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Inferring Traffic Signal Phases From Turning
Movement Counters Using Hidden Markov Models

Mostafa Reisi Gahrooei and Daniel B. Work

Abstract—This work poses the problem of estimating traffic
signal phases from a sequence of maneuvers. We model the prob-
lem as an inference problem on a discrete-time hidden Markov
model (HMM) in which maneuvers are observations and signal
phases are hidden states. The model is calibrated from maneuver
observations using either the classical Baum–Welch algorithm or
a Bayesian learning algorithm. The trained model is then used to
infer the traffic signal phases on the data set via the Viterbi algo-
rithm. When training with the Bayesian learning algorithm, we set
the prior distribution as a Dirichlet distribution. We identify the
best parameters of the prior distribution for both fixed-time and
sensor-actuated signals using numerical simulations and employ
them in the field experiments. It is shown that when the model
is trained by the Bayesian learning method with appropriate prior
parameters from the Dirichlet distribution, the inferred phases are
more accurate in both numerical and field experiments. Because
the best set of prior parameters for a fixed-time intersection is dif-
ferent from those for sensor-actuated signals, a classification strat-
egy to distinguish between these two types of signals is proposed.
The supporting source code and data are available for download
at https://github.com/reisiga2/TrafficSignalPhaseEstimation.

Index Terms—Hidden Markov model, traffic signal phase esti-
mation, TrafficTurk.

I. INTRODUCTION

KNOWLEDGE of the traffic signal phasing is important
for a variety of traffic modeling and estimation appli-

cations on surface streets. Because the signal phase timing
influences the congestion level, knowing the detailed signal
operation is important for improving consumer-facing appli-
cations, such as estimating the travel time on surface streets,
and optimizing routes and fuel efficiency by minimizing stops
at intersections. Because the acquisition of signal timing infor-
mation at large scales is surprisingly difficult in practice, most
commercial routing and traffic estimation algorithms do not use
signal timing information as input, despite their influence on
traffic conditions. Instead, they rely on average traffic condi-
tions, often averaged over several phases or cycles of the light
(see, for example, [1]–[4]).
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In principle, accurate traffic signal phasing information
should be available from local transportation authorities. Un-
fortunately, in the United States, this is not always the case
in practice. The 2012 National Traffic Signal Report Card
[5] indicates that the single biggest challenge agencies face
is collecting data on the performance of their traffic signal
controllers. Moreover, acquiring data over a wide area can be
difficult due to the fact that, often, multiple agencies manage
the data [6]. Even if the agency has and is willing to share
information on their traffic signals, it is not uncommon to find
errors between the data sets and the actual field operations [7].

Because of the difficulty and the importance of acquiring
traffic signal phasing information, several approaches have been
recently proposed to estimate the traffic signal phases from
various data streams. For example, Ban et al. [6] propose to
estimate traffic signal phases using GPS data obtained from
smartphones and navigation devices. While these approaches
are promising, the relatively highly required penetration rates
prevent their current application to most roadways in the
United States. Koukoumidis et al. [8] use a smartphone camera
mounted on the dashboard of a vehicle to identify traffic lights
and infer the timing, whereas Barkely et al. [9] use hidden
Markov models (HMMs) to estimate the traffic signal phase
timing plans (with knowledge of the existing phases) using the
in-pavement sensors.

The problem of estimating traffic signal phases will likely
disappear in the long term, either when all traffic signals
become instrumented with sensors and have communication
capabilities (for example, see the SMART-SIGNAL project [10])
or when GPS penetration rates become high enough. However,
due to the relatively high cost of deploying ITS infrastructure
and the existing penetration rates of GPS-equipped vehicles, it
will still be a long time before the phase information is widely
available through these technologies.

Currently and in the foreseeable future, turning movement
counters will remain a standard approach for obtaining data
about the performance of surface streets. While not particularly
elegant from a technological standpoint, turning movement
counters are accurate (typically within 1%–3% error [11]) and
remain the workhorse of many transportation agencies.

Because of the wide use of turning movement counters, it
is logical to acquire the traffic signal phases at the same time
the counts are recorded. In our experience, the simultaneous
recording of turning movement counts and the phase infor-
mation is not possible for actuated signals, unless the traffic
flows are very light. Thus, our work addresses the problem of
estimating traffic signal timing information directly from data
collected from turning movement counters.
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The main contributions of this work are as follows:
• the modeling of the phase estimation problem as an infer-

ence problem on an HMM,
• the identification of suitable parameters of the Dirichlet

distribution as the prior distribution of the HMM parame-
ters, and

• the introduction of a classification strategy to distinguish
fixed-time and sensor-actuated signals using a sequence of
maneuvers.

This paper is an extended and improved version of our
preliminary work [12], which tested the approach with synthetic
numerical data and experimental data using the Baum–Welch
learning algorithm on fixed-time intersections. When inferring
on experimental data, the earlier algorithm was unable to
correctly distinguish between phases when specific maneu-
vers were rarely observed. This paper introduces a Bayesian
learning algorithm that significantly outperforms the earlier
Baum–Welch algorithm on fixed-time and sensor-actuated sig-
nals. It is shown both numerically and experimentally that the
Bayesian algorithm allows the phases to be recovered with
high accuracy using the classical Viterbi algorithm. Thus, the
proposed approach in this paper not only improves the phase
inference accuracy for fixed-time signals but also demonstrates
good performance on sensor-actuated signals.

In Section II, the definition of an HMM is reviewed, and
an HMM model of an intersection is proposed. The classical
Baum–Welch learning algorithm and a Bayesian learning al-
gorithm, which are used to calibrate the HMM, are described
in Section III. In Section IV, the performance of the learning
algorithms (Baum–Welch and Bayesian learning) are com-
pared, and the appropriate initial HMM and prior parameters
are determined. The results of training and inferring signal
phases from experimental data are presented in Section V.
Finally, because different prior parameters are required for
fixed-time and sensor-actuated signals, Section VI introduces
a classification algorithm to distinguish the signal type.

II. PROBLEM FORMULATION

We propose to use a discrete ergodic HMM to model
traffic at an intersection. Formally, the HMM is a 5-tuple
(P, V,Π, A,B), where P = {p1, p2, . . . , pN} is a set of N
states, and V = {v1, v2, . . . , vm} is a set of m possible out-
comes. Π = {πi} is the vector of initial state probabilities,
and A = {aij} is the state transition probability matrix that
stores the probability of transitioning from state pi to state
pj . The matrix B = {bi(vj)} stores the emission probabilities
(e.g., the probability of observing outcome vj from state pi).
It will be convenient to denote the parameters of the HMM as
λ = {Π, A,B}.

To estimate traffic signal phases, we construct an HMM for
a signalized intersection as follows. The state space P consists
of all possible phases at a given intersection. Fig. 1(a) depicts
the enumerated states for an intersection of a one-way and a
two-way street when traffic flows on the right. For a general
four-way intersection, one can enumerate more than 30 possible
phases (for example, if we assume a separate state for each
maneuver and a separate state for all combinations of two

Fig. 1. Phase enumeration for an intersection composed of (a) a one-way
(eastbound) street with a two-way (northbound and southbound) street and (b)
two, two-way streets. For clarity, protected right turns are shown, and permitted
right turns (which appear in all phases) are not shown.

nonconflicting maneuvers, and so on), but only eight of these
phases are commonly used in practice [13]. For example, a
possible but impractical phase would include protected right
turns in all directions, with all other maneuvers prohibited,
which we ignore in this work. Fig. 1(b) illustrates the most
common phases that appear at a four-way intersection.

The knowledge of the number of streets and one-way re-
strictions is assumed when building the phase space for the
HMM at an intersection. This information is readily available
in both commercial and open source map databases such as
OpenStreetMap (OSM) [14].

To construct the HMM, the possible outcomes or obser-
vations V must also be defined. In our model, the set of
possible outcomes is simply the set of m maneuvers, which
are permitted at an intersection. The total number of maneuvers
is 12 (three maneuvers in each direction) at a typical four-
way intersection and is six at a three-way intersection. We do
not currently consider U-turn maneuvers, although the model
can easily be adapted to support them. Finally, the model does
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not distinguish between permitted and protected maneuvers in
the outcome set since this can be directly inferred from the
phase.

With the states and outcomes defined, one needs to define
the parameters λ of the HMM. The initial state probabilities
πi denote the probability of the HMM starting in phase pi.
The parameters aij denote the probability of transitioning from
phase pi to phase pj . Note that in our definition of the state of
the HMM, there is no notion of time. To prevent rapid switch-
ing from one phase to another, the HMM must have a large
probability of transitioning from the current phase to the same
phase and relatively lower probabilities to transition into other
phases. It should be noted that this representation would not
be particularly helpful for simulating phase evolutions of actual
traffic signals, since short phases could only be probabilistically
avoided.

The final set of parameters is the emission probabilities
bi(vj), which define as the probability of observing maneuver
vj when in phase pi. For example, if maneuver vj is prohibited
in phase pi, then in principle, bi(vj) = 0. Moreover, permitted
maneuvers can be set to receive lower probability compared
with protected maneuvers in a particular phase, and the pre-
dominant maneuvers in the phase should have higher emission
probabilities.

We briefly mention several other forms of HMMs that could
be considered with various improvements for traffic modeling.
To capture the fact that the phase switch should directly depend
on time, one could consider a continuous-time HMM and ex-
plicitly take advantage of the time-stamped observations. How-
ever, the continuous-time HMMs have increased mathematical
and computational complexities [15], [16] compared with the
discrete HMM used in this work. An alternative approach is
to discretize time into fixed time steps rather than using the
maneuvers to define the time steps. In our experiments, this
formulation led to a significant increase in the number of phase
inference errors.

It should also be noted that traffic phase evolutions at sig-
nalized intersections do not satisfy the Markov assumption,
which assumes that the phase in the next time step depends
only on the current phase. In reality, the probability of the
signal switching from one phase to the next depends also on the
duration the signal has been in the current phase and, possibly,
traffic conditions at all approaches of the intersection. Several
approaches have been developed to extend HMMs to systems
that violate the Markov assumption. One approach has been
to explicitly model the dwell times in the HMM (see [17]
for an overview), resulting in a hidden semi-Markov model
(HSMM). The HSMM allows for the specification of a variety
of distributions on the dwell times, instead of the geometric
distribution (implicitly) assumed in the HMM.

Another approach requires specifying a strong prior on the
HMM to favor large dwell times. The idea of using priors is
employed in sticky HMMs [18], [19] to encourage the HMM
to stay in the same state for multiple observations. As we will
show, this approach works well in practice for phase estima-
tion. It is possible that the development of a continuous-time
discrete-outcome HSMM might further improve performance
of the phase inference problem considered in this work.

III. HMM LEARNING AND INFERENCE ALGORITHMS

This section summarizes several well-known algorithms to
solve learning and inference problems on HMMs [20]–[22].
The learning problem can be stated as identifying the param-
eters of the HMM given a sequence of observed outcomes.
After the parameters of the HMM are defined, the inference
problem solves the problem of identifying the phase sequence
given the observed maneuvers. The algorithms used to solve
these problems are described next.

A. Learning

Let o = o1, o2, . . . , ok, . . . , oK be a sequence of observed
maneuvers with a total length of K, in which ok ∈ V is the
kth observed maneuver. Moreover, let qk ∈ P denote the state
at step k. The learning problem is to estimate the parameters λ
from the observation sequence, i.e., o, while possibly consider-
ing prior information on λ.

1) Forward and Backward Algorithms: The forward
algorithm calculates the probability of a sequence of maneuvers
and a state in step k, given a set of parameters, i.e., λ. Define

αk(i) = Pr(o1, o2, . . . , ok, qk = pi|λ) (1)

to be the probability of the partial sequence of observed maneu-
vers up to step k, and the phase pi appears in step k, given the
parameter set λ. The forward algorithm calculates

Pr(o|λ) =
N∑
i=1

αK(i)

where αK(i) can be sequentially calculated [22].
The backward algorithm is similar to the forward algorithm

and finds the probability of a sequence of maneuvers starting at
the final observation. Let

βk(i) = Pr(ok+1, ok+2, . . . , oK |qk = pi, λ) (2)

be the probability of a partial sequence of maneuvers after step
k, given the parameters λ and that phase pi appears in step k.
The backward algorithm calculates

Pr(o|λ) =
N∑
i=1

α1(i)β1(i)

where β1(i) can be sequentially calculated [22].
The values of αk(i) and βk(i) given by (1) and (2) are used in

the Baum–Welch learning algorithm, which estimates the HMM
parameters from the observation sequence.

2) Baum–Welch Algorithm: The Baum–Welch algorithm
[23] is a generalized expectation–maximization (EM) algo-
rithm, which uses an iterative procedure to find parameters λ
that locally maximize the likelihood of observing a sequence
of maneuvers (i.e., it finds a local maximum of the likelihood
function). Let

γk(i) = Pr(qk = pi|o, λ)
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denote the probability that phase pi appears in step k given a
sequence of observations o and a set of parameters λ. Moreover,
define

ξk(i, j) = Pr (qk = pi, qk+1 = pj |o, λ)

as the probability that pi and pj appear at steps k and k + 1,
respectively, given a sequence of observations o and a set of
parameters λ.

Within each iteration step, λ denotes parameters at the start of
the step, and λ̃ = (Π̃, Ã, B̃) denotes the updated parameters at
the end of the step. The updated parameters λ̃ can be computed
given the sequence of observations and λ as follows. The
learned initial state probabilities Π̃ = {π̃i} are given by

π̃i = γ1(i). (3)

The learned state transition probabilities Ã = {ãij} and out-
come probabilities B̃ = {b̃i(vj)} are given by

ãij =

K−1∑
k=1

ξk(i, j)

K−1∑
k=1

γk(i)

(4)

b̃i(vj) =

K∑
k=1

s.t. ok=vj

γk(i)

K∑
k=1

γk(i)

. (5)

In (3)–(5), the values of γk(i), ξk(i, j) can be calculated
using the values αk(i) and βk(i) obtained in forward and back-
ward algorithms [22]. Note that (3)–(5) depend on λ through
γk(i) and ξk(i, j).

Baum et al. [23], [24] proved that the updated parameters
λ̃ = (Ã, B̃, Π̃) given by (3)–(5) gives at least as high prob-
ability for a given sequence of observations compared with
the initial parameters (e.g., Pr(o|λ̃) ≥ Pr(o|λ)) within each
iteration step. Given this, one can replace λ with λ̃ and repeat
to iteratively update the parameter values until the improvement
of Pr(o|λ) becomes negligible.

3) Bayesian Learning Algorithm: The Bayesian learning
approach, similar to the Baum–Welch algorithm, updates the
value of the initial HMM parameters based on the observed
data in an iterative procedure. Both algorithms are variants of
an EM algorithm and, thus, are conceptually and practically
very similar. The only difference is that the Bayesian approach
allows prior knowledge to be integrated into the learned HMM
parameters, i.e., λ. This turns out to be quite important, as it
allows us to prevent rapid switching between phases from one
observation to the next as part of the prior, and leads to signifi-
cantly improved performance in our application compared with
the Baum–Welch algorithm.

As will be explained, the Dirichlet distribution is a good prior
distribution on the parameters for HMMs describing signalized
intersections.

Definition 1: Dirichlet Distribution (see, for example, [25]
and [26]): Let W = (W1,W2, . . . ,WN ) be a random vector

whose elements are nonnegative and sum up to one. If W fol-
lows Dirichlet distribution with concentration parameter vector
θ = (θ1, θ2, . . . , θN ) with θi > 0, then the probability density
function of W can be written as

f(w, θ) =
Γ
(∑N

i=1 θi

)
N∏
i=1

Γ(θi)

N∏
i=1

wθi−1
i (6)

where Γ is the Gamma function, and w = (w1, w2, . . . , wN ) is
a realization of the random vector W .

Note that wi can be considered as a probability of an event,
because the elements wi are nonnegative and sum up to one.
Moreover, by increasing the value of θi in (6) relative to the
others, we in fact increase the probability of the ith event.

Hence, the parameters of the Dirichlet distribution provide
a machinery to impose a prior belief about observing different
events. For example, in the context of traffic signals, we can
assume that the ith row of the transition matrix A follows the
Dirichlet distribution. By increasing θi relative to θj for j �= i,
we can encode a prior preference in the learning algorithms for
transition matrices that have a high probability of transitions,
which stay in the same phase (i.e., transition from pi to pi).

Assuming that Π, A, and B are independent and follow
Dirichlet distribution, the density function of λ is [21]

f(λ) = C
N∏
i=1

⎛
⎝πϑi−1

i

N∏
j=1

a
μij−1
ij

m∏
k=1

(bi(vk))
κij−1

⎞
⎠ (7)

where C is a constant, and ϑi, μij , and κij are the corre-
sponding concentration parameters of the probability density
functions of Π, A, and B, respectively. More precisely, ϑi is the
Dirichlet parameter corresponding to the ith phase in the initial
condition Π, and μij is the Dirichlet parameter corresponding
to the jth element of the ith row of the matrix A. The term
κij is similarly defined. Considering the density function (7),
Hou et al. [21] then developed an EM algorithm that iteratively
updates the HMM parameters Π, A, and B, as

π̃i =
γ1(i) + ϑi − 1

N∑
i=1

(γ1(i) + ϑi − 1)

ãij =

K−1∑
k=1

(ξk(i, j)) + μij − 1

K−1∑
k=1

(γk(i)) +
N∑
j=1

(μij)−N

b̃i(vj) =

K∑
k=1

s.t. Ok=vj

(γk(i)) + κij − 1

K∑
k=1

(γk(i)) +
m∑
j=1

(κij)−m

where N is the number of states, m is the number of possible
outcomes, and K is the length of the observation sequence. By
selecting sufficiently large values of μii in the prior Dirichlet
distributions, one can actively keep the diagonal values of the
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matrix A close to one during the training iterations to avoid
rapid switching from one phase to another.

We note that the Baum–Welch algorithm can be obtained
from the Bayesian method by setting all the prior parameters
to one. This is not surprising since both of the algorithms are in
fact EM algorithms, and by setting all the initial values equal to
one, the Dirichlet distribution changes to a multivariate uniform
distribution.

B. Inference

The inference problem is to estimate the most likely sequence
of phases given an observed sequence of maneuvers and a
parameter set λ. In this paper, it is solved using the classical
Viterbi algorithm [22], [27].

IV. NUMERICAL VALIDATION

This section explores the performance of the HMM frame-
work for inferring traffic phase sequences from synthetically
generated maneuvers trained by the Baum–Welch algorithm or
the Bayesian learning method. In these tests, we evaluate the
performance of the algorithm for inferring the phases as a func-
tion of length of the training data, the initial HMM parameters,
and the prior Dirichlet distribution parameters. Through the
numerical experiments, we discovered that our new Bayesian
method significantly outperforms the Baum–Welch approach;
however, separate prior parameters are required for fixed-
time intersection and sensor-actuated signals to achieve good
performance on both signals. A classification procedure for
selecting the correct parameters in the prior is discussed later
in Section VI.

The numerical experiments have four main components:
1) obtaining traffic maneuvers via synthetic data generation
(i.e., numerical simulation); 2) initializing the HMM param-
eters λ (and setting the prior distribution parameters for the
Bayesian approach); 3) training the HMM given the observed
maneuvers using the Baum–Welch algorithm or the Bayesian
algorithm; and 4) using the trained HMM to infer the state
sequence with the Viterbi algorithm. Steps 3 and 4 use the same
data set generated in step 1). If the inference is performed on
new data sets without retraining, our numerical experiments
lead to an increase in the error by 1%–2%.

A. HMM Parameter Initialization

To simplify the parameter initialization for the Baum–Welch
algorithm, in the transition probability matrix, we initialize

aij =

{
a, if i �= j
1 − (N − 1)a, if i = j

where N is the total number of phases. Similarly, bi(v) = b if
v is a prohibited maneuver in phase pi, whereas all allowed
maneuvers are given a uniform initial emission probability.

This specific form adds structure to the initial HMM model.
By decreasing the value of a, we can initialize the HMM with
a high probability of staying in the same phase across multiple
observations, although this may not remain true after learning.

Moreover, the value of b models how many errors are expected
in the data set. Increasing b allows erroneous observations of
prohibited errors to be observed without forcing the HMM
to transition to a state that allows the maneuver. Finally, the
initialized initial probabilities πi are set to be equal across all
phases (i.e., πi = 1/N for i = 1, 2, . . . , N ).

When the Bayesian learning algorithm is used, one should set
the parameters of the Dirichlet prior distribution on λ. Again, to
simplify selection of the parameters of the Dirichlet distribution
while still adding meaningful structure, we set

μij =

{
μt, if i �= j
μdmi, if i = j

(8)

where μt ≥ 1 is a parameter that controls the transition prob-
abilities, and μd ≥ 1 controls the dwelling time (transitions
from one state to the same state), and mi is the number of
allowed maneuvers in phase pi. We assume that phases with
more allowed maneuvers will have longer dwell sequences, as
more maneuvers can be observed in those phases. Later, we will
show that this structure for the prior parameters is most effective
for fixed-time signals, and a different structure can be used for
sensor-actuated signals.

We set the values of κij so that the permitted maneuvers
receive higher weight than prohibited maneuvers. In particular,
we assign

κij =

⎧⎨
⎩

Cs, if vj is a permitted straight maneuver in pi
Ct, if vj is a permitted turn maneuver in pi
Cp, if vj is a prohibited maneuver in pi

(9)

where Cs, Ct, Cp ≥ 1. Suitable values of Cs and Ct can be
estimated using historical data by considering the ratio of the
turning maneuvers to the straight-through maneuvers to avoid
inference errors when turning maneuvers are sparse. In this
case, we used our data set. Finally, all ϑi in (7) are set to one.

To initialize the Bayesian learning method, we use the mean
of the prior density function on the parameters given by

aij =
μij

N∑
j=1

μij

(10)

bi(vj) =
κij

m∑
j=1

κij

(11)

πi =
ϑi

N∑
i=1

ϑi

. (12)

B. Experiments on Fixed-Time Traffic Signal

1) Intersection of a One-Way Street With a Two-Way Street:
The first test is similar to the first numerical experiment in [12]
and serves as a benchmark to highlight the significant perfor-
mance improvement of the new Bayesian method proposed in
this work.
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TABLE I
MANEUVER EMISSION PROBABILITIES WITHIN EACH

PHASE USED FOR SYNTHETIC DATA GENERATION

Fig. 2. Average phase inference error (over 30 experiments) using an HMM
trained by the Baum–Welch algorithm and the Bayesian approach, as a function
of the length of the training data.

To synthetically generate traffic maneuver observations, a
state sequence is constructed from alternating phases p1 and
p5 [shown in Fig. 1(a)] for a fixed number of cycles. The total
number of vehicles that pass through the intersection is drawn
from U [5, 27], which ensures that every phase generates some
observations. Note that this distribution is selected for numer-
ical illustration, and other bounds could also be considered.
Once the number of vehicles within each phase is drawn, the
specific movement of each vehicle in the phase is randomly
assigned according to the emission probabilities in Table I. For
example, the probability of generating an SBT maneuver when
in phase p5 is 35%, and each prohibited maneuver within each
phase is assigned a probability of 0.2% (resulting in about 1.1%
total error in the data set) to simulate counting errors that occur
in data collected during field experiments. Moreover, notice
that right-turn maneuvers are permitted in both phases with an
emission probability of 4%.

The sensitivity of the performance of the Baum–Welch al-
gorithm to the initial transition probabilities a and the length
of the training data was tested, with the emission probability
b = 0.1. If the initial transition parameters are uniform (a =
0.1429), the phase prediction from the Baum–Welch-trained
HMM is generally incorrect, with more than 50% labeling error
(see Fig. 2), and the error increases with more training data.
When the initialization parameters are selected to strongly favor
transitions that remain in the same state (a = 0.01), the total
labeling error was reduced to about 10% as the training data
span more cycles.

Next, an initial HMM generated from (10)–(12) is trained by
the Bayesian algorithm with initial parameter values of μd =
20 and μt = 1.001. As shown in Fig. 2, learned HMM from

TABLE II
MANEUVER EMISSION PROBABILITIES WITHIN EACH PHASE

USED FOR ERROR-FREE SYNTHETIC DATA GENERATION

FOR A FOUR-WAY INTERSECTION

the Bayesian approach outperforms the Baum–Welch-learned
HMM in nearly every aspect. The method can achieve re-
markable accuracy, with errors around 1% for sufficiently long
training sequences. The excellent performance is attributed to
the good values of the Dirichlet parameters, which encode the
prior knowledge that the learned HMM should have long dwell
sequences.

Because the Bayesian-trained HMM consistently outper-
forms the one trained by the Baum–Welch algorithm, the re-
mainder of this section will only explore the performance of
the Bayesian algorithm.

2) Four-Way Intersection: This section illustrates the per-
formance of the Bayesian algorithm on a common four-way
intersection and explores the influence of the Dirichlet prior
distribution parameters (μt and μd) on the performance of the
Bayesian algorithm over a wide variety of numerical simula-
tions. The goal is to identify for what values of prior distribution
parameters the algorithm performs the best (lowest inference
error). This evaluation is particularly important since the right
choice of prior distribution parameters is crucial for the algo-
rithm to perform well.

Synthetic data are similarly generated as the experiment in
Section IV-B1. The phase sequence alternates between phases
p1, p2, and p3 [as illustrated in Fig. 1(b)] for ten cycles. To
generate a sequence of maneuvers at each phase, first, the total
number of maneuvers was drawn from U [5, 27] for phases p1
and p2 and from U [2, 8] for phase p3. The values illustrated
in Table II were used as the emission probabilities to randomly
assign the specific movement of each vehicle during each phase.

The setup of the sensitivity experiment is as follows. First, a
synthetic data set is generated and used to train an HMM [with
initial parameters generated from Dirichlet distribution param-
eters as in (10)–(12)] using the Bayesian learning algorithm.
The trained HMMs are then used to infer the phase sequence
corresponding to the maneuver counts in the generated data
set. The inferred phase sequences are compared with the true
ones to determine inference errors. This process was repeated
over 30 simulations, and the errors were averaged over all the
simulations.

Fig. 3(a) illustrates average inference error as a function of
μt and μd. When 1 ≤ μt ≤ 5 and μd ≤ 150, good inference
accuracy is achieved. The values of Cs and Ct were set based
on the ratio of the turning maneuvers and straight-through
maneuvers. In particular, we set Cs = 8000, Ct = 2000, and
Cp = 1 because the straight-through maneuvers occurred about
four times as often as through movements in the data sets.
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Fig. 3. Inference error as a function of the Dirichlet prior parameters μt and
μd when the observation sequence (a) is error free and (b) contains 6% error.
Note the color scale is capped at 10% to enhance visibility.

Fig. 4. Markov chain model to generate a phase sequence for sensor-actuated
signals. Numbers denote transition probabilities.

Notice that we set the values of Cs and Ct large to keep the
probability of prohibited maneuvers low.

In the above experiment, synthetic data were generated
assuming that prohibited maneuvers receive zero emission
probability. To test the influence of errors in the observation
sequence, we increased the emission probability of each of the
prohibited maneuvers from 0% to 1% in the data generation
step. Because of the introduction of errors, the minimum infer-
ence error increased to about 5% [see Fig. 3(b)]. Most of these
inference errors are caused by the prohibited maneuvers, which
are likely to be labeled as a phase in which they are permitted.

C. Experiments on Sensor-Actuated Signals

Inference on sensor-actuated signals is difficult because the
phase sequence depends on the traffic conditions. For example,
protected left-turn phases may be skipped or included based on
vehicle arrivals at the intersection. The short duration of these
phases (if they appear) generates another challenge. When a
phase is short in time, only a few maneuvers will be observed,
and thus, the phase is not strongly supported by the data. Con-
sequently, the maneuvers might not be separated from adjacent
long-duration phases.

To generate synthetic data for a sensor-actuated signal, a
common four-way intersection [see Fig. 1(b)] is considered. A
sequence of 20 phases is randomly generated using a Markov
chain model illustrated in Fig. 4. Next, for each of the phases
in the sequence, the total number of vehicles that pass through
the intersection is drawn from U [5, 27] for phases p1 and p2,
from U [2, 8] for phases p3 and p4, and from U [3, 15] for the
other phases. Once the number of vehicles within each phase
is drawn, the specific movement of each vehicle in the phase

TABLE III
MANEUVER EMISSION PROBABILITIES WITHIN EACH PHASE USED

FOR ERROR-FREE SYNTHETIC DATA GENERATION FOR A

SENSOR-ACTUATED FOUR-WAY INTERSECTION

is randomly identified according to the emission probabilities
illustrated in Table III.

The synthetic data were used to train an initial HMM and
to infer phases. Similar to fixed-time intersections, we ex-
plored appropriate prior Dirichlet distribution parameters for
the Bayesian learning algorithm. For each pair of (μt, μd),
30 simulations were conducted, and the inference errors were
averaged over all the simulations. Similar to the previous ex-
periment, the values of Cs and Ct were fixed to 8000 and 2000,
respectively, based on the ratio of observed maneuvers. In this
experiment, the best inference performance obtained was when
1 ≤ μt ≤ 2 and 1 ≤ μd ≤ 1.5. With these values of parameters,
the inference error drops to about 5%.

A closer look at the results revealed that most of the errors
occur in two specific situations. The first case is when a phase
switches to a similar phase (e.g., the allowed maneuvers of
one phase are a subset of the next phase). In this case, a
few maneuvers at the beginning or end of the phase might be
incorrectly labeled by the similar adjacent phase. For instance,
when switching from phase p5 to phase p1, the last maneuvers
generated by phase p5 might be labeled as p1 depending on
the order of the observations. The second case is when a long
sequence of maneuvers generated by one phase also belongs
to another phase as well. For example, while in phase p1, if a
subsequence of maneuvers consists only of WBT and WBL,
all the maneuvers in this subsequence might be mislabeled as
phase p5. This is because the selected prior parameters do not
sufficiently encourage remaining in one phase compared with
transitioning into a new phase.

While the first type of error is very difficult to eliminate, the
second type can be removed by adding a different structure
to the prior parameters based on the knowledge from sensor-
actuated signals. For example, instead of setting μij with μd

and μt in (8), one can tune the values of μii and μij based on
the common phase transitions that appear in a sensor-actuated
signal. For example, by setting μii = 50 000, μij = 500 if tran-
sitioning from i to j is likely, and μij = 1.0001 if transitioning
from i to j is not likely, the inference error can be reduced from
5% error to about 1% error. In Section V, we use these prior
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Fig. 5. TrafficTurk smartphone turning movement counter.

parameters to infer phases for a sensor-actuated signal. Because
of the difference in priors for sensor-actuated and fixed-time
traffic signals, a method to distinguish between the signal types
is needed. In Section VI, this problem will be investigated.

V. FIELD VALIDATION

The proposed learning methods were tested on two fixed-
time signals and a sensor-actuated signal in Champaign, IL.
Turning movements were collected using TrafficTurk (see
Fig. 5), which is a new and free smartphone-based turning
movement counter for Android devices developed for monitor-
ing traffic during special events [28]. Turning movements were
recorded with TrafficTurk, and phases were manually recorded
(with a second person) to validate the inference results.

The collected data are then prefiltered to remove as many
errors as possible. Since the phases are unknown during the
prefiltering step, the prefilter only exploits the difference in
time between each maneuver, and it looks for consecutive
maneuvers that have conflicting paths but occur close in time.
Specifically, if the maneuver conflicts with the maneuver before
and after and all three maneuvers occur in under 5 s, we label
the conflicting maneuver as an error and remove it from the
training data. Less than 1% of the data is removed as part of
the preprocessing filter. During the data collection, the phases
at each intersection were recorded to be compared with the
inferred phases.

A. Fixed-Time Intersection

The performance of the Baum–Welch algorithm and the
Bayesian learning algorithm is compared in the first exper-
iment. For each algorithm, the best parameters identified in
Section IV are used.

1) Intersection of a One-Way and a Two-Way Street: In
the first experiment, traffic maneuvers were collected at the
intersection of W. University Ave. and Prospect Ave. The
intersection layout is shown in Fig. 1(a), and the phase sequence
is p1, p5, and p6 during each cycle. The turning movements and
the true phases were simultaneously recorded for 6 min, with
305 movements over five cycles. The data are preprocessed to
eliminate five errors (1.6%).

Fig. 6 shows the time series of observed maneuvers and
highlights the sparsity of the SBL and NBR maneuvers. The
percentage of SBL maneuvers compared with all maneuvers in

Fig. 6. Turning movement counts collected at the intersection of W. Univer-
sity Ave. and Prospect Ave. as a function of time.

phase p5 is less than 2.5%, which is known to cause problems
in the Baum–Welch learning algorithm.

Fig. 7 shows the inference results based on trained HMMs
from each of the learning models. Due to the sparsity of the
data, the HMM trained by the Baum–Welch algorithm incor-
rectly predicts the phase roughly 40% of the time. Although
most of these errors are due to the similarity between phases p4
and p5, several fast switching errors from p2 to p1 also appear.
On the other hand, the HMM trained by the Bayesian learning
approach estimates the correct phase for all but one maneuver
(less than 1% error). Moreover, this single error appears at
the end of phase p5 and is quite difficult to remove, since the
maneuver is allowed in both phases.

2) Four-Way Intersection: In the second experiment, data
were collected at the intersection of S. Fourth St. and W. Kirby
Ave. The possible phases are shown in Fig. 1(b), and the true
phase sequence at this intersection is p1, p2, and p3 during each
cycle. A total of 464 maneuvers over ten cycles were observed
(15 min). The time series of the maneuvers in Fig. 8 shows the
sparsity of the right- and left-turn maneuvers. The percentage
of NBL and SBL are 1% and 1.5%, respectively, throughout
the data set.

The maneuver sequence was prefiltered, but no errors were
identified. On this data set, inference with the Bayesian-trained
HMM achieves about 2% error (see Fig. 9), all of which appear
at the end of the phases.

B. Sensor-Actuated Signal

The third experiment occurred on a sensor-actuated signal at
S. Neil St. and W. Kirby Ave., which is also a four-way intersec-
tion. Similar to the previous experiments, both maneuver counts
and phases were simultaneously collected over about 6 min. In
this data set, the prefilter identified two conflicting maneuvers
(1%). The prior Dirichlet distribution parameters were selected
to encourage transitions that are more likely to appear in sensor-
actuated signals,using the parameters described in Section IV-C.
The phases were inferred by the Bayesian-trained HMM and
were compared with the actual phase sequence. Fig. 10 shows
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Fig. 7. Inferred phases at the intersection of W. University Ave. and Prospect
Ave. with an HMM trained by (a) the Baum–Welch algorithm and (b) the
Bayesian learning algorithm.

the observed maneuvers, and Fig. 11 depicts the true and
inferred phases at this intersection. Although the data set is
short and many phase switches occurred, inference with the
Bayesian HMM achieves near-perfect recovery of the phases.

This example demonstrates the power of our inference ap-
proach, since the traffic at this intersection is highly complex.
The signal was observed for just under 7 min, and the signal
showed seven unique phases. If the traffic was extremely light
or if the traffic was extremely heavy, we would likely observe
a very regular signal operation, although the signal is sensor
actuated.

Despite the complexity of the signal phasing at this intersec-
tion, our algorithm shows excellent performance. In fact, the
only error is the incorrect classification of a left-turn maneuver
at the end of the protected phase 3, which we incorrectly
classified as belonging to the start phase 1, where it is also
permitted.

The same set of prior parameters was used to train the initial
HMM with different sets of data collected at another sensor-
actuated signal in Champaign, IL, which also showed high
accuracy in the inferred phases.

Fig. 8. Turning movement counts collected at the intersection of W. Kirby
Ave. and S. Fourth St. as a function of time.

Fig. 9. Inferred phases at the intersection of W. Kirby Ave. and S. Fourth St.
with an HMM trained by the Bayesian algorithm.

VI. CONTROLLER CLASSIFICATION

A. Description of the Classifier Based on SVMs

As shown in Sections IV and V, the Bayesian-learned HMM
can achieve high inference accuracy on the phases, provided
the Dirichlet prior parameters are chosen well. However, the
right choice of prior parameters depends on whether the signal
is fixed time or sensor actuated, which is not known in ad-
vance. To predict if the signal is fixed time or sensor actuated,
we developed a simple support vector machine (SVM) [29]
classifier that can be applied to the data set to determine
what prior parameters are most appropriate. Alternatively, the
hyperparameters ϑi, μij , and κij could be estimated using a
Bayesian approach. However, this increases the complexity of
the algorithm and may not result in more accurate inference
results [30] compared with the simple classification approach.

The main idea of this classifier is that Pr(o|λf ) > Pr(o|λs)
for observations generated from fixed-time signals, whereas the
inequality is reversed for data from sensor-actuated signals.
We set λs and λf according to (10)–(12), but with different
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Fig. 10. Turning movement counts collected at the intersection of W. Kirby
Ave. and S. Neil St. as a function of time.

Fig. 11. Inferred phases at the intersection of W. Kirby Ave. and S. Neil St.
with an HMM trained by the Bayesian algorithm.

values of the Dirichlet distribution parameters (8) for fixed-time
and sensor-actuated signals. Specifically, we use μd = 20 and
μt = 1.001 to compute λf , and we use the values introduced
in Section IV-C (i.e., μii = 50 000 and μij = 500 for likely
transitions, μij = 1.0001 for unlikely transitions) to calculate
λs. The remaining parameters of the Dirichlet distribution are
set as described in Section IV-A and are identical for fixed-time
and sensor-actuated signals.

B. Experimental Validation

We generate 400 synthetic data sets generated from 200
fixed-time signals and 200 sensor-actuated signals. We then use
half of the data (100 fixed and 100 sensor-actuated data sets)
to train the SVM. The remaining 200 data sets are reserved for
validating the classifier.

We generate the fixed-time signal data by simulating data
over a range of traffic conditions. To simulate data from an
intersection with fixed-time signal, we assumed that the signal
has phases p1, p2, and p3 [recall Fig. 1(b)]. The total number of

Fig. 12. Fitness of the HMM models to data obtained from fixed-time and
sensor-actuated signals. The dashed line is ln(Pr(o|λs)) = ln(Pr(o|λf )),
whereas the solid blue line is the separating hyperplane calculated by the SVM.

maneuvers observed in each phase was drawn from U [5, 27]
for phases p1 and p2 and from U [2, 8] for phase p3. The
specific maneuvers observed in each phase are randomly drawn
according to the emission probabilities given in Table II and
perturbed by adding random values from N (0, 10) to the pro-
tected maneuvers and from N (0, 1.5) to permitted maneuvers
except right turns. To guarantee that the probabilities sum up to
one, we normalize each row.

The data sets for the sensor-actuated signal are constructed
in a similar way, except we assume that the sensor-actuated
signal can operate through all of the phases in Fig. 1(b) and
that the phase sequence is generated based on the Markov chain
illustrated in Fig. 4.

For each data set, we compute ln(Pr(o|λs)) and
ln(Pr(o|λf )), which are the two features used to classify
the signal. The separating hyperplane is computed, and the
performance of the classifier is shown in Fig. 12. The data
are linearly separable, resulting in perfect performance on
the training and test data sets. While our experiments show
Pr(o|λf ) > Pr(o|λs) for observations generated from fixed-
time signals, and the opposite for sensor-actuated signals, the
potential for misclassification errors can be reduced using the
SVM instead of ln(Pr(o|λs)) = ln(Pr(o|λf )) as the naive
separating hyperplane.

VII. CONCLUSION AND FUTURE WORK

This paper has introduced the problem of inferring traffic
signal phases from turning movement count data with the
help of an HMM. Training the HMM is achieved through a
Bayesian algorithm, which significantly outperforms the stan-
dard Baum–Welch algorithm. Inference is performed with the
Viterbi algorithm.

The algorithms were tested on synthetic data sets and data
sets collected from TrafficTurk, which is a smartphone-based
turning movement counter. Because the experimental tests
showed that different prior parameters are needed for fixed-time
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and sensor-actuated signals, a simple classifier was proposed,
which appears to work quite well both on numerical tests and
field data.

The tests performed in this work did show that the inference
accuracy is sensitive to the number of errors (specifically con-
flicting maneuvers) in the data set. These errors can also cause
problems when trying to identify the traffic signal control logic
[31] from the inferred phases. Fortunately, these errors are also
fairly easy to prefilter from the data sets.

As a next step, one could also consider making the Markov
chain nonhomogeneous by allowing the dwelling probability
to decrease as a function of the time since the last maneuver,
which might improve the robustness of the model to changes
in traffic intensity. Furthermore, the algorithms developed in
this work will be implemented in the TrafficTurk system to
allow further field testing and to infer phases for users of the
application.
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