
A Cell Transmission Model for Heterogeneous
Multiclass Traffic Flow With Creeping

Shimao Fan
Coordinated Science Laboratory

University of Illinois at Urbana-Champaign
shimao@illinois.edu

Dan Work (corresponding author)
Department of Civil and Environmental Engineering and Coordinated Science Laboratory

University of Illinois at Urbana-Champaign
dbwork@illinois.edu

4437 words + 3 figures (250 words each) + 1 table (250 words each)
Total: 5437



ABSTRACT
A heterogeneous traffic model with creeping is developed as a multiclass generalization of the
cell transmission model. Creeping occurs when small vehicles continue to advance in congestion
even though larger vehicles have completely stopped. To capture creeping, the model is posed as
a phase transition model which applies a multiclass cell transmission model in the non-creeping
phase, and a classical scalar cell transmission model in the creeping phase. The discrete model
with creeping is presented by considering the sending and receiving of vehicles for each vehicle
class. Numerical tests are carried out to illustrate the creeping phenomenon, and a comparison with
two exiting heterogeneous multiclass models is performed. The model can be used to study the
evolution of traffic flow in many emerging economies, where significant creeping is observable.
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INTRODUCTION
In this work, a new heterogeneous multiclass traffic flow model is introduced to capture the creep-
ing phenomenon for traffic flow that involves vehicles which are highly heterogeneous in size. One
observes that at a certain level of congestion, larger vehicles such as cars completely stop, while
small vehicles such as motorbikes continue to move through the gaps between the large vehicles.
This feature is called creeping, and is prevalent in the traffic flow of many emerging economies.
It is desirable to develop heterogeneous models to study the key features of this kind of flow, and
then apply these models to improve the severe traffic problems pervasive emerging economies (see
the IBM Commuter Pain Index [1]).

To model distinct behaviors of different vehicle classes, a system of conservation laws
model (fluid dynamics traffic model) is considered that has a general framework(

ρ j
)

t +
(
ρ jv j

)
x = 0, j = 1, · · · ,n,

v j =Vj (~ρ) , with ~ρ = (ρ1, · · · ,ρn) ,
(1)

which describes the conservation of vehicles for n vehicle classes indexed by j. Here, ρ j = ρ j(x, t)
is the traffic density of the jth class, which depends on both the location x and time t, and Vj (·) is
the corresponding velocity function, which is a function of the density of each class. In the special
case when n = 1, the system becomes the Lighthill–Whitham–Richards (LWR) model [2, 3], and
the flux function Q(ρ) = ρV (ρ) is a fundamental diagram (e.g., [4, 5]). Thus, the model (1) can
be interpreted as a multiclass extension of the LWR model.

The LWR model can be discretized resulting in the cell transmission model (CTM) [6],
which is consistent with the well known Godunov scheme [7], as shown by Lebacque [8]. The
CTM provides a way to construct a discrete solution to a scalar conservation law and it has a clear
physical interpretation. The existing models for multiclass traffic flow that fit into framework (1)
can be classified based on their assumptions on the interaction rules of different vehicle classes
characterized by the specific form of the velocity functions Vj (·) (see Table 1). Depending on the
definition of velocity function, the properties of overtaking and creeping (i.e., a specific type of
overtaking when one vehicle class is stopped) can be investigated.

Homogeneous Multiclass Models
When all velocity functions are identical, i.e., v j = V (~ρ), (1) is a homogeneous multiclass model
since all vehicle classes follow the same kinematic behavior. An example of a homogeneous
multiclass model is the Logghe and Immers model [9], which relates different vehicle classes by a
scaling factor known as a passenger car equivalent (PCE), and the velocity function depends on a
weighted sum of the densities of all vehicle classes called the effective density, i.e., v j =V (∑i βiρi),
where βi is the PCE applied to the ith class. Moreover, Zhang and Jin’s model [11] and the
1-pipe special lane model by Daganzo [10] also fit into this category. A primary limitation of
homogeneous models is that they do not allow one vehicle class to overtake another [16], and they
are not appropriate to capture creeping. Thus, making distinctions in the velocity function among
different vehicle classes is necessary in order to model overtaking behavior including creeping.

Heterogeneous Multiclass Models
Heterogeneous multiclass models are developed by distinguishing Vj(·) for each vehicle class. The
model by Ngoduy and Liu [12] and the Fastlane model [13] characterize vehicle classes by their
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Model Velocity v j Overtaking Creeping

Homogeneous
Logghe & Immers [9] v j =V (∑i βiρi) no no

Daganzo [10] v j =V (∑i ρi) no no

Zhang & Jin [11] v j =V (ρ1,ρ2) no no

Heterogeneous

Ngoduy & Liu [12] v j =Vj (β j ∑i ρi) freeflow no

with v j =V in congestion

Fastlane [13] v j =Vj (∑i βiρi), freeflow no

with v j =V in congestion

Wong & Wong [14] v j =Vj (∑i ρi) yes no

Zhu et al. [15] v j = vm
j V (∑i ρi) yes no

n–populations [16] v j = vm
j V (∑i `iρi) yes no

Nair et al. [17] v j = pVc(s)+(1− p)Vf(s), yes yes

p =
∫ s j

0 g(s)ds,

g(s) is distribution of s

Creeping model [18] v j =Vj (∑i `iρi), yes yes

with Vj(0) = vm

TABLE 1 : Classification of multiclass models according to the definition of velocity functions.

maximum velocities, and assume the same function in congestion. As a consequence, the Ngoduy
and Liu and Fastlane models allow overtaking in the freeflow regime, but not in congestion. Wong
and Wong [14] introduced a simplified heterogeneous multiclass model of the form (1) that admits
overtaking in freeflow and congestion. The velocity function of each class is a function of the total
density (e.g. v j =Vj (∑i ρi)) and they are distinct except at the jam density. Later, Benzoni–Gavage
and Colombo [16] introduced the n–populations model, which extended Wong and Wong’s model
by explicitly taking the size of each vehicle class into account. Instead of explicitly conserving
the number of vehicles, the system expresses conservation of the space occupied by each vehicle
class. Consequently, the velocity function depends on the total occupied space r = ∑ j ` jρ j, i.e.,
v j = Vj (r). As presented in [16], by substituting ρ̂ j := ` jρ j in the n–populations model, both
n–populations model and Wong and Wong’s model fit into the same mathematical framework(

ρ̂ j
)

t +
(
ρ̂ jv j

)
x = 0, j = 1, · · · ,n,

v j =Vj(r), with r =
n

∑
j=1

ρ̂ j,
(2)

where ρ̂ j is the space occupied by the jth class. These models suppose all vehicle classes either
never stop (see [14]), or stop at a common maximum occupied space rm (or equivalently an effective
jam density) (e.g., [12, 13, 16]), i.e., Vj(rm) = 0, j = 1, · · · ,n. Thus, they are not appropriate to
model the creeping feature.

A heterogeneous multiclass model that allows for creeping is proposed by Nair et al. [17],
and is known as the porous model. In this model, the velocity of each vehicle class is determined
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by the availability of empty spaces s (pores). Letting s j represent a critical pore size for the jth
class, vehicles may be in freeflow (s ≥ s j) or get restricted (s < s j) with velocity functions Vf(·)
and Vc(·), respectively. The velocity of the jth class is

v j =Vj (s) =
(∫

∞

s j

g(ω)dω

)
Vf(s)+

(∫ s j

0
g(ω)dω

)
Vr(s), (3)

where g(·) is the probability density function of the pores sizes for a given time. The creeping
property is shown by numerical simulations, but significant analytical results are missing due to
the complexity of the model (3), e.g., the density function g(·) evolves with time.

Recently, a simplified two class creeping model was proposed by Fan and Work [18] under
the framework (2) in terms of occupied space, which distinguishes the maximum occupied space
rm in each vehicle class. By allowing rm to vary between vehicle classes, the creeping phenomenon
can be captured. Moreover, the well-posedness of the creeping model is proved, which is an impor-
tant property that has not been established for many heterogeneous models due to the complexity
of the resulting system of conservation laws (e.g., [16, 19]). Due to the challenge in construct-
ing a solution to the creeping model in an analytical approach (e.g., construction of a Riemann
solver), and the need for discrete models for many practical control and estimation applications, it
is desirable to construct a discrete form of the creeping model.

Outline and Contributions
The main contributions of this article include three aspects: (i) a discrete two class heteroge-
neous model that allows creeping is introduced; (ii) a systematic approach to extend the CTM
to heterogeneous multiclass models is proposed, which supports discrete implementations of the
n-populations and creeping models, as well as a simplified variant of the porous model; and (iii)
the features of the creeping model are validated by numerical simulations, and comparisons with
respect to the n–populations model and the porous model are performed.

The remainder of article is organized as follows. In Section 2, the creeping model for
two vehicle classes is outlined. Next, a discrete formulation of the creeping model is proposed
in Section 3. Section 4 is devoted to validate the features of the proposed model by performing
numerical simulations and comparing to the n–populations model and the porous model.

A TWO CLASS HETEROGENEOUS MODEL WITH CREEPING
First, the main features of the creeping model [18] are outlined. The model is posed as a phase
transition model [20, 21] that considers two phases: a non-creeping phase and a creeping phase,
which are defined as follows:

D1 =
{
(ρ1,ρ2) ∈ R2 | ρ j ≥ 0, j = 1,2; 0 < ρ1 +ρ2 ≤ rm

2
}
,

D2 =
{
(ρ1,ρ2) ∈ R2 | 0≤ ρ2 ≤ rm

2 ; rm
2 ≤ ρ1 +ρ2 ≤ rm

1
}
,

(4)

where ρ j and rm
j represent the occupied space and the maximum occupied space of the jth class.

The domain D of the model (6) is defined as a union of D1 and D2:

D =
{
(ρ1,ρ2) ∈ R2 | 0≤ ρ j ≤ rm

j , j = 1,2; 0 < ρ1 +ρ2 ≤ rm
1
}
, (5)

which has a trapezoidal shape (see Figure 1(b)).
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Velocity functions of the creeping model
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FIGURE 1 : (a) Velocity functions of the creeping model (9). Here, the solid-gray line represents
the velocity of the first vehicle class, and the dashed-blue line is the velocity of the second vehicle
class. (b) The domain of the creeping model (9).

In D1, the model is a system of conservation laws, where the dynamics of both vehicle
classes can be studied. In D2, the large vehicles are stationary at a time t, and thus the density
remains unchanged, i.e., (ρ2)t = 0. In this case, the system reduces to the LWR model for ρ1
with possibility of discontinuous fluxes in space, which correspond to shock profiles of ρ2. Thus,
D2 represents a creeping phase, and D1 is a non-creeping phase (see Figure 1(b)). The model is
written as 

{
(ρ1)t +

(
ρ1V1 (r)

)
x = 0,

(ρ2)t +
(
ρ2V2 (r)

)
x = 0, if (ρ1,ρ2) ∈D1,

{
(ρ1)t +

(
ρ1V1 (r)

)
x = 0,

with (ρ2)t = 0,
if (ρ1,ρ2) ∈D2,

(6)

where a phase change is defined between D1 and D2.
Here, the velocity functions Vj(·), j = 1,2 have the following properties:

V ′j(r)< 0, Vj(0) = vm, V1(rm
1 ) =V2(rm

2 ) = 0, rm
2 < rm

1 < 2rm
2 . (7)

It is assumed that the velocity functions are strictly decreasing, and both vehicle classes possess a
common maximal speed vm (see Figure 1(a)). The latter assumption is valid when the maximum
velocities of different vehicle classes are restricted by a speed limit achievable by both classes.
Moreover, the condition rm

1 < 2rm
2 is a realistic condition on the maximum occupied space.

Based on the assumptions in the velocity function (7), one may propose various velocity
functions to generate multiclass fundamental diagrams, such as Drake’s exponential model, the
smooth three-parameter model [22], or the Greenshields model [4]. For mathematical simplicity,
the linear Greenshields model is used in this work:

V1(r) = vm(1− r/rm
1 ), V2(r) = vm(1− r/rm

2 ). (8)
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The model (6) with Greenshields velocity functions (8) is written as

{
(ρ1)t +

(
ρ1vm(1− (ρ1 +ρ2)/rm

1 )
)

x = 0,
(ρ2)t +

(
ρ2vm(1− (ρ1 +ρ2)/rm

2 )
)

x = 0, if (ρ1,ρ2) ∈D1,

{
(ρ1)t +

(
ρ1vm(1− (ρ1 +ρ2)/rm

1 )
)

x = 0,
with (ρ2)t = 0,

if (ρ1,ρ2) ∈D2.

(9)

Remark 1. The phase transition models apply a scalar conservation law in freeflow, and a system
of conservation laws in congestion. In the creeping model (9), a scalar model is employed in the
creeping phase, and a system of conservation laws is applied in the non-creeping phase.

By observing Figure 1(a), the deviation between the two velocity functions strictly in-
creases with r by using the linear velocity functions. Alternative velocity functions may be con-
sidered to provide more control over the deviations and to potentially improve the predictive ca-
pabilities of the model. Moreover, one sees that the Greenshields model (8) generates a negative
velocity for the second vehicle class for r > rm

2 . The creeping model (9) successfully excludes the
presence of this nonphysical negative velocity by applying a phase transition.
Remark 2. Another approach one may consider to avoid negative velocity in the second vehicle
class while avoiding the need to pose the creeping model as a phase transition model is to redefine
the velocity function as

Ṽ2(r) =
{

V2(r), if r ≤ rm
2 ,

0, if rm
2 < r ≤ rm

1 .
(10)

This approach is penalized by the loss of strict hyperbolicity for r > rm
2 [18].

In summary, the creeping model (9) is a phase transition model, where phase changes
are defined between two domains, D1 and D2. As presented in [18], the existence of a solution
to the model can be shown in a general approach that includes verifying the strict hyperbolicity
of the model, investigating the elementary waves and using them to construct a Riemann solver,
and proving the existence of a solution following Glimm’s random choice method [23, 24] and
the wavefront tracking algorithm [25, 26]. Next, a discrete formulation of the creeping model is
introduced.

A CELL TRANSMISSION MODEL WITH CREEPING
In this section, a cell transmission model with creeping is developed based on a discrete formula-
tion of the continuum creeping model (9). The model can be seen as a multiclass extension of the
CTM.

The Scalar Cell Transmission Model
The CTM discretizes space into cells with size ∆x, and computes the density in each cell by ex-
amining its inflow and outflow over the time interval ∆t. Here, three adjacent cells (i− 1, i and
i+ 1) are considered with constant initial densities ρk

i−1, ρk
i , and ρk

i+1 at the time t = k∆t, and
the evolution of traffic density in the cell i is studied. The key elements of the CTM are listed as
follows.

1. The evolution equation describes conservation of vehicles via discretization of the LWR
model with a Godunov scheme:

ρ
k+1
i = ρ

k
i +

∆t
∆x

(
Fk

i−1/2−Fk
i+1/2

)
, (11)
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where ρ
k+1
i is the traffic density of the ith cell at the next time step t = (k+ 1)∆t, and

Fk
i−1/2 and Fk

i+1/2 are the inflow and outflow of the cell i at the current time t = k∆t. By
rearranging (11) into (

ρ
k+1
i −ρ

k
i

)
∆x =

(
Fk

i−1/2−Fk
i+1/2

)
∆t, (12)

the scheme explicitly describes the conservation of vehicles, where the change in ve-
hicles at the cell i during time interval ∆t (the left side of (12)) is exactly equal to the
difference between the vehicles entering from the upstream cell boundary and the vehi-
cles exiting the downstream cell boundary (the right side of (12)).

2. The inflow and outflow Fk
i−1/2 and Fk

i+1/2 are determined by the minimum of the vehicles
available to be sent from the upstream cell, and the availability of the downstream cell
to receive vehicles:

Fk
i−1/2 = min

{
S(ρk

i−1) , R(ρk
i )
}
, Fk

i+1/2 = min
{

S(ρk
i ) , R(ρk

i+1)
}
, (13)

where S(·) and R(·) are known as the sending and receiving functions.

3. The sending and receiving functions are defined based on the flux function Q(ρ):

S(ρ) =
{

Q(ρ), if ρ ≤ ρc,
Qmax, if ρ > ρc,

R(ρ) =
{

Qmax, if ρ ≤ ρc,
Q(ρ), if ρ > ρc,

(14)

where ρc denotes the critical density where Qmax is obtained. One sees that S(·) gives
the maximum possible flow that can be sent from the upstream cell given the upstream
density, and R(·) defines the maximum flow that can be received in the downstream cell
given the downstream density.

Discrete Formulation of Multiclass Traffic Flow Models
Recall that multiclass traffic model (1) generalizes the LWR model to multiclass traffic flow, and
thus the CTM can also be generalized to its multiclass equivalent by mass conservation of each
vehicle class, which has the following form(

ρ
k+1
j,i −ρ

k
j,i

)
∆x =

(
Fk

j,i−1/2−Fk
j,i+1/2

)
∆t, j = 1, · · · ,n, (15)

where ρ
k+1
j,i and ρk

j,i are traffic densities in the jth vehicle class of the cell i at the time t = (k+1)∆t
and t = k∆t, respectively, and Fk

j,i−1/2 and Fk
j,i+1/2 are the inflow and outflow of the vehicle class.

These fluxes are obtained by explicitly analyzing the sending and receiving potential for each
vehicle class, similar to the CTM. One sees that (15) expresses the conservation of vehicles of
each vehicle class in each cell. Next, the inflow and outflow functions are defined.

The flow of the jth vehicle class is the minimum of sending and receiving functions of
the class. For simplicity, the initial states of upstream and downstream cells are represented as
u− = (ρ−1 , · · · ,ρ−n ) and u+ = (ρ+

1 , · · · ,ρ+
n ), which are vectors of densities of all vehicle classes.

The flow of the jth vehicle classes across the cell interface is determined as

Fj = min
{

S j(ρ
−
1 , · · · ,ρ−n ), R j(ρ

+
1 , · · · ,ρ+

n )
}
, j = 1, · · · ,n, (16)
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where S j(·) and R j(·) represent the sending and receiving functions of the vehicle class indexed by
j, which are functions of each vehicle class.

In the n–populations model (2), the flow (16) can be simplified to

Fj = min
{

S j(ρ
−
j ,r
−), R j(ρ

+
j ,r

+)
}
, r− =

n

∑
j=1

ρ
−
j , r+ =

n

∑
j=1

ρ
+
j . (17)

It is noted that S j(·) and R j(·) depend on the initial traffic densities of the jth vehicle class ρ
−
j and

ρ
+
j , and the free space remaining for the vehicle class, which can be computed from r− and r+.

The sending and receiving functions are defined as follows:

S j(ρ
−
j ,r
−) =

{
Q j(ρ

−
j ,r
−), if ρ

−
j ≤ ρc

j ,

Qmax
j , if ρ

−
j > ρc

j ,
j = 1, · · · ,n,

R j(ρ
+
j ,r

+) =

{
Qmax

j , if ρ
+
j ≤ ρc

j ,

Q j(ρ
+
j ,r

+), if ρ
+
j > ρc

j ,
j = 1, · · · ,n,

(18)

where Q j(ρ j,r) = ρ jVj(r) is the flux function of the jth class, and ρc
j denotes the critical density

such that Q j(ρ j,r) is maximized for a given initial state, represented by Qmax
j . Letting Vj(·) be the

Greenshields model in the n–populations model, one can calculate ρc
j function explicitly as

ρ
c
j =

rm−∑i6= j ρi

2
, (19)

where rm is the common maximum occupied space for all vehicle classes.

A Two Class Cell Transmission Model with Creeping
Based on (15) and (9), the creeping CTM is posed, where the updating rules of the traffic densities
of both vehicle classes in the cell i are given as


(

ρ
k+1
1,i −ρk

1,i

)
∆x =

(
Fk

1,i−1/2−Fk
1,i+1/2

)
∆t,(

ρ
k+1
2,i −ρk

2,i

)
∆x =

(
Fk

2,i−1/2−Fk
2,i+1/2

)
∆t,

if (ρk
1,i,ρ

k
2,i) ∈D1,

{ (
ρ

k+1
1,i −ρk

1,i

)
∆x =

(
Fk

1,i−1/2−Fk
1,i+1/2

)
∆t,

with ρ
k+1
2,i = ρk

2,i,
if (ρk

1,i,ρ
k
2,i) ∈D2.

(20)

In D1, it is a system of CTMs illustrating the conservation of two vehicle classes. In D2, the
classical CTM is used for the first vehicle class (with smaller size), and the density of the second
vehicle class (with larger size) remains unchanged from the current time t = k∆t to the next time
step t = (k+1)∆t.

Similar as the CTM, the flow is determined by taking the minimum of the sending and
receiving functions, which are studied in detail for each vehicle class. Here, two adjacent cells
with initial states u− = (ρ−1 ,ρ−2 ) and u+ = (ρ+

1 ,ρ+
2 ) are considered.
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Sending and Receiving Functions for the first vehicle class
The flux function of the first vehicle class is defined as

Q1(ρ1,ρ2) = ρ1V1(ρ1 +ρ2), (ρ1,ρ2) ∈D , (21)

where V1(·) is the linear model defined in (8). Based on (18), the sending and receiving functions
of the first vehicle class are defined in the domain D as:

S1(ρ
−
1 ,ρ−2 ) =

{
Q1(ρ

−
1 ,ρ−2 ), if ρ

−
1 ≤ ρc

1(ρ
−
2 ),

Qmax
1 (ρ−2 ), if ρ

−
1 > ρc

1(ρ
−
2 ),

(ρ−1 ,ρ−2 ) ∈D ,

R1(ρ
+
1 ,ρ+

2 ) =

{
Qmax

1 (ρ+
2 ), if ρ

+
1 ≤ ρc

1(ρ
+
2 ),

Q1(ρ
+
1 ,ρ+

2 ), if ρ
+
1 > ρc

1(ρ
+
2 ),

(ρ+
1 ,ρ+

2 ) ∈D ,

(22)

where Qmax
1 (ρ2) = maxρ1 {Q1(ρ1,ρ2)} is the maximum of (21), and ρc

1(ρ2) =
rm

1 −ρ2
2 is the critical

density of ρ1 such that Qmax
1 is obtained. Here, ρc

1(ρ2) > 0 since ρ2 < rm
1 based on the velocity

definition (7) of the creeping model. Note that the maximum flow of ρ1 is a function of ρ2, i.e., the
space occupied by the second vehicle class.

It can be shown that the definition (22) provides physically meaningful solutions of traffic
flow of the first vehicle class. For instance, in the case when ρ

−
1 = 0, i.e., no upstream vehicles

of the first class are available to be sent, one checks that S1 = 0, and therefore F1 = 0. When the
second vehicle class is absent, i.e., ρ

−
2 = 0 and ρ

+
2 = 0, the sending and receiving functions (22)

are consistent with those of the LWR model (14).

Sending and Receiving Functions for the second vehicle class
The flux function of the second vehicle class is

Q2(ρ1,ρ2) = ρ2V2(ρ1 +ρ2), (ρ1,ρ2) ∈D1, (23)

where the velocity function V2(·) is the linear model (8). Note that Q2(·) is only defined for the
non-creeping phase D1, in which both ρ1 and ρ2 evolve. The second vehicle class is stationary in
the creeping phase, and its density remains constant (20). As a result, the sending and receiving
functions for ρ2 are only necessary in the non-creeping phase, and are given by:

S2(ρ
−
1 ,ρ−2 ) =

{
Q2(ρ

−
1 ,ρ−2 ), if ρ

−
2 ≤ ρc

2(ρ
−
1 ),

Qmax
2 (ρ−1 ), if ρ

−
2 > ρc

2(ρ
−
1 ),

(ρ−1 ,ρ−2 ) ∈D1,

R2(ρ
+
1 ,ρ+

2 ) =

{
Qmax

2 (ρ+
1 ), if ρ

+
2 ≤ ρc

2(ρ
+
1 ),

Q2(ρ
+
1 ,ρ+

2 ), if ρ
+
2 > ρc

2(ρ
+
1 ),

(ρ+
1 ,ρ+

2 ) ∈D1,

(24)

where Qmax
2 (ρ1) = maxρ2 {Q2(ρ1,ρ2)}, and ρc

2(ρ1) =
rm

2 −ρ1
2 is the critical density of the second

vehicle class such that Qmax
2 is obtained. Here, the critical density is non-negative ρc

2(ρ1) ≥ 0
in D1. Similar to (22), it can be checked that the flow of ρ2 through a cell interface is physical
meaningful based on the definition of (24). For instance, if ρ

+
1 +ρ

+
2 = rm

2 , i.e., the case when the
downstream cell has no room to receive ρ2, one verifies that the flow of the second vehicle class
vanishes.
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A Discrete Porous Model
For the porous model, a Godunov scheme is presented [17], where the flow of each class is de-
termined by explicitly by analyzing the available number of vehicles available to be sent from
the upstream, and given rules how the vehicles compete for the free spaces at downstream, which
defines the receiving function. In particular, a portion of free space is reserved for smaller vehi-
cles exclusively when the size of pore is not large enough to accommodate large vehicles. The
remaining space is shared by both vehicle classes.

As pointed out in [17], the scheme is distinct from the cell transmission type models be-
cause the distribution of pore spaces evolves with time. Recall the velocity function defined in (3),
two velocity profiles Vf(·) (freeflow) and Vr(·) (restricted flow) are defined for each vehicle class

Vf(s) = vm
j

(
1−

∫ s j

0
g(ω)dω

)αf

, Vr(s) = vm
j

(
1−

∫ s j

0
g(ω)dω

)αr

, j = 1, · · · ,n, (25)

where s j is the critical pore size of the jth class with αf ≤ αr, since Vf ≥Vr. Based on the velocity
definition (3), the velocity function is not deterministic; it depends on the distribution of the pore
size.

A discrete solver for the porous model fits into the framework of multiclass cell transmis-
sion models used in this work by making the following simplifications:

1. The density function of pore spaces is time invariant.

2. A common velocity function is defined for freeflow and restricted flow, i.e., Vf =Vr.

One sees that these assumptions render a fixed velocity density function, and thus the model is
deterministic. A cell transmission model for the deterministic porous model with a uniform density
function, i.e., g(s) = 1

smax(r)
is presented next. Here, smax(·) is the maximum size of the pores, and

is a function of the total occupied space r. In this case, the velocity function of the jth class is

v j(r) = vm
j

(
1−

s j

smax(r)

)
, r = ∑

j
ρ j, j = 1, · · · ,n, (26)

where s j is the critical pore space of the jth class, and smax(·) is a decreasing function.
Next, the sending and receiving functions can be defined, similar as those of the n–populations

model (18). Moreover, the critical density ρc
j is calculated for a given function smax(·). Finally, the

flow of each class is determined by the taking the minimum of sending and receiving functions.

Remark 3. The two class discrete framework of the deterministic porous model is consistent with
the creeping model by assigning a common maximum velocity vm

1 = vm
2 = vm, and choosing the

function smax(·) as
smax(r) =

c
r
, r = ∑

j
ρ j. (27)

where c is a constant model parameter.

Similar to the CTM, ∆x and ∆t are chosen to statisfy the CFL condition, vm ∆t
∆x ≤ 1, where

vm is the speed limit.
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NUMERICAL SIMULATIONS AND COMPARISONS
This section is devoted to illustrate the overtaking and creeping properties of the creeping model
(20) in numerical simulations, and compares it to the n–populations model [16] and the porous
model [17] with two vehicle classes.

For these numerical tests, the following parameters are used for the creeping model:

vm = 1.5, and rm
1 = 1.5, rm

2 = 1.0, (28)

where vm represent the speed limit, and rm
1 and rm

2 are the maximum occupied spaces of the two
vehicle classes.

In the n–populations model, let

vm
1 = 1.5, vm

2 = 1.0, and rm = 1.5. (29)

Here, vm
1 and vm

2 are the maximum velocities of both vehicle classes, and rm is the common maxi-
mum occupied space. Thus, the first vehicle class is assumed to move faster in both models.

Additional model parameters are necessary for the porous model. Here, the deterministic
porous model with a specific choice of the smax(·) such as in [17] is considered. In particular,

smax(r) = λe−cr, (30)

where λ = 4.0, and c is calculated such that the velocity is zero at the maximum occupied space,

i.e., c j =
log λ

s j
rm

j
, j = 1,2. The choice of rm

j is the same as the creeping model. In the velocity
function, let

αf = αr = 1.0, and vm = 1.5. (31)

Moreover, the critical pore sizes are chosen as

s1 = 1.0, s2 = 2.0. (32)

Again, the first vehicle class represents small and fast vehicles.
Furthermore, the computational domain is chosen as x ∈ [0,50], with ∆x = 0.05 and the

time step ∆t is chosen based on the CFL condition, letting

∆t = ∆x/vm, where vm = max{vm
1 ,v

m
2 } . (33)

Example 1: Overtaking
In this test, the larger vehicle class ρ2 begins in front of the smaller class ρ1 at t = 0. The initial
condition for both vehicle classes is given as follows:

ρ1(x,0) =
{

0.8, if x ∈ [1,10],
0, otherwise, ρ2(x,0) =

{
0.8, if x ∈ [11,50],

0, otherwise. (34)

On the boundaries, assume the upstream inflow is zero, and vehicles are allowed to flow out of the
study area freely, i.e., the region downstream of the study region is empty.

As time evolves, the first vehicle class overtakes the second class. At t = 50, all three
models exhibit overtaking (see Figure 2), although the overtaking occurs at different times due to
the structure of the three models. The main result of Example 1 is is that each of the three models
allow one vehicle class to overtake another, which is not possible in homogeneous multiclass traffic
flow models.
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FIGURE 2 : Example 1: an experiment of overtaking. (a) shows the simulation result of the
n–populations model; (b) shows the simulation result of the porous model; and (c) shows the
simulation result of the creeping model. In each figure, the densities of the first vehicle class (thick-
solid-red) and the second vehicle class (thick-dashed-blue), together with the initial condition
(thin-dashed-gray) are shown. All results are given at t = 50.
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FIGURE 3 : Example 2: an experiment of creeping. (a) shows the simulation result of the n–
populations model; (b) shows the simulation result of the porous model; and (c) shows the sim-
ulation result of the creeping model. In each figure, the densities of the first vehicle class (thick-
solid-red) and the second vehicle class (thick-dashed-blue), together with the initial condition
(thin-dashed-gray) are shown. All results are given at t = 200.
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Example 2: Creeping
The next example depicts a scenario when two vehicle classes approach a red traffic light. Here,
the same model parameters are applied as in the Example 1, but a new initial condition is given as
follows:

ρ1(x,0) =
{

0.8, if x ∈ [1,12],
0, otherwise, ρ2(x,0) =

{
0.8, if x ∈ [13,50],

0, otherwise. (35)

This initial condition describes a situation where the first vehicle class starts behind the second
vehicle class. For the boundary condition, the inflow from upstream is zero and the downstream
outflow for both vehicle classes is prescribed as zero to model a red traffic light. Example 2 is
suitable to verify whether a model can capture creeping or not (see Figure 3).

Similar to the previous experiment, overtaking occurs in all models as time evolves, where
the first vehicle class catches up and competes for free spaces with the second vehicle class. For the
second vehicle class, shock waves are triggered from the right boundary and travel backwards into
the computational domain. One observes that the second vehicle class accumulates at the traffic
light.

At t = 200, one observes very different configurations of the density profiles between the
n–populations model (see Figures 3(a)) and the other two models (see Figures 3(b), 3(c)). In the
n–populations model, the road segment adjacent to the red traffic light x ∈ [33,50] is occupied
exclusively by larger vehicles, while traffic on the road segment x ∈ [25,33] is composed by two
vehicle classes. It is clear that the n–populations model does not allow creeping.

In the porous model and the creeping model, the first vehicle class with smaller size is able
to overtake the second vehicle class even through the larger vehicles are stationary due to the red
traffic light. At t = 200, both vehicle classes appear near the right boundary of the study area,
and the smaller vehicle class creeps up to the front of the queue. This test shows that the creeping
model is able to model creeping in a heterogeneous traffic flow, similar to the porous model. This
result is not surprising by noting that the creeping model and the porous model implemented in the
numerical simulation fit into the same framework of the CTM, and they can be rendered identical
by adjusting the setting of the porous model (see Remark 3).

Discussion
Two experiments are performed to show the overtaking and creeping features of the three models:
the n–populations model, the porous model, and the creeping model. Even though both the porous
model and the creeping model allow creeping, one sees that the complexity of implementation for
creeping model (20) is reduced compared to the porous model. This is not surprising, because
porous model [17] provides a more general framework for heterogeneous multiclass models with
creeping. The porous model can allow a choice of two distinct velocity profiles for freeflow and
restricted flow within each vehicle class, the specification of a time dependent distribution of pore
spaces, and the function smax(·) (the maximum pore size and density relationship). The result is
that porous model has potential to capture more complicated dynamics in highly heterogeneous
flow.

However, significant analysis of the general porous model is missing, due in part to its
increased flexibility/complexity. In contrast, the simpler creeping model is shown to be well-
posed [18], which is important to guarantee that the discrete scheme (e.g., (20)) converges to the
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admissible solution of the continuum model, and not an incorrect solution. In general, the well-
posedness of heterogeneous multiclass models tends to be difficult to establish, as illustrated in the
n–populations model [16].

The current paper proposed the discrete version of the creeping model. The accuracy of
model needs to be determined with experimental data to assess the potential for use in traffic
estimation and control applications. This can be done when traffic datasets that classify vehicle
classes are available.

CONCLUSION
In this work, a discrete heterogeneous model for two vehicle classes is developed, which is based
on a multiclass extension of the cell transmission model. The model is designed to model the
creeping scenario when large vehicles are stopped, while smaller vehicles continue to move. To
achieve this goal, velocity functions are introduced that have the same maximum velocity but
distinct maximum occupied spaces. The model is described as a phase transition model where
a 2× 2 system of cell transmission models (in the non-creeping phase) reduces to the classical
cell transmission model (in the creeping phase) as the occupied space increases above a critical
point rm

2 . Finally, numerical tests are performed, and comparisons between the creeping mode, the
two class n–populations model, and the porous model are carried out. These tests show that the
creeping model and porous models can describe both overtaking, and the dynamics of creeping in
heterogeneous flow. Moreover, compared with the stochastic porous model, the creeping model is
deterministic and easier to implement.
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