes similar assumptions about decision–
making as parts of the literature on bounded rationality (in par-
ticular, the notion of quantal response equilibrium), and is thus
consistent with our desire to capture a nudging–type influence.
As explained by Cominetti et al. (2010), Π(x) = (Π1, ...,ΠK)
can be thought of as maximizing ∑

a=K
a=1 (Πaxa − 1

β
Πa(lnΠa −

1)), which is a regularization of the expected payoff by the

entropy of the probability distribution. In turn, a large value
of β corresponds to a user who mostly cares about maximiz-
ing expected payoff (in the limit of infinite β the probability
distribution concentrates to pure actions with maximum xa),
while a small β indicates a relative desire for randomization.
One should also note that logit rule implies Πa(x) 6= 1 and
Πa(x) 6= 0 ∀a∈A, which will be extensively used in subsequent
derivations.

Yet another way to interpret model (1), (2), is to think of Πa(x)
not as the probability that a single decision maker will choose
alternative a, but as the fraction of a population of decision
makers (all of which share the same intrinsic characteristics and
desirability vector x for all alternatives) that will pick a.

This is consistent with McFadden’s own justification of the logit
choice model McFadden (1974), and allows one to also think of
our proposed nudging strategy as a way for a recommender to
modify the decisions of a group of decision makers, provided
they all receive the same information from it.

We are interested in situations where the recommender may
manipulate the announced rewards so as to eventually drive the
user’s choice to a desirable one, as defined by the recommender.
Accordingly, we assume that the announced rewards take the
form

wa(n) =
{

ra w.p. Πa(x(n))
ra + la(n) w.p. (1−Πa(x(n))).

(3)

In words, this means that the recommender lies about the
true reward for an alternative a by an amount la(n) every
time a is not chosen (and hence, presumably, every time it
is impossible for the user to directly check the true value of
the reward at the round n). Of course, such a scenario is not
realistic if rewards {ra} are truly constant, since the user then
just needs to choose every alternative once to uncover the
value of the true reward, and has no reason to ever believe
the recommender later on when a lie is announced. Note that
it is also because these options are available to the user that
the necessary conditions of “substantial non-controllability” are
satisfied and that the mechanism considered here is a nudge.
Thankfully, as explained e.g. by Borkar (2008), the analysis
presented here is valid (and yields the same fluid limit and
asymptotic behavior) if rewards are considered to be random
variables rather than constant and deterministic.

This is explained in more detail after Proposition 1. From (1)
and (3), we obtain the discrete stochastic difference equation

xa(n+1)− xa(n) ={
γ(n)(ra− xa(n)) w.p. Πa

(
x(n)

)
γ(n)(ra + la(n)− xa(n)) w.p. 1−Πa

(
x(n)

) (4)

for all a ∈ A.

The central question of interest, then, is whether there exists
a strategy {la(n)}n>0

a∈A such that the dynamics described by (4)
converge to a payoff vector x∗ that corresponds to a desirable
probability distribution vector π∗. In order to answer this ques-
tion, we study the asymptotic behavior of (4) using the ODE /
fluid method considered by Benaı̈m (1999), which takes advan-
tage of the properties of {γ(n)}. More precisely, calling upon
Corollary 5.4 by Benaı̈m (1999), we can state the following:
Proposition 1. Assume that the system of ordinary differential
equations (ODE)
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dxa

dt
= E(wa(x) | {xa(s)}n

s=0)− xa

= ra− xa + la(x)(1−Πa(x))∀a ∈ A (5)

admits a unique globally asymptotically stable equilibrium.
Then the sequence {x(n)}n≥0 of random vectors defined by (4)
converges to this equilibrium almost surely.

We will henceforth mostly concern ourselves with ODE (5),
with the understanding that stability results can only be in-
terpreted directly in terms of {x(n)}n≥0 in the case of global
asymptotic stability. Before doing so, however, we note again
that Proposition 1 still holds unchanged if, instead of represent-
ing mere deterministic and constant variables, each ra(n) and
la(n) is meant to designate the mean of a random variable of
the form

r̃a(n) = ra +κa(n) (6)

l̃a(n) = la(n)+θa(n) (7)

where κa(n) and θa(n) are independent martingales. In this
case, the recommender’s use of the random announced reward

w̃a(n) =
{

ra +κa(n) w.p. Πa(x(n))
ra + la +κa(n)+θa(n) w.p. (1−Πa(x(n)))

(8)

in lieu of (3) yields to the same value of conditional expectation
E(w̃a(n) | {xa(s)}n

s=0) and, hence, same ODE as (5).

3. CONSTANT RECOMMENDER STRATEGIES

As explained above, the recommender’s goal is to choose a
strategy l∗ = (l∗1 , ..., l

∗
K) such that dynamics (5) asymptotically

converge to the set of payoff perception vectors corresponding
to a desired probability distribution π∗. Note that this set is
typically not a singleton, as can be seen, e.g., by considering the
simple case of two alternatives, with π∗ =

( 1
2 ,

1
2

)
. In this case,

every payoff perception vector of the form α(1,1)T , α ∈ R
produces the same distribution π∗. In this section, we focus on
constant strategies that drive the dynamics to a single element
of that set, although considering controls that make the full set a
limit set of the dynamics would also be of interest. We consider
such strategies first because they require very low attention on
the recommender’s part and, as we will show, can in some cases
enforce almost any equilibrium effectively.

We first derive a condition on l∗ that guarantees that an ap-
propriate equilibrium is created, and then investigate additional
requirements for its (global) stability.

3.1 Arbitrary number of alternatives

Proposition 2. System (5) admits an equilibrium correspond-
ing to π∗ under the constant strategy l∗ = (l∗1 , ...l

∗
K) if and only

if there exists a scalar s ∈ R and index i such that

l∗a(n) =
s− ra +(1/β )ln(π∗a/π∗i )

1−π∗a
(9)

for all a ∈ A and all n≥ 0.

Proof. Assume that (9) holds for some s and i and define x̄ by
x̄a = s+(1/β )ln(π∗a/π∗i ) for all a. Then, we claim that x̄ is an
equilibrium. Indeed, notice that, for all a,

eβ x̄a = eβ s π∗a
π∗i

. (10)

Hence, Πa(x̄) = eβ x̄a

∑ j eβ x̄ j
= π∗a , i.e., Π(x̄) = π∗. From this, it is

also clear that
ra− x̄a + l∗a(1−Πa(x̄)) = 0

for all a, i.e., that x̄ is an equilibrium. The converse implication
can be shown from the same algebra, by essentially reversing
the steps.

We now turn our attention to the local stability of a desired
equilibrium. To this end, we compute the Jacobian J(x) at that
point, when a strategy of the form (9) is applied to the system.
Noting that

dΠa

dxq
(x) =

{
βΠa(x)(1−Πa(x)) if q = a
−βΠa(x)Πq(x) if q 6= a

find that

J(x) =


−1−β l∗1π

∗
1 (1−π

∗
1 ) ... β l∗1π

∗
1 π
∗
K

β l∗2π
∗
2 π
∗
1 ... β l∗2π

∗
2 π
∗
K

... ... ...

... ... ...
β l∗Kπ

∗
Kπ
∗
1 ... −1−β l∗Kπ

∗
K(1−π

∗
K)


(11)

whenever equilibrium x corresponds to the desired probability
distribution π∗. From this, we can use Gershgorin’s theorem to
derive the following sufficient conditions for local stability.
Proposition 3. If

l∗a >− 1
βπ∗a (1−π∗a )

− | l∗a |+l∗a >− 1
βπ∗a (1−π∗a )

(12)

for all a ∈ {1, ...,A}, then the equilibrium corresponding to π∗

is locally stable.

Proof. The first condition in (12) is equivalent to the center of
every Gershgorin circle being located in the complex left half
plane, while the second condition is equivalent to the radius of
each circle being smaller than the distance between the center
and the origin. Indeed,

K

∑
q=1,q6=a

| Jaq(x) |= β | l∗a | π∗a (1−π
∗
a ) (13)

and thus the radius is smaller if and only if
|1+β

∗l∗aπ
∗
a (1−π

∗
a )|> β |l∗a |(1−π

∗
a )π

∗
a .

Taking into account the first condition in (12) then yields the
stated inequality.

Combining Proposition 2 and 3, we can state the following
achievability result.
Theorem 4. For every desired probability π∗, there exists a
constant recommender strategy l∗ (with l∗a > 0 for all a) that
creates and locally stabilizes an equilibrium corresponding to
π∗.

Proof. Note that local stability condition (12) is always triv-
ially satisfied if l∗a > 0 for all a. It is thus enough to choose a
strategy of the form (9) such that all lies are positive. This can
be achieved by picking any s > maxa ra and i = argmin j π∗j in
the characterization of Proposition 2.

With this characterization in hand, and in light of Proposition
1, it is natural to ask whether something more can be obtained,

NecSys 2013
September 25-26, 2013. Koblenz, Germany

71



namely, whether global asymptotic stability of a desired equi-
librium is achievable as well. Gershgorin’s theorem can like-
wise be used to derive sufficient conditions toward answering
this question.
Proposition 5. Let M be defined as M = max

p6=q
| l∗p + l∗q |. Then,

if
l∗a >− 4

β
and (−M

2
+ l∗a)>−

4
β

(14)

for all a ∈ A, system (5) has a unique, globally asymptotically
stable equilibrium corresponding to π∗ = (π∗1 , ...,π

∗
K), to which

the sequence {x(n)}n≥0 defined by (4) also converges almost
surely.

Proof. From contraction theory (Jouffroy and Slotine (2004)),
we know that a sufficient condition for the equilibrium point of
(5) to be globally asymptotically stable is the existence of δ > 0
such that the symmetric part of the Jacobian satisfy

Jsym(x) =
1
2
(JT (x)+ J(x)) � −δ I for all x.

Using Gershgorin’s theorem again, a sufficient condition for
this to hold is

l∗a >− 1
βΠa(x)(1−Πa(x))

and

1+β l∗aΠa(x)(1−Πa(x))>
MβΠa(x)(1−Πa(x))

2
for all a and x, where we have used the fact that

K

∑
q=1,q6=a

| [Jsym(x)]aq |<
MβΠa(x)(1−Πa(x))

2
, ∀a

in the second inequality. Now, noting that Πa(x)(1−Πa(x))<
1
4 for all x and a, we see that (14) is a sufficient condition for
this latter inequality to hold.

3.2 The two alternative case

The previous section presented sufficient conditions for stabil-
ity in the general case, and showed that every desirable equi-
librium can be created and locally stabilized with a constant
recommender strategy. In this section we focus on the simpler
case of two alternatives (K = 2), and characterize the full set
of asymptotic behaviors achievable with constant recommender
strategies. In particular, we show that a poor choice of lies
can result in unstable equilibria, which has implications for
robustness of these strategies.

When only two choices are offered to the user the differential
system reduces to[

ẋ1
ẋ2

]
=

−x1 + r1 + l1

(
1− 1

1+ eβ (x2−x1)

)
−x2 + r2 + l2

1
1+ eβ (x2−x1)

.


The study of this system can be simplified further by con-
sidering the differences x2 − x1. Defining X21 = x2 − x1 and
R21 = r2− r1, the dynamic of X21 can be reduced to

dX21

dt
= R21−X21− l1 +

l1 + l2
1+ eβX21

(15)

Case l1 = 0 As a first step and in order to reveal an assymetry
between the two alternatives we consider the situation where
the recommender is restricted to lie only about the second

alternative, i.e., l1 = 0. In l1 = 0 case, (15) can be further
simplified to

dX21

dt
= R21−X21 +

l2
1+ eβX21

(16)

In this case, the number and nature of equilibria is determined
by the solutions of f (X , l2) =−R21, where function f is defined
by

f (X , l2) =
l2

1+ eβX −X

for all X . A rapid study of the function reveals the following:

Lemma 6. (i) For every value of l2, limX→+∞ f (X , l2) = −∞

and limX→−∞ f (X , l2) = +∞.

(ii) When l2 ≥− 4
β

, function f (·, l2) is monotonically decreas-
ing.

(iii) When l2 < − 4
β

, function f (·, l2) admits a local minimum
X∗1 and a local maximum X∗2 .

Proof. Let gl2(·) = f (·, l2) and define the variable Y = eβX so
that

g′l2(X) =−Y 2 +(2+β l2)Y +1
(1+Y )2 .

The sign of the derivative is given by the opposite of the sign of
the polynomial P(Y ) =Y 2+(2+β l2)Y +1 whose discriminant
is β l2(4+β l2). Hence, when − 4

β
≤ l2 ≤ 0, P does not vanish

and is positive for all Y . When l2 < − 4
β

or l2 > 0, P has two
roots

Y ∗1 = (1/2)
(
−2−β l2−

√
β l2(4+β l2)

)
Y ∗2 = (1/2)

(
−2−β l2 +

√
β l2(4+β l2)

)
and is negative on the interval [Y ∗1 ,Y

∗
2 ]. However, observe that

these roots are either both positive, when l2 < − 2
β

or both

negative, when l2≥− 2
β

. Hence, g′l2(X) only changes sign when

l2 < − 4
β

, in which case f (·, l2) admits a local minimum at

X∗1 = 1
β

lnY ∗1 and local maximum at X∗2 = 1
β

lnY ∗2 .

From item (ii) in Lemma 6 and the discussion preceding it, it
follows that system (15) admits a unique globally asymptoti-
cally stable equilibrium whenever l2 > − 4

β
, independently of

the value of R21. For this reason, this will be called the uncon-
ditional stability region. This is in agreement with sufficient
condition (14) applied with K = 2, l1 = 0. However, we also
see that global asymptotic stability can be achieved for other
values of l2, depending on the value of R21. Indeed, from the
discussion above, we have the following
Theorem 7. Let Ω be the subset of the (l2,R21)–plane defined
by

Ω = {(l2,R21) | l2 <−
4
β
,gl2(X

∗
2 )>−R21 > gl2(X

∗
1 )},

where
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gl2(X
∗
1 ) =

2l2
β l2 +

√
β l2(4+β l2)

+
ln
[
−1−β l2/2− (1/2)

√
β l2(4+β l2)

]
β

gl2(X
∗
2 ) =−(β l2 +

√
β l2(4+β l2)

+ ln(4)−2ln
(
−2−β l2 +

√
β l2(4+β l2)

)
)/(2β ).

System (15) admits:

• three equilibrium points (two stable and one unstable one),
if and only if (l2,R21) ∈Ω,

• two equilibrium points (one stable and one saddle–node),
if and only if (l2,R21) ∈ ∂Ω,

• a single globally asymptotically stable equilibrium other-
wise.

A picture of set Ω is provided in Figure 1. It can be shown
that the lower part of the boundary is the graph of a concave
decreasing function of l2, while the upper part is the graph of a
convex decreasing function of l2.
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 (−4/β, 2/β)

Boundaries of Ω

Fig. 1. Iso π and Ω region

Going back to the characterization (9), one can see that the
only constant strategy inducing equilibrium (π∗1 ,1− π∗1 ) with
l∗1 = 0 is such that l∗2 = −R21

π∗1
+ 1

βπ∗1
ln( 1−π∗1

π∗1
). This means that

all the points located on the same straight (blue) line in Figure
1 yield the same equilibrium probability distribution. For this
reason, we refer to each of these curves as an iso–(equilibrium)
probability or iso–π line.

In addition, note that for a given value of π∗1 6= 0 and R21, there
is a unique choice of l∗2 imposing the probability distribution
(π∗1 ,1−π∗1 ) in equilibrium, namely, the abscissa of the unique
intersection point between the corresponding iso–π and “y =
R21” line in the (l2,R21)–plane. As is apparent in Figure 1, this
intersection lies in region Ω for some values of π∗1 and R21
(e.g., π∗1 = 0.3 and R21 = 10) and, hence it is impossible to
globally asymptotically stabilize the corresponding probability
distribution with a constant strategy.

From this discussion, it follows that constant recommender
strategies with l∗1 = 0 are not always satisfactory, because there
exist values of R21 for which a range of desired probability dis-
tributions cannot be globally stabilized by them. Note, however,
that all such values of R21 = r2− r1 are positive. This means
that it may not be possible for the recommender (using constant
strategies) to drive the user to a state where she prefers the
least favorable alternative by misrepresenting only the value of
most favorable alternative. However, it is possible to attain a
state where the least favorable alternative is preferred by lying
only about this alternative, regardless of the values of r2 and
r1. In other words, (and to use an analogy more appropriate for
Yelp than, Google Navigation, our original motivation) “lying
about ‘Gourmet Restaurant’ being ‘Fast Food’ may not work,
but lying about ‘Fast Food’ being ‘Gourmet Restaurant’ does”!
Our model shows that in the situation where r2 � r1 enforc-
ing the desired equilibrium is impossible. When recommender
computes the nudge l2 he wants to create π∗1 (corresponding
to X∗21) the equilibrium he thinks is desirable. But when ana-
lyzing the ODE it turns out that the equilibrium point π∗1 is
unstable, and that the recommender creates two other stable
equilibria π

∗−
1 < π∗1 , π

∗+
1 > π∗1 (corresponding to X∗−21 > X∗21

and X∗+21 < X∗21. Hence the equilibrium points that are reached
depends on the initial value of the user payoff estimate X0

21

(1) If X0
21 > X∗21 the user reaches π

∗−
1

(2) If X0
21 < X∗21 the user reaches π

∗+
1

Hence when the true payoff difference is high enough the
recommender polarizes the opinions. Some of the users are not
going to be influenced enough to change their choice while
others will be conforted by the nusges.

In the next section, we show that allowing the recommender to
lie about both alternatives removes this difficulty.

General case Let us now consider constant strategies in
which the value of l1 is free. Note that system (15) with l1 6= 0
can be put in the form of (16) when replacing R21 and l2 in this
latter equation by

R̃21 =R21− l1 (17)

l̃2 =l1 + l2. (18)

In other words, the dynamics induced by this strategy on a
problem with given value R21 are the same as those induced
by a strategy with no lie permitted on the fist alternative and l̃2,
on a system with given value R̃21.

As a result, the same analysis as in Section 3.2.1 can be carried
out in the (l̃, R̃21)–plane. From this, we see that if, for a given
R21, l1 is chosen so that

l̃2 = l1 + l2 ≥−
4
β

and

R̃21 = R21− l1 =−π
∗
1 l̃2 +

1
β

ln(
1−π∗1

π∗1
),

for example, then the equilibrium (π∗1 ,1− π∗1 ) is created and
globally stabilized. Clearly, these conditions can always be
satisfied for fixed R21 and π∗, since both l1 are l2 are free
parameters. In fact, one can even find the smallest lie in the un-
conditional stability region by solving the following quadratic
program:
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min l2
1 + l2

2 (19)

s.t. l1 + l2 ≥−
4
β

(20)

R21 = l1−π
∗
1 (l2 + l1)+

1
β

ln
(

1−π∗1
π∗1

)
, (21)

which is always feasible.

4. CONCLUSION, DISCUSSION, AND FUTURE WORKS

In this paper, we considered a variation of the payoff–based
learning model of Cominetti et al. (2010) in which the rec-
ommender can actively and strategically modify announced
rewards for unchosen alternatives, so as to eventually induce
the user to make particular choices. We considered constant
lying strategies and showed that they can be effective in glob-
ally stabilizing an equilibrium corresponding to any desirable
probability distribution. In so doing, we also showed that there
is an asymmetry between the effects of lies.

Several directions still need to be explored. First, staying within
the confines of the model presented here, one might want to
consider more general recommender strategies than the con-
stant ones, maybe as a way to achieve better convergence rates
in closed–loop. Indeed, it is straightforward to see that a feed-
back strategy of the form

l∗a(x) =
x∗a− ra

(1−Πa(x))
, (22)

where x∗ is chosen such that Πa(x∗) = π∗a for all a globally
asymptotically stabilizes the equilibrium x∗, since the closed–
loop system then is

dxa

dt
= x∗a− xa for all a.

However, this feedback strategy requires the recommender to
access either the user’s perception vector x or the probabilities
{Πa(x)}, both of which are unlikely to be available in practice
(a surrogate for Πa(x) might be obtained by monitoring the
empirical distribution of the user’s choices up to decision time
as is done, e.g., in fictitious play. However, this introduces
mistakes in the control strategy and requires us to further study
its robustness). In addition, strategy (22) has the drawback of
requiring very large lies for initially rarely chosen alternatives,
even if the equilibrium value of their corresponding probabil-
ity distribution is large – a property not shared by constant
strategies, and inconsistent with the conditions underlying the
substantial non–controlling aspect of a nudge. This is akin to
the issue of large gains in classical control theory and certainly
deserves further investigation.

Another avenue of current work is the incorporation of a notion
of credibility to the present model, whereby the user reacts to
false announced rewards by updating an additional trust vector
in a manner similar to (4). As explained before, this is central
to being able to consider the control strategies proposed here as
bona fide nudges.

Finally, in connection with our original traffic route choice
motivation, we are also considering extensions of the present
idea of recommender lies as control strategies, and of the
present results, to situations involving multiple users and where
rewards to a user depend on her previous actions, as well as on
those of other users.
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