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A HETEROGENEOUS MULTICLASS TRAFFIC FLOW MODEL
WITH CREEPING∗

SHIMAO FAN† AND DANIEL B. WORK‡

Abstract. A heterogeneous traffic model with two vehicle classes is developed to capture over-
taking and creeping in highly heterogeneous traffic flows. Creeping is a special case of overtaking
that occurs when small vehicles continue to advance in congestion even though larger vehicles have
completely stopped. To motivate the new model, it is shown that a two class homogeneous multiclass
model is equivalent to a class of second order models originally proposed by Aw, Rascle, and Zhang
(ARZ). Based on the properties of the ARZ model, homogeneous models do not allow overtaking or
creeping. The new creeping model is a phase transition model which applies a system of conservation
laws in the noncreeping phase and a system equivalent to a scalar model in the creeping phase. The
solution to the Riemann problem is obtained by investigating the elementary waves, particularly for
the cases when one vehicle class is absent, as well as in the presence of a phase transition. Based
on the proposed Riemann solver, the solution to the Cauchy problem is constructed using wavefront
tracking. Numerical tests are carried out using a Godunov scheme to illustrate the creeping phe-
nomenon. Source code for the numerical simulations is available at https://github.com/shimaof/
heterogeneous-traffic-model.
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1. Introduction. Consider a system-of-conservation-laws model of multiclass
traffic flow in a general framework,

(ρj)t + (ρjvj)x = 0, j = 1, . . . , n,

vj = Vj (�ρ) , with �ρ = (ρ1, . . . , ρn) ,
(1.1)

which describes the conservation of vehicles for n vehicle classes indexed by j. Here,
ρj = ρj(x, t) is the traffic density of the jth class, which depends on both the location
x and time t, and Vj (·) is the corresponding velocity function, which is a function of
the density of each class. In the special case when n = 1, the system becomes the
well-known Lighthill–Whitham–Richards (LWR) model [27, 33], and the flux function
Q(ρ) = ρV (ρ) is a fundamental diagram (e.g., [19, 34]). Thus, the model (1.1) can
be interpreted as a multiclass extension of the LWR model. The existing models for
multiclass traffic flow that fit into framework (1.1) can be classified based on their
assumptions on the interaction rules of different vehicle classes characterized by the
specific form of the velocity functions Vj (·) (see Table 1).

1.1. Homogeneous multiclass models. When all velocity functions are iden-
tical, i.e., vj = V (�ρ), then (1.1) is a homogeneous multiclass model since all vehi-
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814 SHIMAO FAN AND DANIEL B. WORK

Table 1

Classification of multiclass models according to the definition of velocity functions.

Model Velocity vj Overtaking Creeping

Homogeneous
Logghe & Immers [29] vj = V

(∑
i βiρi

)
No No

Daganzo [12] vj = V
(∑

i ρi
)

No No

Zhang & Jin [38] vj = V (ρ1, ρ2) No No

Heterogeneous

Ngoduy & Liu [32] vj = Vj

(
βj

∑
i ρi

)
, Freeflow No

with vj = V in congestion

Fastlane [35] vj = Vj

(∑
i βiρi

)
, Freeflow No

with vj = V in congestion

Wong & Wong [36] vj = Vj

(∑
i ρi

)
Yes No

Zhu et al. [40] vj = vmj V
(∑

i ρi
)

Yes No

n–populations [4] vj = vmj V
(∑

i �iρi
)

Yes No

Nair et al. [31] vj = pVc(s) + (1− p)Vf(s), Yes Yes

p =
∫ sj
0 g(s)ds,

g(s) is distribution of s

Creeping model vj = Vj

(∑
i �iρi

)
, Yes Yes

with Vj(0) = vm

cle classes follow the same kinematic behavior. These models are equivalent to the
Keyfitz–Kranzer system [22] arising in elasticity theory. It is noted that homogeneous
multiclass models are not strictly hyperbolic in general, with exceptions when n ≤ 2
[4, 22].

An example of a homogeneous multiclass model is the Logghe and Immers model
[29], which relates different vehicle classes by a scaling factor known as a passenger
car equivalent (PCE). Accordingly, each class is modeled with a scaled fundamental
diagram with a constant maximal speed, and the velocity function depends on a
weighted sum of the densities of all vehicle classes, called the effective density. Hence,
the velocity function is defined as vj = V (

∑
i βiρi), where βi is the PCE applied to

the ith class. A similar model of this form is Daganzo’s 1-pipe special lane model
[12]. Moreover, Zhang and Jin’s model [38] can be treated as a special case of the
Keyfitz–Kranzer system with n = 2. The multicommodity model [21] can also be
classified as a two-class homogeneous multiclass model, where the two vehicle classes
represent weaving and nonweaving vehicles.

Homogeneous multiclass models with n = 2 are also equivalent to a class of second
order models originally proposed by Aw and Rascle [2] and Zhang [37] (ARZ) when
the velocity is a strictly decreasing function of ρ1 and ρ2 (see section 2). The source-
destination model [16] further applies the ARZ model to a road network, where the
vehicle class is defined by the source and destination of the flow at a junction. A
primary limitation of homogeneous models is that they do not allow one vehicle class
to overtake another [4], which is an important feature for highly heterogeneous flows.

1.2. Heterogeneous multiclass models. Many research efforts are devoted
to the design of heterogeneous multiclass models by distinguishing Vj(·) for each class.
The model by Ngoduy and Liu [32] characterizes vehicle classes by their maximum
velocities, and assumes that the freeflow velocity depends on a PCE-scaled density,
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CREEPING MODEL FOR HETEROGENEOUS TRAFFIC FLOW 815

i.e., vj = Vj (βj

∑
i ρi), where βj is the PCE factor of the jth class. The model

uses the same velocity function for all classes in congestion. The Fastlane model [35]
also supposes that all vehicle classes have distinct velocity functions in freeflow but
the same function in congestion; however, it defines the velocity as a function of the
effective density (e.g., vj = Vj (

∑
i βiρi)). As a consequence, the Ngoduy and Liu and

Fastlane models [32, 35] allow overtaking in the freeflow regime but not in congestion.
Wong and Wong [36] introduced a simplified heterogeneous multiclass model of

the form (1.1) that admits overtaking in freeflow and congestion. The velocity function
of each class is a function of the total density (e.g., vj = Vj (

∑
i ρi)), and they are

distinct except at the jam density. The model of Zhu and Wu [40] also follows the
same principle. Later, Benzoni-Gavage and Colombo [4] introduced the n-populations
model, which extended Wong and Wong’s model [36] by explicitly taking the size
of each vehicle class into account. Instead of explicitly conserving the number of
vehicles, the system expresses conservation of the space occupied by each vehicle class.
Consequently, the velocity function depends on the total occupied space r =

∑
j �jρj ,

i.e., vj = Vj (r), where �j represents the average length of each vehicle class. As
presented in [4], when ρ̂j := �jρj is substituted into the n-populations model, both
models [4, 36] fit into the same mathematical framework:

(ρ̂j)t + (ρ̂jvj)x = 0, j = 1, . . . , n,

vj = Vj(r), with r =

n∑
j=1

ρ̂j .
(1.2)

The models [4, 36, 40] suppose that all vehicle classes either never stop [36],
or stop at a common maximum occupied space rm (or equivalently an effective jam
density), i.e., Vj(r

m) = 0, j = 1, . . . , n. In circumstances when the vehicles are highly
heterogeneous in size, this assumption may be violated. Indeed, one can observe that
at a certain level of congestion, larger vehicles such as cars and buses completely stop,
while small vehicles such as motorbikes continue to move through the gaps between
the large vehicles. This creeping behavior can be interpreted as a special lane which
can be used only by small vehicles.

Remark 1. The creeping phenomenon studied in this work is a special case of
overtaking when the larger vehicle class is completely stopped. The new model not
only allows overtaking in freeflow and congestion when both vehicle classes are moving,
but also captures overtaking even through one vehicle class is stationary.

A heterogeneous multiclass model that allows for creeping is proposed by Nair,
Mahmassani, and Miller-Hooks [31], which also fits into the generic framework (1.2).
In this model, the velocity of each vehicle class is determined by the availability of
empty spaces s (pores) for which vehicles of various sizes compete. Letting sj represent
a critical pore size for the jth class, vehicles may be in freeflow (s ≥ sj) or congestion
(s < sj) with velocity functions Vf(·) and Vc(·), respectively. The overall velocity of
the jth class is

(1.3) vj = Vj (s) =

(∫ ∞

sj

g(ω)dω

)
Vf(s) +

(∫ sj

0

g(ω)dω

)
Vc(s),

where g(·) is the probability density function of the pore sizes for a given time, and
Vc(s) ≤ Vf(s). The creeping property is shown by numerical simulations for a flow with
two vehicle classes, but significant analytical results are missing due to the complexity
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816 SHIMAO FAN AND DANIEL B. WORK

of the model (1.3); e.g., the density function g(s) evolves with time. Interestingly, the
model [31] reduces to a homogeneous multiclass model when Vc(s) = Vf(s).

1.3. Outline and contributions. In this work, a new heterogeneous model is
proposed with several important features: (i) it allows creeping, which permits small
vehicles to move, even when large vehicles have completely stopped; (ii) it permits
overtaking in the noncreeping phase; (iii) it is anisotropic, where information cannot
travel faster than the fastest vehicle class; (iv) it is consistent with the LWR model
when only one vehicle class is present; (v) it is well-posed away from the vacuum, i.e.,
the point where both vehicle classes disappear.

Well-posedness is an important property that has not been established for many
heterogeneous models. The models that assign a unique maximum traffic velocity to
each vehicle class [4, 36] have nonvacuum umbilic points where strict hyperbolicity
is lost [4, 39]. Hence, they do not fit the standard conservation law theory (e.g.,
[7, 23, 24]), which leads to a challenge in proving the well-posedness of the system.
This article presents a different way to distinguish velocity functions that enables
creeping and moves the umbilic point to the vacuum. This simplifies the mathematical
analysis considerably and allows for a well-posed system away from the vacuum.

The main contributions of this article include three aspects: (i) it is first shown
that a two-class homogeneous multiclass model is an ARZ model, which completes
the mathematical analysis associated with these models; (ii) a new two-class hetero-
geneous model that allows overtaking and creeping is introduced; and (iii) a compre-
hensive investigation of the properties of the new model is provided.

The remainder of the article is organized as follows. In section 2, a connection
between the ARZ model and the homogeneous two-class models is introduced. Based
on properties of the ARZ model, homogeneous multiclass models are not appropriate
for overtaking. A new heterogeneous model for two vehicle classes is proposed, and
its properties are outlined in section 3. The mathematical analysis of the model is
presented in section 4, which includes verifying that the model is strictly hyperbolic
away from the vacuum, investigating the elementary waves and using them to con-
struct a Riemann solver, and providing a sketch of the proof of the well-posedness of
the model. Section 5 is devoted to validating the features of the proposed model by
performing numerical simulations and comparisons to the n-populations model.

2. Interpretation of a two-class homogeneous multiclass model as an
ARZ model. As pointed out in [5, 14, 15], the ARZ model can be interpreted as
a second order generalization of the LWR model, which allows for different vehicle
properties such as aggressivity [13]. Recently, a generic framework based on the ARZ
model has been presented [14, 25]:

(ρ)t + (ρv)x = 0,

wt + vwx = 0,

where v = V (ρ, w),

in conservation form

(ρ)t + (ρv)x = 0,

(q)t + (qv)x = 0,

where q = ρw, v = V (ρ, q/ρ).

(2.1)

Here, w represents a property of the traffic that is conserved along vehicle trajectories,
and the velocity function v = V (ρ, w), with ∂ρV < 0, generates a family of flow-density
curves parametrized by w [14, 15]. Note that the condition ∂ρV < 0 is required to
guarantee that system (2.1) is strictly hyperbolic for ρ > 0. In this framework, vehicles
with the property w adjust their spacing s = 1/ρ for a given velocity v, where ρ is
determined such that v = V (ρ, w). An aggressive driver tends to select a smaller
space when traveling at the same speed as a passive driver.
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Similarly, the various interaction behaviors among different classes in multiclass
flow can also be interpreted as an assignment of road space to vehicle classes [30].
Hence, it is possible to link two-class heterogeneous models with the ARZ model.
Consider a multiclass flow that is composed of cars (j = 1) and trucks (j = 2). By
letting ρ = (ρ1 + ρ2) be the total density and defining w = ρ1/ρ as the fraction of
vehicles in the first class, the second equation in (2.1) is simply a conservation law
for the first class, i.e., q = ρw = ρ1. Alternatively, one could define the property as
the fraction of the second vehicle class, i.e., w = ρ2/ρ, to generate a conservation law
for the second vehicle class. Thus, the generic framework of (2.1) in its conservation
form becomes

(ρ)t +
(
ρV (ρ, ρ1/ρ)

)
x
= 0,

(ρ1)t +
(
ρ1V (ρ1, ρ1/ρ)

)
x
= 0.

(2.2)

By subtracting the second equation from the first in (2.2), one obtains Zhang and
Jin’s [38] homogeneous two-class model,

(ρ1)t +
(
ρ1Ṽ (ρ1, ρ2)

)
x
= 0,

(ρ2)t +
(
ρ2Ṽ (ρ1, ρ2)

)
x
= 0,

(2.3)

with Ṽ (ρ1, ρ2) = V (ρ1 + ρ2, ρ1/(ρ1 + ρ2)). Furthermore, one verifies that the require-
ment ∂ρV < 0 in the ARZ model is met under a sufficient condition:

(2.4) ∂ρ1 Ṽ (ρ1, ρ2) < 0 and ∂ρ2 Ṽ (ρ1, ρ2) < 0.

Thus, a two class homogeneous multiclass model of the form (2.3) is equivalent to the
ARZ model under the condition (2.4). Note that v = V (ρ, w), w = ρ1/ρ, generates a
family of velocity curves that is parametrized by the fraction of cars. As the fraction
of cars increases for a fixed total density ρ, the velocity curve shifts upwards.

Note also that Daganzo’s 1-pipe special lane model [12] and the Logghe and
Immers model [29] make the assumption that velocity depends only on the effective
density, and therefore both models are special cases of (2.1). For example, in the
Logghe and Immers model, a PCE β is applied such that ρ = (ρ1+βρ2) with w = ρ1/ρ,
and v = V (ρ1 + βρ2) = V (ρw + ρ(1− w)) = V (ρ). Thus, in the Logghe and Immers
model, the evolution of the density is not affected by the composition of the traffic
flow.

An immediate consequence of these equivalent formulations is that all the ana-
lytical results of the ARZ model (e.g., [2, 25, 37]) transfer over to the models of the
general form (2.3), provided that the velocity function is monotonically decreasing in
the total density. This completes the mathematical analysis of homogeneous two-class
models, e.g., the Logghe and Immers model [29]. Moreover, it also provides insights
into why these models are inappropriate for modeling overtaking. Because the com-
position w is advected with the flow v, w cannot change faster than the speed of
vehicles, which results in the first-in-first-out rule. This justifies the need for making
distinctions in the velocity function among different vehicle classes in order to model
overtaking behavior including creeping.

3. A new heterogeneous model with creeping.

3.1. Model outline. A new two-class model is proposed under the framework
(1.2) in terms of occupied space ρ̂j = �jρj , which distinguishes rm in each vehicle
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Velocity functions of the creeping model

vm

rm2 rm1r
0
0

v
el
o
ci
ty

 

 

velocity of ρ1: V1(r)

velocity of ρ2: V2(r)

(a)

The domain of the creeping model

ρ2

rm2

rm2 rm1ρ1
0
0

D2

D1

 

 

ρ1 + ρ2 = rm2

ρ1 + ρ2 = rm1

(b)

Fig. 1. (a) Velocity functions of the creeping model (3.5). Here, the solid-gray line represents
the velocity of the first vehicle class, and the dashed-blue line is the velocity of the second vehicle
class. (b) The domain of the creeping model (3.5).

class. By allowing rm to vary between vehicle classes, the creeping phenomenon can
be captured. For notational simplicity, let ρj represent the occupied space of the jth
class, instead of using ρ̂j in (1.2). Hence, r = ρ1 + ρ2 is the total occupied space.
Suppose that the first class represents small creeping vehicles, and the second class is
composed of large vehicles.

The new model is posed as a phase transition model [6, 9, 10] that considers two
phases: a noncreeping phase and a creeping phase, which are defined as follows:

D1 =
{
(ρ1, ρ2) ∈ R

2 | ρj ≥ 0, j = 1, 2; 0 < ρ1 + ρ2 < rm2
}
,

D2 =
{
(ρ1, ρ2) ∈ R

2 | 0 ≤ ρ2 ≤ rm2 ; rm2 ≤ ρ1 + ρ2 ≤ rm1
}
.

In D1, the model is a system of conservation laws, where the dynamics of both vehicle
classes can be studied. In D2, the large vehicles are stationary at a time t, and thus
the density remains unchanged; i.e., (ρ2)t = 0. In this case, the system reduces to the
LWR model for ρ1 with the possibility of discontinuous fluxes in space corresponding
to shock profiles of ρ2. Hence, in the special case that the density of one vehicle class
is time invariant, the dynamics of a system of conservation laws can be described
by a scalar conservation law. Thus, D2 represents a creeping phase, and D1 is a
noncreeping phase (see Figure 1(b)). The model is written as

(3.1)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

{
(ρ1)t +

(
ρ1V1 (r)

)
x

= 0
(ρ2)t +

(
ρ2V2 (r)

)
x

= 0
if (ρ1, ρ2) ∈ D1,

{
(ρ1)t +

(
ρ1V1 (r)

)
x

= 0
with (ρ2)t = 0

if (ρ1, ρ2) ∈ D2,

where a phase change is defined between D1 and D2.
Here, the velocity functions Vj(·), j = 1, 2, have the following properties:

V ′
j (r) < 0, Vj(0) = vm, V1(r

m
1 ) = V2(r

m
2 ) = 0, rm2 < rm1 < 2rm2 ,(3.2)

where rmj are the maximum occupied spaces. Moreover, assume that the velocity
functions are strictly decreasing, and both vehicle classes possess a common maximal
speed vm (see Figure 1(a)). The latter assumption is valid when the maximum ve-
locities of different vehicle classes are restricted by a speed limit achievable by both
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classes. The condition rm1 < 2rm2 is a realistic condition on the maximum occupied
space that simplifies the mathematical analysis.

Remark 2. The phase transition models [6, 9, 10] apply a scalar conservation
law in freeflow and a system of conservation laws in congestion. In the creeping model
(3.5), a system equivalent to a scalar model is employed in the creeping phase, and a
system of conservation laws is applied in the noncreeping phase.

Remark 3. By construction, in this model creeping occurs whenever large vehicles
are present and the total occupied space is greater than rm2 , which is independent of
the composition of vehicles. Consider an extreme case when only one or a few large
vehicles are present in a dense stream of small vehicles such that r > rm2 . Clearly,
the large vehicles would also move with the surrounding small vehicles. The current
model cannot capture this behavior since the velocity of the large vehicles depends
only on the total occupied space, i.e., vj = Vj(r). To prevent large vehicles stopping
when a very dense flow is primarily composed of smaller vehicles, the velocity should
depend on the density of each vehicle class explicitly, i.e., vj = Vj(ρ1, ρ2). This
change increases the complexity of establishing properties of the model considerably
compared to the present model, but represents an important future direction in the
development of increasingly realistic creeping models.

The domain D of the model (3.1) is defined as a union of D1 and D2:

(3.3) D =
{
(ρ1, ρ2) ∈ R

2 | 0 ≤ ρj ≤ rmj , j = 1, 2; 0 < ρ1 + ρ2 ≤ rm1
}
,

which has a trapezoidal shape (see Figure 1(b)). Note that the vacuum is excluded
from D.

Based on the assumptions in (3.2), one may propose various velocity functions
to generate multiclass fundamental diagrams, such as Drake’s exponential model, the
smooth three-parameter model [15], or the Greenshields model [19]. Note that some
of these models may generate intersections between velocity curves for r > 0, which
causes a loss of strict hyperbolicity away from the vacuum. This can be avoided
depending on the choice of the free parameters in each model. For simplicity, the
linear Greenshields model is used:

(3.4) V1(r) = vm(1− r/rm1 ), V2(r) = vm(1− r/rm2 ).

The model (3.1) with Greenshields velocity functions (3.4) is written as

(3.5)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

{
(ρ1)t +

(
ρ1v

m(1 − (ρ1 + ρ2)/r
m
1 )
)
x

= 0

(ρ2)t +
(
ρ2v

m(1 − (ρ1 + ρ2)/r
m
2 )
)
x

= 0
if (ρ1, ρ2) ∈ D1,

{
(ρ1)t +

(
ρ1v

m(1 − (ρ1 + ρ2)/r
m
1 )
)
x

= 0
with (ρ2)t = 0

if (ρ1, ρ2) ∈ D2.

By observing Figure 1(a), it is clear that the two velocity profiles intersect only
at the vacuum. As shown later, this simplifies the analysis of the creeping model
compared to intersections elsewhere in the domain. Because the velocity functions
are linear, the deviation between the two velocity functions strictly increases with
r. Alternative velocity functions may be considered to provide more control over
the deviations and to potentially improve the predictive capabilities of the model.
Moreover, one sees that the Greenshields model (3.4) generates a negative velocity for
the second vehicle class for r > rm2 . The creeping model (3.5) successfully excludes
the presence of this nonphysical negative velocity by applying a phase transition.

Remark 4. Another approach one may consider to avoid negative velocity in the
second vehicle class while avoiding the need to pose the creeping model as a phase
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transition model is to redefine the velocity function as

Ṽ2(r) =

{
V2(r) if r ≤ rm2 ,

0 if rm2 < r ≤ rm1 .

This approach is penalized by the loss of strict hyperbolicity for r > rm2 .
Note that (3.5) also reduces to the LWR model in the subdomain D3 = D1 ∩

({ρ1 = 0}∪{ρ2 = 0}) when one vehicle class is absent. Accordingly, it is natural to use
an LWR model in D3 and to define phase transitions between D3 and other domains.
However, this approach significantly increases the complexity in constructing Riemann
solutions among different phases. Moreover, it is unnecessary since the creeping model
(3.5) is strictly hyperbolic in D1, and as shown in subsection 4.5, the creeping model
is consistent with the LWR model in D3.

4. Model analysis. The ultimate goal of the analysis is to show that (3.5) is
well-posed in D, and that the solution is physically meaningful. Here, we analyze the
model properties separately in D1 and D2. This analysis approach is valid because
both domains are invariant, and moreover their union D is also invariant, as shown
later in subsection 4.6.

Well-posedness of a system of conservation laws is shown in a general approach
that is based on constructing a solution to the Riemann problem for (3.5) with piece-
wise constant initial data:

(4.1) u(x, 0) =

{
u+ if x > 0,
u− if x < 0,

where u− =
(
ρ−1 , ρ

−
2

)
and u+ =

(
ρ+1 , ρ

+
2

)
are initial states. Based on the Riemann

solver, the existence theory follows from Glimm’s random choice method [17, 28] and
the wavefront tracking algorithm [1, 7, 8]. These techniques both require a strictly
hyperbolic system of conservation laws. As a result, a first and key issue is to establish
the hyperbolicity of the creeping model (3.5) in D1 and D2.

4.1. Hyperbolicity of the creeping model. First, the hyperbolicity of the
model in D1 is established. The creeping model (3.5) in D1 is rewritten in a compact
form,

ut + f(u)x = 0,

where u = (ρ1, ρ2) is the vector of occupied space by class, and f = (ρ1V1(r), ρ2V2(r))
is the flux function. The Jacobian is calculated as

(4.2) A = ∂f(u) =

(
V1 + α1 α1

α2 V2 + α2

)
,

where α1 = ρ1V
′
1 and α2 = ρ2V

′
2 . Strict hyperbolicity of (3.5) in D1 is established in

the following lemma.
Lemma 4.1. The creeping model (3.5) is strictly hyperbolic in D1.
Proof. The model is strictly hyperbolic if and only if the Jacobian has two distinct

eigenvalues. The characteristic polynomial of A is

P (λ) = det (A− λI) = λ2 − (κ1 + κ2)λ+ κ1κ2 − α1α2,

where κj = vj + αj and αj ≤ 0, j = 1, 2. It is easy to see that P always has two real
roots because

δ = (κ1 − κ2)
2 + 4α1α2 ≥ 0;
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thus, the system is hyperbolic. The only risk to lose strict hyperbolicity is when δ = 0,
which occurs when α1 = 0 and V1 = κ2, or α2 = 0 and V2 = κ1. These conditions
hold only at the vacuum point, which does not belong to D1. Thus, λ1 and λ2 are
distinct in D1, and the creeping model (3.5) is strictly hyperbolic in D1.

Remark 5. Lemma 4.1 also holds for creeping models with velocity functions
satisfying the conditions in (3.2).

The hyperbolicity of the creeping model (3.5) in D2 can also be established fol-
lowing the same procedure as Lemma 4.1 and is omitted for brevity.

Furthermore, the characteristic speeds of (3.5) in D are

λ1 = 0.5
(
κ1 + κ2 −

√
δ
)
, λ2 = 0.5

(
κ1 + κ2 +

√
δ
)
,(4.3)

where λ1 < λ2. The left and right eigenvectors associated to each eigenvalue λ are

(4.4) �λ =

( 1
V1−λ

1
V2−λ

)
, γλ =

( α1

V1−λ
α2

V2−λ

)
.

Note that the forms of the eigenvalues (4.3) and eigenvectors (4.4) are independent
of the composition of vehicles.

The next lemma establishes that the creeping model (3.5) is anisotropic.
Lemma 4.2. The characteristic speeds (4.3) are bounded above by the fastest

vehicle class:

max {λ1, λ2} ≤ max {V1, V2} .
Proof. From (4.3) and the fact that αj ≤ 0, j = 1, 2, the bound for λ1 is given as

λ1 ≤ min {κ1, κ2} ≤ min {V1, V2} ≤ max {V1, V2} .
For the second characteristic, one checks that

P
(
max {κ1, κ2}

) ≤ 0 and P
(
max {V1, V2}

) ≥ 0.

By the intermediate value theorem, the bound for λ2 is established:

(4.5) max {κ1, κ2} ≤ λ2 ≤ max {V1, V2} .
Both λ1 and λ2 are bounded above by max {V1, V2}.

Next, the analysis of the creeping model (3.5) in D1 is presented.

4.2. Property of the characteristic fields in D1. Next, it is shown that the
hyperbolic system (3.5) fits the Lax framework [23] in D1. This is crucial for the
construction of solutions to the Riemann problem, since it implies that the Riemann
solver consists of simple waves (or elementary waves). By the definition of Lax [23],
one needs to check that both characteristic fields (λ (u) , γλ (u)) are either genuinely
nonlinear (∇λ (u) · γλ (u) 	= 0) or linearly degenerate (∇λ (u) · γλ (u) = 0) for all u in
D1. Here, ∇λ denotes the gradient of the function λ (u). The following lemma verifies
that the creeping model (3.5) is a Lax system in D1.

Lemma 4.3. Both characteristic fields of (3.5) are genuinely nonlinear in D1.
Proof. The proof follows the procedure outlined in [4]. Instead of evaluating

∇λ · γλ directly, one defines ϕλ(γλ) as

ϕλ(γλ) = �λ · ∇2f(u) · (γλ, γλ) = (∇λ · γλ) (�λ · γλ) ,
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and checks whether ϕλ(γλ) is nonzero, since (�λ · γλ) 	= 0. One calculates ϕλ as

ϕλ(γλ) = vm/rm1 (λ − V2)

((
γ
(1)
λ

)2
+ γ

(1)
λ γ

(2)
λ

)
+ vm/rm2 (λ− V1)

((
γ
(2)
λ

)2
+ γ

(1)
λ γ

(2)
λ

)
,

where γ
(1)
λ and γ

(2)
λ denote entries of the eigenvector γλ; i.e., γλ =

(
γ
(1)
λ , γ

(2)
λ

)
.

For the slower characteristic λ1, it is clear that γ
(1)
λ1

γ
(2)
λ1

≥ 0 for the eigenvector
γλ1 in (4.4). Moreover, from Lemma 4.2, one sees that ϕλ1 < 0 in D1. Thus, the first
characteristic field is genuinely nonlinear in D1.

For the faster characteristic λ2, ϕλ is rewritten as

ϕλ2(γλ2) = (γ
(1)
λ2

+ γ
(2)
λ2

)
(
vm/rm1 γ

(1)
λ2

(λ2 − V2) + vm/rm2 γ
(2)
λ2

(λ2 − V1)
)
.

Thus, ϕλ2 vanishes if and only if

(4.6) γ
(1)
λ2

+ γ
(2)
λ2

= 0 or vm/rm1 γ
(1)
λ2

(λ2 − V2) + vm/rm2 γ
(2)
λ2

(λ2 − V1) = 0.

The first equality in (4.6) implies κ2 + α1 − κ1 − α2 = 0, which holds when V1 = V2.
This implies that the second characteristic is genuinely nonlinear except at the point
where two velocities coincide, i.e., at the vacuum.

Furthermore, the second equality of (4.6) gives

(4.7) λ2 =
κ2V1 + κ1V2

V1 + V2
.

Based on (4.5), it is clear that λ2 ≥ max {κ1, κ2}. In contrast, (4.7) implies

λ2 =
κ2V1 + κ1V2

V1 + V2
≤ max {κ1, κ2} ,

so

(4.8) λ2 =
κ2V1 + κ1V2

V1 + V2
= max {κ1, κ2} .

This further implies κ1 = κ2, in order for the second equality in (4.8) to hold. More-
over, by (4.3), λ2 = max {κ1, κ2} implies α1α2 = 0. One solves for κ1 = κ2 and
α1α2 = 0. The solution also lies at the vacuum. All together, ϕλ2 = 0 holds only at
the vacuum, which is not in D1. Hence, the second characteristic field is also genuinely
nonlinear in D1.

4.3. Elementary waves in D1. Lemma 4.3 implies that the Riemann solution
of the creeping model can be constructed from shocks or rarefactions in D1. To
construct a Riemann solver, one needs to investigate the geometries of the Lax curves
[23].

The Lax shock curves are computed from the Rankine–Hugoniot condition:

(4.9) σ(u+ − u−) = f(u+)− f(u−),

where σ ∈ R is the speed of the shock. To obtain an admissible solution in the
presence of a shock, the Lax entropy condition [23] should be met:

(4.10) λj

(
u+
) ≤ σj ≤ λj

(
u−) , j = 1, 2,
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Lax shock curves (u0 ∈ D1)

 

 rm2
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rm2 rm1ρ1
0
0

D2

D1

umbilic point

initial points

Lax shock curves

(a)

Lax shock curves (ρ1 = 0)

 

 rm2

ρ2

rm2ρ1 rm1

0
0

D2

D1

umbilic point

1-shock curves
2-shock curves

(b)

Lax shock curves (ρ2 = 0)

 

 

ρ2

rm2

rm2 rm1ρ1
0
0

D2

D1

umbilic point

1-shock curves
2-shock curves

(c)

Fig. 2. Lax shock curves starting at u0 ∈ D1. (a) The case when u0 is interior of D1. (b) The
case with u0 on the ρ2-axis. (c) The case with u0 on the ρ1-axis. In (a), the curves with r > ρ01+ρ02
are marked as red, and those with r < ρ01 + ρ02 are in blue. In (b) and (c), 1-shock curves (gray
curves with square markers) remain in D3 and coincide with the ρ2-axis and ρ1-axis, respectively;
the 2-shock curves (solid-red) are convex and monotonic.

where λj and σj are the characteristic and the shock speed of the jth family.
The Lax rarefaction curves are the integral curves of the eigenvectors. Note that

one can choose various eigenvectors. For simplicity, consider those introduced in [4]:

(4.11) γλ1 =

(
λ1 − κ2 + α1

λ1 − κ1 + α2

)
, γλ2 =

( −λ2 + κ2 + α1

λ2 − κ1 − α2

)
.

These eigenvectors have the advantage of being genuine eigenvectors, i.e., nonvanish-
ing in D. By Lemma 4.2, one sees that

(4.12) γ
(1)
λ1

≤ 0, γ
(2)
λ1

≤ 0; γ
(1)
λ2

≤ 0, γ
(2)
λ2

≥ 0.

4.3.1. Geometry of the lax shock curves. From the Rankine–Hugoniot con-
dition (4.9), Lax shock curves starting from an initial state u0 = (ρ01, ρ

0
2) are

ρ1 (V1 − σ) = ρ01
(
V 0
1 − σ

)
, ρ2 (V2 − σ) = ρ02

(
V 0
2 − σ

)
,(4.13)

where V 0
1 = V1

(
ρ01 + ρ02

)
and V 0

2 = V2

(
ρ01 + ρ02

)
. By solving for σ in the first equation

of (4.13), and substituting it into the second equation, (4.13) can be rewritten as

ρ2
(
(ρ1 − ρ01)V2 −

(
ρ1V1 − ρ01V

0
1

))
= ρ02

(
(ρ1 − ρ01)V

0
2 − (ρ1V1 − ρ01V

0
1

))
.(4.14)

Thus, Lax shock curves starting at u0 are represented as

H(u0) =
{
(ρ1, ρ2) ∈ R

2 | s.t. (4.14) holds
}
.

If u0 ∈ D1 \D3, then (4.14) is a hyperbola, which is convex and monotonic in the
interior of D1. Moreover, 1-shock curves are strictly increasing, while 2-shock curves
are strictly decreasing and exit from the ρ1-axis (see Figure 2(a)).

When u0 ∈ D3, e.g., on the ρ2-axis, (4.14) implies either ρ1 = 0 or σ = V1. In
the former case, (4.14) reduces to the Rankine–Hugoniot condition for an LWR model
applied to the second vehicle class. This is a 1-shock curve that coincides with the
ρ2-axis. In the latter case, the shock speed is the same as the velocity of the first
vehicle class σ = V1. The hyperbola (4.14) for 2-shock curves becomes

(rm2 − rm1 ) ρ2 (ρ1 + ρ2)− rm2 ρ02 (ρ1 + ρ2) + rm1 ρ02
(
ρ01 + ρ02

)
= 0,
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which is convex, monotonic, and exits from the boundary ρ2 = 0 (see Figure 2(b)).
The analysis of the case when u0 is on the ρ1-axis follows the same process, in which 1-
shock curves coincide with the ρ1-axis, and 2-shock curves are convex and monotonic,
exiting from the boundary ρ1 = 0 (see Figure 2(c)).

4.3.2. Geometry of the Lax rarefaction curves. The lemma below gives
the properties for the Lax rarefaction curves. Note that it is not possible to derive
an equation for the rarefaction curves due to the complexity of the eigenvalues and
eigenvectors in the creeping model. Instead, in order to study the properties of the
rarefaction curves, the techniques applied in [4] are used.

Lemma 4.4. (i) the Lax rarefaction curves of (3.5) defined by (4.11) are mono-
tonic and convex in D1\D3; moreover, (ii) the 1-rarefaction curves are monotonically
increasing, while the 2-rarefaction curves are monotonically decreasing in D1\D3; and
(iii) in D3, 1-rarefaction curves coincide with the ρ1-axis and ρ2-axis. In contrast,
2-rarefaction curves coincide only with the ρ2-axis.

Proof. First, the monotonicity of the Lax rarefaction curves follows from (4.12).
To show the concavity properties of the rarefaction curves, it is noted that the cur-
vature of an integral curve is positively proportional to γλj ∧ (∇γλj · γλj ) [4], where
“ ∧ ” represents the exterior product. One calculates that

γλj ∧ (∇γλj · γλj ) =
2(a1 − a2)

(λj − V2)γ
(1)
λj

+ (λj − V1)γ
(2)
λj

(λj − V1)γ
(1)
λj

γ
(2)
λj

(
γ
(1)
λj

+ γ
(2)
λj

)
.

Here, aj = vm/rmj , and a1 < a2 by (3.2). Moreover, one can check that in D1

(4.15) γλj ∧ (∇γλj · γλj ) ≤ 0, j = 1, 2.

By the definition of the eigenvectors (4.12), one sees that the curvature center of each
integral curve lies above the integral curve, which implies that the rarefaction curves
are convex.

Moreover, these curves have zero curvature if the equality in (4.15) holds:

(4.16) γ
(1)
λj

+ γ
(2)
λj

= 0 or λj = V1 or γ
(1)
λj

= 0 or γ
(2)
λj

= 0.

For the 1-rarefaction curves, the conditions in (4.16) are equivalent to

ρ1 = 0, ρ2 > 0 or ρ2 = 0, ρ1 > 0.

In other words, 1-rarefaction curves starting from a point in D3 remain in D3.
For the 2-rarefaction curves, the equality λ2 = V1 in (4.16) gives ρ1 = 0, ρ2 > 0,

and the other equalities in (4.16) are not possible for the creeping model (3.5) in D1.
Thus, the 2-rarefaction curves starting from a point lying on the ρ2-axis coincide with
the ρ2-axis. When starting from a point on the boundary ρ2 = 0, the rarefaction
curves are convex, monotonic, and exit the boundary ρ1 = 0.

Note that a loss of symmetry is present in the last statement of Lemma 4.4. The 1-
rarefaction curves coincide with both the ρ1-axis and the ρ2-axis, while 2-rarefaction
curves coincide only with the ρ2-axis. While symmetry is expected in ARZ-type
models, heterogeneous multiclass models may not have symmetry (cf. [4]).

Based on the discussion in previous sections, the properties of the Lax curves in
D1 have been established. To assure admissible solutions, the Lax entropy condition
(4.10) must be satisfied for shock and rarefaction solutions [4, 39]. In particular, the
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total occupied space r increases along a shock curve, i.e., ρ−1 + ρ−2 < ρ+1 + ρ+2 . In
contrast, rarefaction curves connect a higher r on the upstream to a lower one on the
downstream, i.e., ρ−1 + ρ−2 > ρ+1 + ρ+2 . Hence, the Lax curves that violate the entropy
condition are truncated. For instance, 2-shock curves starting at the boundary ρ2 = 0
connect to smaller r values (see Figure 2(c)); thus, these curves are not admissible.

In summary, the properties of elementary waves for the model are studied in D1.
It remains to analyze the model in the creeping phase D2, where the creeping model
reduces to an LWR model for the first vehicle class, and ρ2 is stationary.

4.4. Model analysis in D2. In D2, the creeping model is rewritten as

(4.17) (ρ1(x, t))t +
(
f1(ρ2(x), ρ1(x, t))

)
x
= 0,

where the flux function f1 = ρ1v
m(1−(ρ1+ρ2)/r

m
1 ) is smooth in ρ1 and ρ2, and ρ2(x) is

a bounded integrable function with a possibly infinite number of discontinuities. The
well-posedness of a hyperbolic conservation law model in the form of (4.17) with initial
data in L1 ∩L∞ is established in [3]. Thus, the creeping model is well-posed in D2,
given that the initial data of the creeping phase belongs to L1 ∩ L∞. Based on the
strict hyperbolicity and the characteristics of the elementary waves of the model in
the noncreeping phase, it is guaranteed that the solutions transitioning from D1 that
serve as the initial data for the creeping phase belong to L1 ∩L∞.

4.5. Riemann solver in D. Recall that the Riemann problem is the building
block for constructing a weak solution to the Cauchy problem for hyperbolic con-
servation laws. Due to the difficulty in obtaining the Riemann invariant [7, 23, 24]
associated with each characteristic field in heterogeneous multiclass models, it is ex-
tremely difficult to construct an explicit Riemann solver [4, 39]. Alternatively, the
existence and uniqueness of a solution to the Riemann problem is established based
on the existing theories. Moreover, as shown later in section 5.1, the lack of an exact
Riemann solver does not cause a problem in the numerical solver.

Following the standard theory for hyperbolic conservation laws, a general solution
to the Riemann problem with piecewise constant initial states (4.1) is defined by first
connecting the left state u− to an intermediate state u* with curves of the first family
(the 1-Riemann invariant is constant along 1-Lax curves), and then connecting u*

to the right state u+ with curves of the second family (the 2-Riemann invariant is
constant along 2-Lax curves).

When both initial states are in D1, one constructs a unique Riemann solution
based on the structure of the Lax curves [23]. Here, it is important to verify that
the solutions are physically meaningful. In D3, an example that gives nonphysical
solutions is considered in the n-populations model [4]. Given an initial condition with
no vehicles of the second type, the solution to the Riemann problem produces an
intermediate state (ρ*1, ρ

*
2) with the presence of the second class, i.e., ρ*2 > 0. This is

clearly incorrect because the second vehicle class appears in the solution when initially
it did not exist. The correct solution should be ρ*2 = 0, and the Riemann solution
should be consistent with the LWR model. The issue illustrated in this example [4]
is due to the loss of strict hyperbolicity in the n-populations model.

One verifies that the creeping model (3.5) is consistent with the LWR model
when only one vehicle class is present. Based on the investigations of the properties
of the Lax curves in section 4.3, 1-Lax curves remain in D3. Therefore, it is clear that
Riemann solutions are consistent with those of the LWR model.

When u− and u+ are in D2, a Riemann problem for the LWR model is solved
(see, e.g., [26]). Thus, to complete the Riemann solver in D, it remains to define a
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solution for phase transitions between D1 and D2. Consider the Riemann problem
(4.1) with u− ∈ D2 and u+ ∈ D1. In order to construct a Riemann solution with
phase transition, one needs to find intermediate states u∗ based on the elementary
waves. Thus, a Riemann solution with two intermediate states is defined:

1. A phase transition is defined by connecting u− = (ρ−1 , ρ
−
2 ) to the phase bound-

ary ρ1+ρ2 = rm2 along a curve that is parallel to the ρ1-axis. It is a rarefaction
curve in the conservation equation for the first vehicle class. This intermedi-
ate state can be solved explicitly as u*

1 = (rm2 − ρ−2 , ρ
−
2 ).

2. The second intermediate state u∗
2 is constructed for a hyperbolic system with

two initial states u∗
1, u

+ ∈ D1.
The construction of a Riemann solution with u+ ∈ D2 and u− ∈ D1 follows the same
procedure.

4.6. Invariance of D. To guarantee a physical Riemann solution [2], one verifies
that D in (3.3) is an invariant region for the Riemann problem. For convenience, the
invariance of the two subdomains D1 and D2 is shown, and then the cases in the
presence of a phase transition are considered.

First, it is easy to check that D1 is invariant since the creeping model (3.5) meets
the sufficient conditions proposed by Hoff [20]. Second, the domain D2 is invariant.
This is because the Lax curves in D2 are parallel to the ρ1-axis, and thus the Riemann
solution remains in D2 given both initial states in D2. Finally, in the presence of a
phase transition, the Riemann solution also remains in D (see section 4.5). It is
concluded that D is invariant. By the invariance of domains, phase transitions never
occur when both initial states are in the same subdomain, either D1 or D2.

Remark 6. The invariance of D excludes the appearance of an intermediate
vacuum state, which exists, for example, in the ARZ model [2, 14].

By the Riemann solver described in section 4.5, the Riemann solution always
depends continuously on the initial data, even with the presence of phase transitions.
Therefore, it can be verified that the size of the wave that connects two initial states∑

(u−, u+) of a Riemann problem is bounded:

(4.18) c · ‖u+ − u−‖ ≤
∑

(u−, u+) ≤ C · ‖u+ − u−‖,
where c and C are given constants.

Next, the well-posedness of the Cauchy problem for the creeping model in D is
established.

4.7. Cauchy problem. Following the theories of phase transition models in
[6, 9, 10], a weak solution to the Cauchy problem of the system (3.5) is defined
following a standard formulation. In particular, the fluxes on the left and right states
are defined when there is a phase change:

f− =

{ ∑
j ρ

−
j Vj(ρ

−
1 + ρ−2 ) if (ρ−1 , ρ

−
2 ) ∈ D1,

ρ−1 V1(ρ
−
1 + ρ−2 ) if (ρ−1 , ρ

−
2 ) ∈ D2,

f+ =

{ ∑
j ρ

+
j Vj(ρ

+
1 + ρ+2 ) if (ρ+1 , ρ

+
2 ) ∈ D1,

ρ+1 V1(ρ
+
1 + ρ+2 ) if (ρ+1 , ρ

+
2 ) ∈ D2,

where the Rankine–Hugoniot condition (4.9) must be satisfied:

σ ·
⎛
⎝∑

j

ρ+j −
∑
j

ρ−j

⎞
⎠ = f+ − f−.
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The existence of an admissible solution to the Cauchy problem of the creeping
model (3.5) is proved by a standard wavefront tracking procedure [1, 7, 8]. Here, a
sketch of the proof is provided. Given a piecewise constant initial state with small
total variation, the front tracking algorithm defines a sequence of piecewise constant
approximations (uk)k>1 by piecing together Riemann solutions at each interface where
two fronts interact for each time step. Based on (4.18), one sees that the total variation
of uk(·, t) is bounded uniformly for arbitrary initial states with small total variation.
Finally, following the Glimm scheme [17, 28], one can construct a subsequence of
approximation solutions that converges to a unique admissible weak solution, which
depends continuously on initial data in D.

4.8. Vacuum problem. The mathematical analysis of the previous sections is
restricted to D, which excludes the vacuum. In practice, vacuum initial states are
physically meaningful, e.g., the downstream of a red traffic light is empty. Thus, an
appropriate model should define a solution to the Riemann problem with an initial
state or both initial states at the vacuum. The latter case is trivial: the Riemann
solution remains at the vacuum. The cases with only one initial state at the vacuum
are explored next.

4.8.1. Upstream vacuum state. One studies the Lax curves emanating from
the vacuum u0 = (0, 0). By the Rankine–Hugoniot condition,

ρ1 = 0, σ = V2 (ρ2) or ρ2 = 0, σ = V1 (ρ1) .

These give 1-shock curves along the ρ2-axis, and 2-shock curves along the ρ1-axis.
Hence, in the case connecting the vacuum on the left to u+ ∈ D1, the shock

solution first connects to an intermediate state on the ρ2-axis with a 1-shock curve
that coincides with the ρ2-axis. A physical interpretation of this case is to consider a
road with a queue of both large and small vehicles at the downstream, and an empty
road at the upstream. By the definition of velocity function (see Figure 1(a)), the
smaller vehicles possess a higher velocity for the same total occupied space r. Thus,
after a short period of time, only the larger vehicle class ρ2 is observable at the back
of the queue because the first vehicle class overtakes them; i.e., ρ∗1 = 0 and ρ∗2 > 0.
Therefore, starting from a vacuum state on the left, the Lax shock curves always
travel along the ρ2-axis and connect with the slower class. Furthermore, one checks
that the shock speed of the 1-shock wave is the same as that predicted by the LWR
model.

4.8.2. Downstream vacuum state. Based on the discussion in section 4.3,
1-rarefaction curves connect to the vacuum along the boundaries ρ1 = 0 and ρ2 = 0.
Thus, the solution to the case with u− ∈ D3 is clear, where u− is connected with the
vacuum along the boundaries ρ1 = 0 and ρ2 = 0. It remains to discuss the case when
u− ∈ D1\D3.

By the features of Lax rarefaction curves (see section 4.3), 1-rarefaction curves
are monotonic, convex, and exit from the ρ2 = 0 boundary. Thus, u− first connects
to an intermediate state on the ρ1-axis via a 1-rarefaction curve. This also has a clear
physical interpretation. As two vehicle classes flow into an empty road, the smaller
vehicle class ρ1 advances to the front of the traffic, since it possesses higher speed for
the same total occupied space r (see Figure 1(a)). Thus, the intermediate state u∗

that connects to the vacuum on the downstream contains only vehicles of the first
class. Moreover, the u∗ and u+ are connected along the ρ1-axis.
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4.8.3. Riemann solver at vacuum. The Riemann solver for the vacuum prob-
lem is summarized as follows.

Case 1: u− is at the vacuum (shock solution):
1. ρ+1 > 0, ρ+2 > 0. This is a shock solution that connects u− to u∗ = (0, ρ∗2) by

a 1-shock curve along the boundary ρ1 = 0, with ρ+1 + ρ+2 > ρ∗2 > ρ+2 , then
connects u∗ and u+ with a 2-shock curve.

2. ρ+1 = 0, ρ+2 > 0. The solution simplifies to a single 1-shock curve that
connects u− with u+ along the ρ2-axis.

3. ρ+1 > 0, ρ+2 = 0. The intermediate state u∗ coincides with the vacuum.
Hence, u− and u+ are connected by a 2-shock curve along the ρ1-axis.

Case 2: u+ is at the vacuum (rarefaction solution):
1. ρ−1 > 0, ρ−2 > 0. In this case, the intermediate state appears on the ρ1-axis;

i.e., u∗ = (ρ∗1, 0) with ρ−1 + ρ−2 > ρ∗1 > 0. Thus, the Riemann solution first
links u− and u∗ with 1-rarefaction, and then connects u∗ and the vacuum
state along the ρ1-axis.

2. ρ−1 = 0, ρ−2 > 0, or ρ−1 > 0, ρ−2 = 0. The left state u− connects to the
vacuum on the right-hand side directly via 1-rarefaction curves.

Case 3: Both initial states are at the vacuum. The solution remains at the
vacuum.

4.8.4. Stability near the vacuum. The stability of the Riemann solver with
initial data near the vacuum is briefly discussed. Riemann solutions are constructed
for a left state perturbed away from the vacuum, and a fixed right state.

1. u− is perturbed to the ρ2-axis, ρ
−
1 = 0, 1 � ρ−2 > 0. The Riemann solution is

composed of a 1-shock curve that connects u− to u* = (0, ρ*2) with ρ+1 +ρ+2 >
ρ*2 > ρ−2 along the ρ2-axis, and then a 2-shock curve that connects u* to u+.

2. u− is perturbed into the interior of D1; i.e., u
− ∈ D1\D3, 1 � ρ−1 > 0, 1 �

ρ−2 > 0. In this case, the 1-shock curve is slightly shifted away from the
ρ2-axis. The structure of the solver is similar to the previous case, and the
deviation between these two solutions is small.

3. u− is perturbed to the ρ1-axis, 1 � ρ−1 > 0, ρ−2 = 0. This gives an interme-
diate state u* = (ρ*1, 0) with ρ*1 > ρ+1 + ρ+2 . First, u

− connects to u∗ along a
1-shock curve that coincides with the ρ1-axis. Second, u

* connects to u+ via
a 2-rarefaction curve.

In the third case, the 1-shock wave has a larger amplitude than the previous two
cases, and the 2-shock wave is replaced by a 2-rarefaction wave. Thus, the structure
of the Riemann solution changes for a small perturbation of the Riemann data. This
may result in a loss of the continuous dependence on the initial data. Consequently,
it is possible to lose well-posedness when the vacuum is involved. Due to the difficulty
of obtaining explicit solutions to the Riemann problems, the well-posedness of the
creeping model in the presence of the vacuum is an open question.

5. Numerical simulations.

5.1. Numerical method. This section is devoted to illustrating the creeping
model (3.5) in numerical simulations, using the Godunov method [18, 26]. The update
rule is given explicitly as

(
ρn+1
1,i

ρn+1
2,i

)
=

(
ρn1,i
ρn2,i

)
− Δt

Δx

((
(F1)

n
i+ 1

2

(F2)
n
i+ 1

2

)
−
(

(F1)
n
i− 1

2

(F2)
n
i− 1

2

))
,(5.1)
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where Δx and Δt are sizes of the space and time step, and ρnj,i represents the density

of the jth class in the ith cell at time t = nΔt. Moreover, (Fj)
n
i− 1

2
and (Fj)

n
i+ 1

2
are

numerical fluxes through the upstream and downstream boundaries of the ith cell
for the jth vehicle class at time t = nΔt. These fluxes are obtained by explicitly
analyzing the sending and receiving potential for each vehicle class as an analogy to
the cell transmission model (CTM) [11]. Note that the CTM can be viewed as a
special case of (5.1) where only one vehicle class is present, i.e., a discretized version
of the LWR model.

In order to develop the new numerical scheme, it is helpful to review the key
elements of the CTM as follows:

1. The evolution equation of the CTM is

ρn+1
i = ρni +

Δt

Δx

(
Fn

i−1/2 −Fn
i+1/2

)
,

where ρn+1
i is the traffic density of the ith cell at the next time step t =

(n+1)Δt and Fn
i−1/2 and Fn

i+1/2 are the inflow and outflow of cell i over the

time interval t = nΔt to t = (n+ 1)Δt.
2. The cell inflow and outflow Fn

i−1/2 and Fn
i+1/2 are each determined by taking

the minimum of the vehicles available to be sent from the cell upstream of the
boundary and the vehicles available to be received by the cell downstream of
the boundary:

Fn
i−1/2 = min

{
S(ρni−1) , R(ρni )

}
, Fn

i+1/2 = min
{
S(ρni ) , R(ρni+1)

}
,

where S(·) and R(·) are known as the sending and receiving functions.
3. The sending and receiving functions are defined based on the flux function

Q(ρ) = ρV (ρ) of an LWR model:

(5.2) S(ρ) =

{
Q(ρ) if ρ ≤ ρc,
Qmax if ρ > ρc,

R(ρ) =

{
Qmax if ρ ≤ ρc,
Q(ρ) if ρ > ρc,

where ρc denotes the critical density where the maximum flux Qmax is ob-
tained. One sees that S(·) gives the maximum possible flow that can be sent
from the upstream cell given the upstream density, and R(·) defines the max-
imum flow that can be received in the downstream cell given the downstream
density.

In [29], a generalization of the CTM to homogeneous multiclass models is pro-
posed. Here, a scheme for a heterogeneous extension of the CTM is developed. Fol-
lowing the CTM framework, the cell boundary flow is the minimum of the sending
and receiving functions, with the extension that the sending and receiving functions
are defined for each vehicle class. For simplicity, the initial states of the upstream and
downstream cells are represented as u− = (ρ−1 , ρ

−
2 ) and u+ = (ρ+1 , ρ

+
2 ). The flows of

the two vehicle classes over a cell boundary are determined as

(5.3) F1 = min
{
S1(ρ

−
1 , ρ

−
2 ), R1(ρ

+
1 , ρ

+
2 )
}
, F2 = min

{
S2(ρ

−
1 , ρ

−
2 ), R2(ρ

+
1 , ρ

+
2 )
}
,

where Sj(·) and Rj(·), j = 1, 2, represent the sending and receiving functions of the
two vehicle classes.

5.1.1. Sending and receiving functions for ρ1. The flux function of the first
vehicle class is defined as

(5.4) Q1(ρ1, ρ2) = ρ1V1(ρ1 + ρ2).
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The sending and receiving functions of the first vehicle class are defined as

S1(ρ
−
1 , ρ

−
2 ) =

{
Q1(ρ

−
1 , ρ

−
2 ) if ρ−1 ≤ ρc1(ρ

−
2 ),

Qmax
1 (ρ−2 ) if ρ−1 > ρc1(ρ

−
2 ),

R1(ρ
+
1 , ρ

+
2 ) =

{
Qmax

1 (ρ+2 ) if ρ+1 ≤ ρc1(ρ
+
2 ),

Q1(ρ
+
1 , ρ

+
2 ) if ρ+1 > ρc1(ρ

+
2 ),

where Qmax
1 (ρ2) = maxρ1 {Q1(ρ1, ρ2)} is the maximum of (5.4) and ρc1(ρ2) =

rm1 −ρ2

2
is the critical density of ρ1 such that Qmax

1 is obtained.

5.1.2. Sending and receiving functions for ρ2. The second vehicle class is
stationary in the creeping phase D2. To capture creeping, the flux function of the
second vehicle class is extended in the following way:

Q2(ρ1, ρ2) = max {ρ2V2(ρ1 + ρ2), 0} .
The sending and receiving functions for ρ2 become

S2(ρ
−
1 , ρ

−
2 ) =

{
Q2(ρ

−
1 , ρ

−
2 ) if ρ−2 ≤ ρc2(ρ

−
1 ),

Qmax
2 (ρ−1 ) if ρ−2 > ρc2(ρ

−
1 ),

R2(ρ
+
1 , ρ

+
2 ) =

{
Qmax

2 (ρ+1 ) if ρ+2 ≤ ρc2(ρ
+
1 ),

Q2(ρ
+
1 , ρ

+
2 ) if ρ+2 > ρc2(ρ

+
1 ),

where Qmax
2 (ρ1) = maxρ2 {Q2(ρ1, ρ2)} and ρc2(ρ1) =

rm2 −ρ1

2 is the critical density of
the second vehicle class such that Qmax

2 is obtained.
It can be shown that the numerical scheme (5.1) generates numerical fluxes that

are consistent with those given by the Riemann solver. In D1, by checking the propa-
gating directions of shock or rarefaction waves predicted by the model (3.5), the flux
through each cell boundary is consistent with that predicted by the numerical scheme
(5.3) based on the sending and receiving of vehicles. In D2, (5.1) collapses to the
CTM [11]. Furthermore, it can be verified that the numerical solver is consistent with
the creeping model with phase transitions, e.g., F2 = 0, if u+ ∈ D2.

To avoid interactions of waves from neighboring Riemann problems, the time step
should satisfy the CFL condition: vm Δt

Δx ≤ 1.

5.2. Numerical simulations and comparisons. Numerical simulations are
performed to illustrate the properties of the creeping model, and the results are com-
pared with those of the n-populations model [4] with two vehicle classes. For these
numerical tests, the parameters for the two models are selected such that the maxi-
mums of the maximum velocities and effective jam densities of two vehicle classes are
the same. Hence, the following parameters for the creeping model are used:

vm1 = vm2 = 1.8 and rm1 = 1.8, rm2 = 1.0.

In the n-populations model, let

vm1 = 1.8, vm2 = 1.0, and rm1 = rm2 = 1.8.

Here, vm1 and vm2 are the maximum velocities, and rm1 and rm2 are the maximum
occupied spaces of the two vehicle classes.

Note that both models provide the freedom to choose model parameters. For
instance, the creeping model is able to capture creeping as long as the maximum
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Fig. 3. Example 1: An experiment of overtaking. (a) The traffic state of the n-populations
model at t = 50; (b) the numerical results of the creeping model at t = 33. In each figure, the
densities of the first vehicle class (thick-solid-gray) and the second vehicle class (thick-dashed-black),
together with the initial condition (thin-dashed-red), are shown.

velocity is unique and the maximum occupied spaces are distinct. This is desirable
since one can adjust these parameters when traffic data is available for calibration. In
order to highlight the properties of the creeping model, the gap between the maximum
occupied spaces of two vehicle classes is made large enough to generate more clear
creeping behaviors.

Furthermore, the computational domain is chosen as x ∈ [0, 50], with Δx = 0.05,
and the time step Δt is chosen based on the CFL condition Δt = Δx/vm, where
vm = max {vm1 , vm2 }.

5.2.1. Example 1: Overtaking. In this test, the larger vehicle class ρ2 is in
front of the smaller class ρ1 at t = 0. The initial condition for both vehicle classes is
given as follows:

ρ1(x, 0) =

{
0.9 if x ∈ [1, 10],
0 otherwise,

ρ2(x, 0) =

{
0.9 if x ∈ [11, 20],
0 otherwise.

On the boundaries, assume that the upstream inflow is zero, and vehicles are allowed
to flow out of the study area freely; i.e., the downstream of the study region is empty.

As time evolves, the small vehicle class overtakes the large class. Both the n-
populations model [4] and the creeping model (3.5) exhibit overtaking (see Figure 3),
although it is initiated at different times due to the structures of the two models and
the selected parameters. For the n-populations model, one can clearly observe that
all small vehicles have overtaken the large vehicles at x = 31 by t = 50. A similar
overtaking result is observed at x = 26 and t = 33 in the creeping model. Note that
in the creeping model all traffic states remain in D1.

5.2.2. Example 2: Creeping. The next example depicts a scenario when two
vehicle classes approach a red traffic light. Here, the same model parameters are
applied as in Example 1, but a new initial condition is given as follows:

ρ1(x, 0) =

{
0.7 if x ∈ [1, 19],
0 otherwise,

ρ2(x, 0) =

{
0.7 if x ∈ [20, 50],
0 otherwise.

The initial condition again describes the situation where the small vehicle class starts
behind the larger vehicles. For the boundary conditions, the upstream inflow is set
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Fig. 4. Example 2: An experiment with creeping. (a) and (c) are the simulation results of
the n-populations model at t = 33 and t = 150, respectively. (b) and (d) exhibit the results of the
creeping model at t = 33 and t = 150, respectively.

to zero, so that no new vehicles enter the domain. The downstream outflow for both
vehicle classes is also set to zero to model a red traffic light. Example 2 is suitable to
illustrate the main difference between the n-populations model [4] and the creeping
model (see Figure 4).

Initially, the larger vehicle class is in front of the smaller vehicle class at a total
occupied space below the maximum occupied space. At time t = 33, overtaking is
observable in both models (see Figures 4(a), 4(b)), where the smaller vehicle class
catches up and competes for free spaces with the larger vehicle class. For the larger
vehicle class, shock waves are triggered from the right boundary and travel backwards
into the computational domain, and large vehicles accumulate at the traffic light in
both models.

In the n-populations model, a unique stationary point for both vehicle classes is
assumed at rm = 1.8. Thus, the small vehicles that arrive at the end of the stationary
queue composed of large vehicles cannot advance by creeping since the space has
been completely occupied by large vehicles (see Figure 4(a)). In contrast, the creeping
model uses different maximum occupied spaces for the two vehicle classes. As a result,
the large vehicle class that arrives at the red traffic light earlier reaches the stationary
point of its own class, i.e., rm2 = 1.0 (see Figure 4(b)), but small vehicles may still
advance.
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Fig. 5. Phase transition interface in the time-space plane for Example 2. The light-red region
denotes the creeping phase, while the dark-blue region is the noncreeping phase.

At time t = 13, the front of the small vehicle class begins to meet the end of
the stationary queue of the large vehicle class located around x = 35. At this point,
a phase transition occurs from the noncreeping to the creeping phase, and creeping
begins to occur (see Figure 5). As the lead vehicle of the creeping class continues to
slowly advance, the points in the domain x > 35 begin to transition into D2. Similarly,
as the queue of large vehicles continues to grow, and higher densities of small vehicles
progress forward, points x < 35 also transition to D2 before eventually transitioning
back to D1 when the creeping vehicles have completely passed.

At t = 150, one sees very different configurations of the density profiles in the
two models (see Figures 4(c), 4(d)). In the n-populations model, the road segment
adjacent to the red traffic light x ∈ [42, 50] is occupied exclusively by larger vehicles,
while traffic on the road segment x ∈ [32, 42] is composed of two vehicle classes. It is
clear that the n-populations model does not allow creeping, while the creeping model
allows the smaller vehicles to overtake the second vehicle class even through the larger
vehicles are stationary due to the red traffic light. Thus, this test shows that the new
model is appropriate to model creeping in a heterogeneous traffic flow.

6. Conclusion. In this work, a new heterogeneous model for two vehicle classes
is developed, which is based on the philosophy that vehicles with different sizes oc-
cupy different spaces on the roadway. The model is designed to capture the creeping
scenario when large vehicles are stopped while smaller vehicles continue to move. To
achieve this goal, velocity functions are introduced that have the same maximum
velocity but distinct maximum occupied spaces. The model is described as a phase
transition model where a 2 × 2 system reduces to the LWR model as the occupied
space increases above a critical point rm2 . A Riemann solver is defined across the
phase transition. Finally, numerical tests based on the finite volume Godunov scheme
are performed, and comparisons between the creeping model and the two class n-
populations model are carried out. These tests show that the creeping model can
not only describe overtaking behavior, but also model the dynamics of creeping in
heterogeneous flow.
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