
RESEARCH ARTICLE

Tracking the Evolution of Infrastructure

Systems and Mass Responses Using Publically

Available Data

Xiangyang Guan1, Cynthia Chen1*, Dan Work2

1 Department of Civil and Environmental Engineering, University of Washington, Seattle, WA, United States

of America, 2 Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign,

Urbana, IL, United States of America

* qzchen@uw.edu

Abstract

Networks can evolve even on a short-term basis. This phenomenon is well understood by

network scientists, but receive little attention in empirical literature involving real-world net-

works. On one hand, this is due to the deceitfully fixed topology of some networks such as

many physical infrastructures, whose evolution is often deemed unlikely to occur in short

term; on the other hand, the lack of data prohibits scientists from studying subjects such as

social networks that seem likely to evolve on a short-term basis. We show that both net-

works—the infrastructure network and social network—are able to demonstrate evolution-

ary dynamics at the system level even in the short-term, characterized by shifting between

different phases as predicted in network science. We develop a methodology of tracking the

evolutionary dynamics of the two networks by incorporating flows and the microstructure of

networks such as motifs. This approach is applied to the human interaction network and two

transportation networks (subway and taxi) in the context of Hurricane Sandy, using publi-

cally available Twitter data and transportation data. Our result shows that significant

changes in the system-level structure of networks can be detected on a continuous basis.

This result provides a promising channel for real-time tracking in the future.

Introduction

Modern societies can be imagined as a set of intertwined networks relying on each other [1–3].

Critical infrastructures (e.g. transportation) provide essential services to human beings and on

the other hand, aggregation of human responses, or mass responses, directly affects perfor-

mance of the infrastructure system [4]. On a daily basis, these infrastructures along with the

humans they serve and are affected by experience an ongoing evolutionary process during

which failure and recovery of nodes and links lead to changes in the states of entire infrastruc-

ture and human systems [5–7]. This evolutionary perspective is particularly important, in the

current and future times when external shocks such as climate change will bring to the world

major disruptions of increasing frequencies and intensifying magnitudes [8, 9].
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This evolutionary perspective has not been captured in the current literature on infrastruc-

tures. Nearly all adopt a static view on the infrastructure network, on top of which either steady

or semi-steady flows are assumed (e.g. [10, 11]). Studies specifically focusing on major disrup-

tions have only captured a limited number of stages among the entire lifecycle of a disruption

(i.e. the pre-impact, impact, and post-impact stages) [12–14]. Similarly, studies on human

responses are also limited to only a few stages and tend to focus on specific entities (e.g., emer-

gency responders) [15–17]. Studies tracking human responses at a mass level on a continuous

basis from pre-impact to during- and post-impact stages are rare.

In this paper, we identify a unique viewpoint that the evolutionary changes on the infra-

structures and mass responses on a daily basis can be captured using publically available data,

with a methodology that combines simple concepts and measurements developed from net-

work science, statistics, and infrastructure studies. Using Hurricane Sandy as a case study, we

capture topological changes in three networks on a daily basis by quantifying the temporal

evolution of social-interaction patterns on the human network and changes in the flow pat-

terns on two transportation networks, with a set of publically available data. Our result shows

that significant changes on all three networks can be detected, providing a promising channel

for real-time tracking in the future.

Literature review

The perspective that infrastructure systems undergo constant changes at the network level is a

new one for the majority of the infrastructure studies. These topological changes may be

caused by the collapse of physical nodes and links or flows that are being re-distributed that

ultimately affect the functions of a network. Many infrastructure studies (e.g. transportation)

have long been studying flows, but most have not regarded flows as relating to network topolo-

gies; instead most have assumed a static network topology on which flows are steady or semi-

steady [10, 11]. These studies are mostly interested in flows between sets of origins and desti-

nations [14, 18, 19], as opposed to how flows at the network level may re-organize, which

would provide crucial information on the evolution at the system level.

That networks can constantly go through an evolutionary process is not new in network sci-

ence. However, most of the network science studies have focused on rather abstract, binary

networks, as opposed to those that carry flows, like the real-world systems do [20]. While flow

does not necessarily have a physical meaning on certain networks [21], it is conceivable that

both the physical topology and flow shall play a role in influencing the function of infrastruc-

ture networks [22–25]. However, few existing performance metrics of infrastructure networks

account for the topology and flow at the same time. One important goal of this study is to

develop a metric that captures this evolutionary perspective and at the same time accounts for

flow changes at the network level. We apply this metric to Hurricane Sandy to illustrate how

system-wide infrastructure changes can be captured at the network level from before to during

and after a major disaster.

Studies on human responses during or after a major disaster tend to focus on individuals,

as opposed to mass responses. Individual- or household-based surveys are typically admin-

istered during or after a major disruption to understand human responses including

actions taken and the associated reasons [26–29]. These surveys are often limited by their

small sample sizes and restrictions of being retrospective [30, 31]. In recent years, the preva-

lence of social media tools has prompted a surge of studies using such data to analyze

human responses during/after a major disruption [32–43]. Nearly all such studies focused

on behaviors at the individual level, or more precisely, behaviors between specific agents

such as government officials, emergency staff and celebrities. Furthermore, most of these
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studies are limited to a single during-impact stage and overlook the pre- and post-impact

stages.

Materials

Study area and study period

This study is set in the backdrop of Hurricane Sandy, the second costliest hurricane ever

recorded in the U.S. history [44], and within the area of and surrounding New York City

(NYC), one of the most impacted regions by Sandy, with more than $50 billion in damages

[45].

A circular area centered at the geographic center of NYC is selected as the study area. The

radius is determined through a sensitivity analysis of the disaster-related ratio (DRR), which is

simply the ratio between the number of disaster-related tweets and the number of general

tweets within a geographical space, with respect to the radius (see S1 Fig). The result of sensi-

tivity analysis suggests a radius of 39 km.

We define our study period to be the entire October and November of 2012. This study

period is longer than the majority of the existing Sandy-relevant studies, which usually falls

within from mid-October to mid-November in 2012 [46, 47].

Data preparation on human responses

Human responses at a mass level are captured by tracking the social interactions that occur

within the population that is affected by Sandy, given that social interactions constitute a criti-

cal dimension of human behaviors, especially in case of disasters [48, 49]. In particular, data

from the online social media Twitter is used. We recognize that online social interactions may

not be a representative sample of the entire ensemble of social interactions, but nonetheless

they do provide insights into the patterns of more general social interactions, as social media

platforms have increasingly replaced other means of communications [31, 50, 51].

We obtain the full set of geo-located tweets through an agreement between University of

Washington and Twitter, Inc. It contains all tweets posted with a pair of geographic coordi-

nates within our study area during the study period. This results in a total of 3,659,268 tweets.

The snowball sampling method, a well-established sampling approach for online social net-

works [52] is applied to the dataset to generate 61 samples, one for each day in the October

and November of 2012. We randomly select 0.1% of all Twitter users who were within the

study area for each day as the seed. Then the user set is expanded by tracking the replying

tweets from and to the seed users. Any Twitter user who posted at least one geo-located tweets

(within the study area) replying to the seed users or who were replied to by the seed users are

added to the user set. This procedure iterates on the updated user set until it reaches a depth of

6 from the seed users, following the rule of “six degrees of separation” [53]. All geo-located

tweets posted by Twitter users in the user set, within the study area, and on the given day are

included in the sample.

The online behaviors of Twitter users can be subject to the influence of multiple events. For

example, the most likely competing event that affects people’s online behaviors during our

study period is the 2012 presidential election. In order to ensure that the detected changes in

online behaviors are mostly related to the effects of Hurricane Sandy, we categorize tweets into

either disaster-related or not, and filter out those that show little relevance to a disaster or a

potential disaster. We use the term “disaster-related tweets” to represent the tweets relevant to

a (potential) disaster, and the term “general tweets” to represent the ensemble of both disaster-

related tweets and non-disaster-related tweets. The method of tweet categorization is briefly

described in the remaining of this section.
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Prior to any tweet being identified as disaster related, there is only a general-tweet dataset.

We randomly select 1,000 tweets from this dataset as the training dataset, and manually check

if each of them is disaster-related or not, based on the rules set by Fresno et al. [54]. For the

disaster-related tweets, we identify the words informative of their content (e.g. non-stop

words), and put these words in our keyword set. This results in 99 keywords in the set after

manually examining the 1,000 randomly-selected tweets.

Ideally, using all the 99 keywords to search the general-tweet dataset can capture all the

disaster-related tweets. However, it may inflate the number of disaster-related tweets because

some keywords can bring in tweets that are not disaster-related (which we call false positive).

At the same time, using only a subset of the 99 keywords could result in missed disaster-related

tweets (which we call false negative). A trade-off point between the false positive and false neg-

ative needs to be identified for the optimal set of keywords to be used.

To identify the trade-off point, we first calculate the probability at which each of the 99

keywords is able to correctly identify disaster-related tweets, that is, what proportion of the

“disaster-related tweets” it identifies is indeed disaster-related. If the probability of correct

categorization is larger than 95%, the false positive caused by this keyword is thought to be

insignificant. And thus this keyword is included in our final keyword set. However, if the prob-

ability of correct categorization is smaller than 95%, false positive caused by this keyword is

considerable and we move this keyword into a candidate set. This process ends up with 4 of

the 99 keywords in the candidate set, namely “close”, “line”, “cancel” and “work”, which pres-

ent a high probability (larger than 5%) of false positive categorizations.

We then examine every possible combination of the 4 keywords in the candidate set and

plot the false-positive percentage and false-negative percentage when using a combination as

the keyword set to search our training dataset (S2 Fig). False-positive percentage is calculated

as the percentage of tweets that are categorized as “disaster-related” but are actually not disas-

ter-related, and false-negative percentage is the percentage of tweets that are categorized as

“non-disaster-related tweets” but are actually disaster-related. We identify the point where the

summation of false-positive percentage and false-negative percentage is the lowest, which is

shown as the point at index 11 in S2 Fig. The keywords in this combination are therefore

added into our final keyword set. A list of keywords in the final keyword set can be found in S1

Text. We apply the final keyword set to the 61 snowball samples to search for disaster-related

tweets. A tweet that contains at least one of the keywords in the final keyword set is a disaster-

related tweet. In addition, a replying tweet to a disaster-related tweet is also deemed disaster-

related, even if this replying tweet itself contains no keyword in the final keyword set.

As the last step of Twitter data preprocessing, we remove all the tweets posted by or replying

to emergency responders or traditional news media, in order to focus on the interaction pat-

terns among the general public. A list of removed Twitter users is included in S1 Text.

Data preparation on infrastructure performance

To track performance of the infrastructure systems (transportation in this study), we integrate

flows, or aggregates of individual human mobility patterns with network topologies, which

focus on the physical layouts of the infrastructure networks [55, 56]. We collect data that con-

tains information on flow and topology of the transportation networks in order to develop a

comprehensive measure of infrastructure performance.

We obtain the subway ridership data from the New York Metropolitan Transportation

Authority (NYMTA). It consists of daily tap-in counts for every subway station in NYC from

October 1 to November 30 in the year of 2011 and 2012. This results in a 417 (number of sub-

way stations) × 122 (number of days) data matrix.

Tracking Infrastructure Performance and Human Responses
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The taxi trip records are obtained through a Freedom of Information Law (FOIL) request

[47, 57], which is publicly available. We utilize particularly the locations of trip origins and the

time each taxi trip starts in the dataset. A total number of 52,704,872 taxi trips in the October

and November of 2011 and 2012 are analyzed.

Methods

This study is approved by the Institutional Review Board of University of Washington, Seattle.

All Twitter records and taxi trip records are anonymized and de-identified.

Tracking changes in social interactions

We first construct a human network with nodes and links. In our case, a node represents a

Twitter user, assuming that each user has only one Twitter account active during our study

period. Links are based on replying relationships between Twitter users. An undirected link

exists between two nodes (Twitter users) in either of the following two cases (S3 Fig): a) user A

(B) posted at least one public tweet on a certain day and user B (A) replied to user A (B) on the

same day; or b) user A and user B replied to each other on a certain day. We base links on

replying relationship [42] instead of retweeting relationship [3, 42] because the replying rela-

tionship is more likely to reflect the interactions between Twitter users. We call this online

social network “observed network” in order to distinguish it from null models.

Online-social-interaction patterns are characterized by two higher-order network struc-

tures [58]– dyadic motifs and triadic motifs, which are interconnection patterns (subgraphs)

involving two nodes and three nodes, respectively [59]. Compared to global topological prop-

erties (e.g. average degree and clustering coefficient) employed by many studies (e.g. [31]),

local topologies such as network motifs are more capable of capturing nuances in network

structures [60] and are more associated to the functions of a network [61]. Fig 1 illustrates all

possible patterns of dyadic and triadic motifs in an undirected network. For triadic motifs, we

consider only patterns in which all three nodes are attached to edges [59], as a triadic motif

with isolated nodes is equivalent to a dyadic motif. Therefore, two types of dyadic motifs and

two types of triadic motifs, as we call no-link dyads, one-link dyads, two-link triads and three-

link triads respectively, are of particular interest to us.

Conceptually, dyadic motifs and triadic motifs represent different dimensions of online

social interactions. On one hand, dyadic motifs are related to the number of links in the

Fig 1. Possible dyadic and triadic motifs of an undirected network. The upper panel includes the two

types of dyadic motifs: no-link dyads and one-link dyads; the lower panel lists the four types of triadic motifs:

no-link triads, one-link triads, two-link triads and three-link triads. In this study, only no-link dyads, one-link

dyads, two-link triads and three-link triads are considered.

doi:10.1371/journal.pone.0167267.g001
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network. For example, more one-link dyads suggest a higher number of links, or social interac-

tions. On the other hand, triadic motifs are the natural generalizations of clustering coefficients

[62], and therefore indicate whether a link tends to exist within a social circle or beyond. In
short, dyadic motifs capture the total amount of social interactions on Twitter, and triadic motifs
reflect where those interactions are distributed.

We employ a statistical approach [63] to evaluate the role of each of the four motifs in an

observed network and develop measures of online-social-interaction patterns in the two

above-discussed dimensions, as we call in this paper amount dimension and distribution

dimension. The topology of a network is typically shaped by a number of correlated factors

[59]. For example, increasing the number of dyads in a network is also likely to increase the

number of triads in the network. Therefore, certain properties of the network must be con-

trolled in order to examine the temporal changes of a network motif. This is implemented by

introducing null models and z scores [60]. A null model is a network that resembles the

observed network in a way that it shares certain controlled properties with the observed net-

work while other properties are randomized. When looking at the presence of a network motif

over time, null models act as benchmarks that normalize the number of this motif, so that the

quantities measuring the presence of this motif in the network over time are at the same scale

and comparable with each other. A commonly-used measurement of motif presence is z score.

Statistically, a z score of a motif indicates how the presence of this particular motif deviates

from what is predicted by the null models. It can be simply viewed as the normalized motif

number with certain network properties controlled (see “Interpreting z scores” in S1 Text).

In this paper, we use the value of ±3 as the threshold of z scores for testing whether the pres-

ence of a network motif is significant or not [59]. The threshold of ±3 (or equivalently 1% sig-

nificance level) is chosen as it is most frequently used in existing network science studies [59,

63–65].

On each day of the study period, we generate 2000 null-model networks for the observed

network on that day, and calculate the number of motifs in each null-model network. For a

certain kind of motif m, the z score, which is a measure of the difference in the number of

motif m between in the observed network and its expected value, is defined and calculated in

Eq (1).

zmi ¼
Nobs

mi � hN
null
mi i

sðNnull
mi Þ

ð1Þ

where zmi represents the z score of motif m on day i, Nobs
mi is the number of motif m in the

observed network on day i, and hNnull
mi i and sðNnull

mi Þ are the average number of motif m and its

standard deviation respectively in the null models corresponding to day i.
We apply two types of null modes as the benchmark model for investigating dyadic motifs

and triadic motifs, respectively. First, the scale-free networks serve as null models for evaluat-

ing the dyadic motifs [66] based on the consideration that networks of social interactions pres-

ent the scale-free property [67]. The controlled property in this case is the degree distribution.

We fit a power-law degree distribution for each observed network and construct null-model

networks that follow the same power-law degree distribution. We show in supporting infor-

mation that the scale-free networks perform better as null models than the commonly

employed exponential random graph (see “Evaluating dyadic motifs with exponential random

graphs” in S1 Text). And next, we employ the configuration models as null models for evaluat-

ing the triadic motifs [68], and control the node degrees and dyadic structures in the null mod-

els to stay the same as in the observed network.

Tracking Infrastructure Performance and Human Responses
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The calculated z scores are indicators of online-social-interaction patterns. To detect

changes in social interactions, we compare the daily z scores against the average z score during

the pre-impact phase (see results section) and calculate the z score of deviation using Eq (2).

Dzmi ¼
zmi � hzm;prei

sðzm;preÞ
ð2Þ

where zmi is the z score of motif m on day i, and hzm,prei and σ(zm,pre) are the average z score of

motif m during the pre-impact phase and its standard deviation respectively. Since z scores are

normalized, Δzmi is also normalized, and its significance can be statistically tested.

Tracking infrastructure network changes

We construct the subway network as an undirected network. Each subway station in NYC is

viewed as a node, with the daily station-level ridership as a node attribute attached to it. A link

exists between two nodes if the following two conditions are both satisfied: first, there is a sub-

way line segment connecting these two nodes; and second, there are no other subway stations

on this subway line segment.

To eliminate the effects of inter-station discrepancy and weekly patterns, we benchmark

subway ridership in our study period on the corresponding 2011 ridership. For every station

on each day of week during the study period, the benchmark is calculated as the average rider-

ship of this station over all the same day of week in October and November of 2011. We corre-

spond a 2012 ridership with a benchmark if they are of the same subway station, and on the

same day of week. For example, the benchmark for the Times Square station on Monday will

be the average ridership of Times Square station over all Mondays in the months of October

and November of 2011. The ridership to use for analysis is the difference between a 2012 rider-

ship and its corresponding benchmark.

To construct the taxi network, we divide NYC into small regions based on a Voronoi dia-

gram of subway stations. The principle is that an arbitrary point in a region is the closest to the

subway station in this region compared to other subway stations. Each of these small regions is

viewed as a node in the taxi network, with the daily number of taxi pick-ups attached to it. An

undirected link exists between two nodes if these two regions share borders. A similar process

as for the subway ridership is applied to the number of taxi pick-ups to benchmark it upon the

2011 day-of-week average. The benchmarked number of taxi pick-ups is used for further

analysis.

We then construct a flow-based assortativity measure [69] to track changes in distribution

patterns of flows in the NYC subway network and taxi network respectively. This flow-based

assortativity can account for flows both at the node level and at the network level, which

together characterize overall performance of the infrastructure networks. A quantity, exy, is

defined to be the fraction of links in the network that connect two nodes with ridership/taxi

pick-ups x and y, respectively. In our case, as duplicate links are not permitted, exy will always

be 1/L where L is the total number of links in the subway/taxi network, if there exists a link

between two nodes with ridership/taxi pick-ups x and y. The assortativity coefficient of a sub-

way/taxi network is calculated using Eq (3).

r ¼
P

xyxyðexy � axbyÞ

sasb

ð3Þ

where ax and by are, respectively, the fraction of links that start and end at nodes with rider-

ship/taxi pick-ups x and y, calculated as ax = ∑y exy and by = ∑x exy, and σa and σb are the stan-

dard deviations of ax and by. Since the subway network and taxi network are both undirected,

Tracking Infrastructure Performance and Human Responses

PLOS ONE | DOI:10.1371/journal.pone.0167267 December 1, 2016 7 / 17



ai = bi where i represents a node with ridership/taxi pick-ups i. This flow-based assortativity

measure can be interpreted as the correlation between the ridership/taxi pick-ups of any two

connected nodes in the subway/taxi network, and the value of r ranges from -1 to 1. Increasing

r of a subway/taxi network suggests that nodes in the network are increasingly likely to be con-

nected with other nodes of similar ridership/taxi pick-ups; and decreasing r means nodes tend

to be connected with others of different ridership/taxi pick-ups.

Similarly as with social-interaction patterns, we then compare the calculated, daily flow-

based assortativity for the subway and taxi network against the average assortativity calculated

for the pre-impact phase (from October 1 to October 27, 2012) using Eq (4).

zðrÞ ¼
r � hrprei

sðrpreÞ
ð4Þ

where r is the assortativity coefficient of the subway/taxi network on a certain day, and hrprei

and σ(rpre) are the average assortativity coefficients and its standard deviation respectively over

the pre-impact phase. The normalized assortativity is a measure of the deviation of subway/

taxi usage on any given day from the pre-impact norm, and thus reflects how the infrastructure

performance has changed.

Results

Evolution of mass responses

The z scores of dyadic motifs and triadic motifs over time are presented in Figs 2 and 3a,

respectively. The z scores of one-link dyads and no-link dyads are strictly symmetric around

the line z = 0, as with the z scores of two-link triads and three-link triads. Transitions between

the insignificant phase (when z 2 (−3,3)) and the significant phase (when z 2 (−1,−3][[3,1))

can be observed for both the dyadic motifs and triadic motifs. All four types of motifs have

insignificant z scores from October 1 to October 27, abruptly shift to the significant phase on

October 28 and remain while fluctuating in this phase until November 9 when they return to

the insignificant phase simultaneously. Interpreting this result requires noting the signs of z

scores (see “Interpreting z scores” in S1 Text). For the dyadic motifs, the z scores of no-link

dyads are always positive while that of one-link dyads consistently negative. It signifies that no-

link dyads tend to be overrepresented and one-link dyads underrepresented in the online-

Fig 2. Temporal trajectory of dyadic motifs. The z score of a dyad measures the deviation of the number of

this dyad from its expected number predicted by the null models. Its magnitude indicates the importance of a

dyad in determining the structure of the online-social-interaction network.

doi:10.1371/journal.pone.0167267.g002
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social-interaction network. The insignificant z scores before October 28 and after November 8

indicate that organization of the online-social-interaction network is similar to a scale-free net-

work during this period. The network organization deviates from the scale-free model between

October 28 and November 8, marked by the significant z scores. In particular, the amount of

online social interactions (equivalently the number of links in the network) is significantly

higher than the scale-free model can predict between October 28 and November 8, given also

the (significant) positive z scores for the no-link dyads and (significant) negative z scores for

the one-link dyads during this period. This result is validated by existing research on disaster-

oriented Twitter usage: during a disaster, people tend to reduce usage of replying tweets [36],

leading to lessened online social interactions as shown in our quantification of social interac-

tions of replying behaviors on Twitter. Our result is also consistent with findings for mobile

phone users, among whom decreased amount of social interactions prior to a large event is

observed [33], given that there exists a warning or notice before the event. In the case of Hurri-

cane Sandy, official disaster warning was issued on October 27, 2012 by National Hurricane

Center (NHC) [70].

For triadic motifs, the temporal evolutions from the insignificant phase to the significant

phase and back to the insignificant phase in the disaster lifecycle share commonalities with the

dyadic motifs. Before October 28 and after November 8, the z scores are close to zero, showing

that the triadic structure of the online-social-interaction network is almost identical to that of

a configuration model with the same node degree sequence. The period between October 28

and November 8, characterized by significant negative z scores for two-link triads and

Fig 3. Temporal trajectories of triadic motifs. (a) shows the change of the z scores over time for the

number of two-link triads and three-link triads respectively. (b) shows the everyday deviation of the z score

from the average pre-impact z score. The deviation reflects the difference in online-social-interaction patterns

on a particular day from pre-impact patterns.

doi:10.1371/journal.pone.0167267.g003

Tracking Infrastructure Performance and Human Responses

PLOS ONE | DOI:10.1371/journal.pone.0167267 December 1, 2016 9 / 17



significant positive z scores for three-link triads, suggests that from October 28 to November 8,

there are significantly more three-link triads and less two-link triads with respect to those in

the configuration models which serve as benchmarks. In other words, compared to the period

before October 28 or after November 8 when the triadic structure is similar to the configura-

tion models, the period between October 28 and November 8 witnesses an online-social-inter-

action network that is more likely to form three-link triads (and thus less likely to form two-

link triads). This organizing principle could eventually lead to emergence of closely connected

clusters where everyone interacts with each other (a.k.a. social circles or communities). Our

finding is in tune with existing studies at individual level or for specific social groups and com-

munication means, which suggest disaster-time social interactions becoming repeating, redun-

dant, close-knit and localized [15, 33, 50, 71].

Based on whether the z scores are significant or not, the temporal evolutions of both the

dyadic and triadic motifs divide the life cycle of Hurricane Sandy into three phases: the pre-

impact phase (before and on October 27), during-impact phase (October 28 to November 8),

and post-impact phase (on and after November 9). The during-impact phase is characterized

by significant z scores for the four types of motifs, which implies that the amount of online

social interactions decreases and densely connected communities emerge in the online-social-

interaction network of the general public. These patterns are not obvious in the pre- and post-

impact phase due to insignificant z scores.

To detect the temporal changes in online-social-interaction patterns, we apply the life-cycle

perspective to the z scores of dyadic and triadic motifs. Because of the symmetry between no-

link dyads and one-link dyads and between two-link triads and three-link triads, without loss

of generality we select one-link dyads and two-link triads to represent the dyadic motifs and

triadic motifs, respectively. Changes in online-social-interaction patterns can be evaluated as

the deviations from pre-impact online-social-interaction patterns, or mathematically speaking,

deviations from the expected z score of the corresponding motif in the pre-impact phase (see

methods section). In Fig 3b, such deviations become significant during the disaster for both

dyadic motifs and triadic motifs, but with different initial dates: the dyadic patterns enter the

significant phase on October 28, while the triadic patterns are first significant one day earlier

on October 27. In other words, evolutions of the structures of online-social-interaction net-

works occur in its triadic structures prior to in its dyadic structures. Given that triadic struc-

tures are of higher order than dyadic structures [59], we argue they could be more sensitive to

disruptions in the network. As a result, triadic motifs are able to detect and predict such dis-

ruptions whereas lower-order network structures can not. In fact, it was found with other

types of networks (e.g. financial networks) that triadic motifs could be a precursor for network

collapse while dyadic motifs start to change only when the collapse takes place [63]. In terms

of online-social-interaction patterns, this finding shows that under disaster situation formation

of (new) online communities happens before the amount of online social interactions drops,

suggesting possible causal relations between the two patterns.

Evolution of infrastructure network changes

The normalized assortativity for the subway network and taxi network (Fig 4) show a similar

overall trend: while fluctuating, they both go upwards before October 29, peak from October

29 to November 2, and decrease afterwards. Their differences lie in whether deviations from

pre-impact norms are significant or not. For the subway network, z scores are significant from

October 28 to November 7. This is an indicator that during this period, subway stations with

similar ridership tend to be geographically clustered, that is, stations with high ridership tend

to be close to other stations with high ridership, and the same for stations with low ridership.
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Given that subway ridership represents the number of people entering a station, this result

implies that trip origins of subway riders tend to be geographically clustered, which is consis-

tent with previous observations [72]. Taxi operation changes in a similar overall trend, but the

significance of changes in the taxi network cannot be asserted with the use of the threshold of

±3. If the threshold of ±2 were used, it would be significant from October 29 to November 3.

The insignificance is likely due to the fact that for the entire study period taxi trips are highly

concentrated around a few origins (e.g. airports), leaving zero to few trips for most of the

regions in our study area. The subway, on the other hand, is a major travel mode for nearly

half of New Yorkers [73], and demonstrates comparatively more balanced usage in space than

taxies. The unusual flow patterns observed from October 28 to November 7 in the subway net-

work also indicate much severer disruptions to the subway system compared to the taxi opera-

tions which has only modest changes that are insignificant. Based on our flow-based measure,

it is concluded that the subway infrastructures suffer an overall greater impact from Hurricane

Sandy than the taxi infrastructures do.

We can piece together a story on how the general public as a whole responded to Sandy and

how these responses lead to changes in the flows reflected on the infrastructure networks, by

combining the findings on the infrastructure and human responses. The story begins with

issuance of the official warning for Hurricane Sandy by National Hurricane Center (NHC) on

October 27, 2012. Subtle changes in online-social-interaction patterns were immediately hap-

pening following the warning though the changes only became obvious about one day later.

Nevertheless, the evolutions of online-social-interaction patterns on October 27 imply that the

general public became sufficiently aware of the disaster and people’s behaviors start to differ

from normal conditions after the warning issuance. Abnormal infrastructure performance

emerges on the following day of October 28, marked by significantly different flow patterns

from pre-impact norms. The mass response to the disaster by the general public and the emer-

gent operational state of the subway infrastructures last for the next 13 and 11 days and die

down on November 9 and November 8, respectively.

Discussion

Using a set of publically available data, we have developed a set of novel methods to track mass

responses and infrastructure network changes on a daily basis from before, to during and after

a major disaster. The study was motivated by a number of factors relating to multiple disci-

plines, including the lack of acknowledgement that infrastructures are time-varying systems at

Fig 4. Temporal evolution of infrastructure networks. The z score indicates deviation from regular human

mobility patterns (assumed to be the pre-impact patterns), a metric of infrastructure performance.

doi:10.1371/journal.pone.0167267.g004
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a fine temporal scale in infrastructure studies, the absence of flows in most of the network sci-

ence studies, and the mere focus on individual responses following a major disaster, as

opposed to mass responses. To capture network-level changes in infrastructure systems, we

construct a flow-based assortativity measure that captures flow-based topological changes on

two networks: the subway network and the taxi network. We also developed measures involv-

ing dyadic and triadic motifs to track changes in human responses at a mass level. Our result

shows that significant changes at the network level can be detected on a continuous basis for

both the human network and infrastructure networks. This result provides a promising chan-

nel for real-time tracking in the future.

It is also hoped that this study will lead to the converging of two largely independent disci-

plines: infrastructure studies and network science. Infrastructure systems are the mainstay of

the nation’s economy and well-being: they provide essential services that touch upon every-

one’s life, and every sector that matters to the society. Though studies of infrastructure systems

have long viewed them as networks, they have always viewed the underlying networks as static

and fixed. The perspective that networks may be evolutionary over time is long amiss. Bringing

in this new perspective will likely result in transformative changes in many infrastructure stud-

ies in terms of how networks are conceptualized, what are the important research questions

and how the methodologies may be reformulated. On the other hand, studies in network sci-

ence have long recognized this network-evolutionary perspective, though most of the networks

studied are abstract and do not carry flows. Bringing flows into these studies and understand-

ing how networks function in the real world would be a very important next step to further

advance the state of the art.

The study also has important implications for disaster prediction, response, recovery, and

mitigation. We discover that higher-order network structures (e.g. triadic motifs) are capable of

detecting the impact of a disaster on the mass population at an early stage even before the impact

is fully unfolded and clearly alters the population’s behaviors (e.g. reduced links, or dyadic motifs

in the social interaction network). This finding has both theoretical and practical significance: on

one hand it contributes greatly to reaching a more universal conclusion in network science with

respect to identifying early-warning signals of system collapse [74]; and on the other hand

higher-order network structures provide a promising channel for predicting the impact of a

disaster or large event on the general public ahead of time in the pre-impact phase. Two other

major findings of our study—that social interaction networks and infrastructure networks both

experience abrupt evolutions in their topologies following a disaster warning and that such

evolutions can be captured in real time using publicly available data—shall equip emergency

responders with the knowledge, resources (e.g. data) and tools (e.g. methods) to monitor and

respond to these changes in a real time fashion. These capabilities are critically important in the

response and recovery stage. An additional insight shows the potential power of social media

that may be leveraged to increase public awareness that likely precedes public actions. These

efforts will likely enhance mitigation prior to a disaster and expedite recovery in the wake of it.

Supporting Information

S1 Text. Additional technical details. This file further explains the method used in this manu-

script and provides justification for the choice of null models. It also lists the keywords used

for tweet categorization and removed Twitter users that represent emergency responders and

traditional news media.

(PDF)

S1 Fig. Sensitivity analysis to determine study area. The plot shows how DRR changes with

increasing distance from the geographic center of NYC. The fitted curve reaches its “elbow”
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point at the distance of 39 km.

(TIF)

S2 Fig. Determining the optimal keyword combination. The two criteria, false negative and

false positive both need to be minimized. While the two objectives can not be reached at the

same time, we select the point where the summation of the two is minimized (at index 11). As

a result, the keywords “close”, “line” and “cancel” are selected.

(TIF)

S3 Fig. Constructing social media network from tweets. Node A and node B represent two

Twitter users. Stubs without arrows represent public tweets, and lines with arrows represent

replying tweets. An undirected link exists between A and B if a) A replied to B or vice versa; or

b) A and B replied to each other. If c) no replying tweet exists between A and B, A and B are

not considered connected in the social media network.

(TIF)

S4 Fig. Z scores of dyadic motifs using Erdős–Rényi random graphs as null models. Similar

with scale-free networks, the controlled property in this case is the degree distribution. The dif-

ferences are that the degree distribution is assumed to be exponential in a Erdős–Rényi ran-

dom graph and power-law in a scale-free network.

(TIF)

S1 Data. NYC Subway ridership. This file contains the station-level ridership (tap-in counts)

for the 417 stations in New York City, from October 1 to November 30 in 2011 and 2012

respectively.

(CSV)

S2 Data. Twitter data. This file contains the Twitter data used in this study. Tweets’ IDs and

users’ IDs are anonymized by randomly replacing the numbers in the IDs with letters.

(ZIP)
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