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This article proposes a method to quantitatively measure the resilience of transportation
systems using GPS data from probe vehicles such as taxis. The granularity of the GPS data
necessary for the method is relatively coarse; it only requires coordinates for the beginning
and end of trips, the metered distance, and the total travel time. The method works by
computing the historical distribution of pace (normalized travel times) between various
regions of a city and measuring the pace deviations during an unusual event. Periods of
time containing extreme deviations are identified as events. The method is applied to a
dataset of nearly 700 million taxi trips in New York City, which is used to analyze the city
transportation infrastructure resilience to Hurricane Sandy. The analysis indicates that
Hurricane Sandy impacted traffic conditions for more than five days, and caused a peak
delay of two minutes per mile. Practically, it identifies that the evacuation announcements
coincided with only minor disruptions, but significant delays were encountered during the
post-disaster response period. Since the implementation of this method is very efficient, it
could potentially be used as an online monitoring tool, representing a first step toward
quantifying city scale resilience with coarse GPS data.

� 2017 Published by Elsevier Ltd.
1. Introduction

1.1. Motivation

In recent years, many quantitative and qualitative methods have been proposed to determine resilience of transportation
infrastructure (Matherly and Langdon, 2014; Faturechi and Miller-Hooks, 2014; Konstantinidou et al., 2014a,b). When dis-
asters and other extreme events occur, critical infrastructure may fail, incurring large human, economic, and environmental
costs. This is especially relevant for urban transportation infrastructure, since it is crucial for city evacuations and emergency
services in post–disaster environments. Empirical methods are needed to quantitatively monitor the transportation infras-
tructure in terms of its ability to withstand and recover from such events.

The goal of this article is to develop and implement a method for measuring resilience of city-scale transportation net-
works using only publicly available GPS data (e.g., available from taxis). The technique is designed with the following char-
acteristics. First, the method can be applied at the city-scale, or larger. Because extreme events such as hurricanes have the
ability to affect an entire city, it is important to examine impacts at a high-level city view, rather than the level of individual
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vehicles or streets. Second, the method measures network performance quantitatively, in terms of recovery time and peak
pace deviations. Recovery time and peak performance degradation are standard quantities of interest in the resilience liter-
ature (Aven, 2011; Haimes, 2009b). While travel times are a natural performance measure for transportation networks, we
instead use pace, or travel time per mile. This normalization accommodates the varied length of taxi trips within a city. Third,
the method accommodates inherent variability in traffic conditions and data. The estimate of the state of traffic in a city con-
tains noise and errors due to data availability and many unmodeled human factors. As a result, the method evaluates events
that cause statistically significant disruptions, in order to separate the signal from the noise. Finally, the method is compu-
tationally tractable. Since taxi trips occur very frequently in large cities, the amount of data available for analysis is large. In
order to be tractable, the computation should be OðNÞ, where N is the number of taxi trips, and ideally require only one pass
through the raw data. Of practical significance, these single-pass algorithms could also be used to process the data in a real-
time stream.

1.2. Related work

In recent years, the study of resilience has gained popularity in the systems engineering community. Haimes (2009a,b,
2011) gives a framework for assessing resilience, which focuses on modeling a system and the possible outcomes of various
events. He asserts that a resilient system should suffer only slight degradation during an event, then rapidly recover. Reed
et al. (2009) note that the quality of service abruptly drops during an event, then exponentially decays back to typical values.
They suggest that an appropriate resilience measure is the integral of this exponential curve. Authors in the related field of
risk analysis emphasize the importance of unknown factors while assessing resilience (Aven, 2011; Kaplan and Garrick,
1981).

Though there is no precise consensus on the definition of resilience, peak disruption and recovery time are consistently
discussed quantities. In other words, peak disruption measures how far the quantity of interest deviates from typical values,
and recovery time measures how long it takes to return to typical values. Most of these works also emphasize that resilience
must be measured with respect to a given event and quantity of interest. For example, one case study used the number of
functioning nodes in a power grid as the quantity of interest, assessing resilience against hurricanes and minor events
(Ouyang et al., 2012).

Several authors have proposed quantities of interest for transportation systems. Omer et al. (2013) proposed a method
which measures the resilience of a road-based transportation network in terms of travel times between cities. Chang and
Nojima (2001) evaluated a post-earthquake transportation network in terms of accessibility and coverage. This is partly
based on an accessibility metric devised by Allen et al. (1993), which considers travel times between various regions of a
city. Thus, travel time is a standard quantity on which to measure resilience. This article will use the related quantity of pace,
or travel time per mile. A comprehensive set of measures for transportation system resilience can be found in the review by
Faturechi and Miller-Hooks (2014). The interested reader is directed to the related reviews on evacuation modeling (Murray-
Tuite and Wolshon, 2013) and post disaster planning and management (Konstantinidou et al., 2014a,b) for a more complete
picture of transportation system resilience, evacuation, and post-disaster response.

A distinct set of studies use large amounts of data to extract useful information about urban systems. The works most
closely related to resilience are the studies by He and Liu (2012) and Zhu et al. (2010), which measure the effect of the I-
35 W bridge collapse in Minneapolis in 2007. Geroliminis and Daganzo (2008) use loop detector data, combined with 500
GPS vehicles to extract macroscopic traffic properties from an urban-scale transportation network. Other works use GPS
traces of mobile devices to analyze movement patterns of crowds during typical days and atypical events (Calabrese
et al., 2010, 2011). Castro et al. (2012) present a method for inferring current and future traffic states from taxi GPS data.
Zheng et al. (2011) propose a method that tracks taxi trips between various regions of a city and identifies flawed urban
planning, while Zhan et al. (2016a) empirically measure the (in)efficiency current taxi systems. Another study measures
temporal patterns in the density of taxi pickups and dropoffs to identify the social function of various city regions (Qi
et al., 2011). They point out that unusual output can be used to detect events like holidays. Chen et al. (2012) specifically
focuses on identifying anomalous taxi trajectories, in order to detect fraud or special events. Ferreira et al. (2013) created
a graphical querying tool which can be used to count taxi trips between arbitrary geometrical regions as a function of time.
They noted the drop in the frequency of taxi trips during Hurricane Sandy and Hurricane Irene, pointing out that the Irene-
related drop was more significant, but the Sandy-related drop was longer lasting. By examining pace, we confirm that Hur-
ricane Sandy had a longer recovery time, but find the contrasting result that Hurricane Sandy also has a more significant peak
disruption.

1.3. Outline and contributions

The contributions of this work are as follows. In Section 2, a method is proposed to use taxis as pervasive city-scale resi-
lience sensors. This method detects unusual events and measures them in terms of peak disruption and recovery time. It
introduces paces between regions of the city as the key performance measure, and it uses the historical pace distribution
to detect and measure extreme events. In Section 3, the method is applied to a four-year dataset from New York City to iden-
tify and compare properties of events such as Hurricane Sandy. Of practical significance, the analysis identifies minor atyp-
ical traffic is observed pre-Sandy, contrasted with the extreme conditions observed post-Sandy. Conclusions and future work
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is summarized in Section 4. As a technical contribution, all data (Donovan and Work, 2014) and source code1 used in this
analysis is made publicly available.
2. Methodology

2.1. Overview

The proposed technique to measure city-scale resilience of the transportation network in response to various events by
examining taxi trip data is constructed in three steps. In Section 2.2, individual taxi trips are aggregated by origin-destination
pairs in order to measure typical paces between various regions of the city. This aggregation technique makes it possible to
extract city-scale features at various points in time, since it is difficult to measure resilience from individual trips. Section 2.3
imposes a one-week periodic pattern on the paces. Defining the variance across weeks as a probability distribution allows for
a description of typical behavior that accounts for noisy day-to-day variations. Finally, Section 2.4 uses these distributions to
quantify how typical or atypical the pace is at a particular point in time. Atypical times (e.g., the 5% most unlikely points in
time) are flagged as events, and they are examined in more detail.

2.2. Extraction of time-series features from aggregated trips

In the first stage of analysis, trips are grouped by their geographic locations and times of occurrence. More specifically, the
city is divided into k regions, for example defined by census tracts or neighborhoods. This allows each taxi trip to be labeled

as belonging to one of k2 unique origin-destination pairs. Time is discretized into hours, so a large sample of trips can be
gathered at any point in time. The start zone, end zone, and departure time are used to partition all of trips into subsets.
The variable Ti;j;t denotes the set of all trips from zone i to zone j at time t, where t is an absolute time in hours with the
convention that t ¼ 0 refers to the first hour of the dataset:
1 sou
Ti;j;t ¼ rjoðrÞ 2 zðiÞ;dðrÞ 2 zðjÞ; bsðrÞc ¼ tf g: ð1Þ

In (1), oðrÞ is the origin of trip r; dðrÞ is the destination of trip r; zðiÞ is the geographic region of zone i, and bsðrÞc is the start

time of trip r rounded down to the hour using the floor operator b�c. The start time of the trip sðrÞ is recorded by the taximeter,
and is typically reported to the nearest minute. It is assumed that i and j are both in f0;1; . . . ; k� 1g. Once these subsets of
trips are defined, macroscopic traffic features can be extracted from them. Of particular interest is the expected travel time
between two regions. However, travel times of individual vehicles between the same two regions are not equal, due to the
varying lengths of trips that connect the regions. Much of the travel time variation can be accounted for by normalizing
against the trip distance before averaging the trip, which results in a quantity called the average pace (Daganzo, 1997;
Saberi et al., 2014).

On a single road segment, the average pace of traffic is equal to the inverse of the Edie’s generalized average speed (Edie,
1963; Daganzo, 1997), which satisfies the relation that the flow is the product of the density and speed. When derived at the
network scale, the pace Pði; j; tÞ, of taxis from zone i to zone j at time t is computed as the ratio of the total duration of all trips
to the total distance of all trips as follows:
Pði; j; tÞ ¼
P

r2Ti;j;t uðrÞP
r2Ti;j;t lðrÞ

; ð2Þ
where uðrÞ is the travel time of trip r and lðrÞ is the metered length of trip r. When calculated according to (2), the pace is
simply the inverse of the speed as defined for the macroscopic (network) fundamental diagram (Saberi et al., 2014).

Note also that the average pace (2) can be interpreted as a weighted average of the individual trip paces:
Pði; j; tÞ ¼
P

r2Ti;j;t uðrÞP
r2Ti;j;t lðrÞ

¼
P

r2Ti;j;t lðrÞ
uðrÞ
lðrÞP

r2Ti;j;t lðrÞ
¼

P
r2Ti;j;t lðrÞpðrÞP

r2Ti;j;t lðrÞ
; ð3Þ
where pðrÞ ¼ uðrÞ
lðrÞ is the pace of trip r.

For a fixed value of t, all k2 distance-weighted average paces collectively form the mean pace vector, denoted aðtÞ 2 Rk2 .

This vector is a function of time, and contains the k2 pace values at a particular point in time. Specifically, the nth element is
given by
aðtÞn ¼ P
n
k

j k
;n mod k; t

� �
; ð4Þ
where n 2 f0;1;2; . . . ; k2 � 1g.
rce code available at: https://github.com/Lab-Work/gpsresilience.

https://github.com/Lab-Work/gpsresilience
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It is desirable to use pace as the performance metric instead of the more traditional measure of vehicle counts, since the
goal is to measure traffic conditions during extreme events. If the flow of vehicles between two regions drops significantly, it
is difficult to determine whether this is due to increased congestion or decreased demand. However, an increase in pace indi-
cates congestion, while a decrease in pace indicates decreased demand. Although the pace of taxis might be a biased estimate
of the pace of all vehicles, it is assumed that if taxis are stuck in traffic jams, so are the other vehicles around them. In sum-
mary, we follow a standard assumption that the taxi travel times are sufficiently representative to infer the true traffic con-
ditions on the roadway (Zhan et al., 2013). Practical validation of this assumption is difficult due to limited urban sensing
infrastructure or the public availability of large GPS datasets for personal vehicles.

2.3. Identification of city-scale typical behavior

The mean pace vector, aðtÞ, has a strongly periodic weekly pattern. During rush hour, the pace is high, especially in dense
downtown regions, and at night the pace is low. On weekends, the rush hour is less extreme. However, the mean pace vector
has some variance around this periodic pattern, so it is viewed as a distribution conditioned on time. For example, the mean
pace vector for all Tuesdays at 3 pm will be different, with larger derivations during an unusual event. To facilitate this
grouping, the reference set Qt is defined for all times t. This set contains all of the mean pace vectors which occur at the same
point in the periodic pattern as aðtÞ, except for aðtÞ itself. Intuitively, when deciding how typical the traffic data is at time t,
that data should not be used as part of the definition of typical. Since there are 168 h in a week, the reference set can be
defined as
Qt ¼ faðhÞjh � t mod 168; h – tg: ð5Þ

The reference set Qt makes it possible to compute the expected value of the mean pace vector lðtÞ as well as the covari-

ance matrix RðtÞ. This covariance matrix is important because it quantifies the noisy day-to-day fluctuations in the mean
pace vector, outside of the event at hand, and how the dimensions correlate. The time-dependent sample mean and covari-
ance matrices can be defined as:
lðtÞ ¼ 1
jQt j

X
a2Qt

a

RðtÞ ¼ jQtj
jQtj � 1

X
a2Qt

aa>

jQt j
� lðtÞlðtÞ>

� �
:

ð6Þ
Note the presentation of the nonstandard but equivalent calculation of the sample covariance matrix is used for compu-
tational benefits when working with datasets too large to fit into memory, as discussed later in Section 3.2. If an indepen-
dence assumption is desired, the diagonal components of these matrices can be extracted. However, it is likely that many of

the k2 dimensions of aðtÞ are highly correlated, so the full covariance matrix is used for the remainder of the analysis. For
example, trips that start or end in the same region often have highly correlated paces. Together, lðtÞ and RðtÞ define the first
two moments of a probability distribution, conditioned on time.

2.4. Detection of deviations from typical behavior

Intuitively, lðtÞ captures the expected traffic conditions at a particular point in time. If the observed traffic conditions are
significantly far from this expectation, then those conditions are classified as an extreme event. The covariance matrix RðtÞ is
also considered; if there is typically very little deviation from lðtÞ, then a large deviation is even more extreme. In one
dimensional cases, this is typically addressed by standardizing the data via a z-score. In higher dimensions, the generalized
z-score is called the Mahalanobis distance (Mahalanobis, 1936). For this analysis, the Mahalanobis distance for an observed
mean pace vector is viewed as a function of the time that the observation occurred:
MðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðaðtÞ � lðtÞÞ>RðtÞ�1ðaðtÞ � lðtÞÞ

q
: ð7Þ
This time-dependent Mahalanobis distance serves as an outlier score for observations at various points in time. Note that
it normalizes the deviations in each dimension by the corresponding variances, and also considers correlations between
dimensions. The Mahalanobis distance is a natural way of measuring outliers in multivariate normal data, and it has shown
to be useful even when the data is not normal (Warren et al., 2011). In fact, the multivariate generalization of Chebyshev’s
inequality gives an upper bound on the probability of observing a Mahalanobis distance greater than some fixed value
(Navarro, 2014). In other words, it is unlikely to observe a datapoint with a high Mahalanobis distance, regardless of the dis-
tribution. So, when MðtÞ rises above a given threshold, an unusual event is detected. The event is declared complete when
MðtÞ returns to a value lower than the threshold. In this work, the choice of the threshold is the 95% quantile ofMðtÞ, but this
value can easily be lowered to detect smaller events or raised to detect only the most severe events.

The function MðtÞ is a fairly noisy, which means that it can occasionally thrash over the threshold. In other words, MðtÞ
may rise above the threshold, then immediately drop back below it, effectively breaking the event into two pieces. To pre-
vent this, consecutive events separated by fewer than six hours are merged. Fig. 1 illustrates this process.
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Fig. 1. Demonstration of event detection. Events are detected when MðtÞ goes above the threshold, but thrashing often occurs. The top graph shows that
this thrashing causes events to be divided into several pieces. For this reason, events with fewer than six hours between them are merged, as shown in the
bottom graph.
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Once the recovery time of an event is computed, other properties can be computed. For example, it is possible to compute
the maximum pace deviation, or the slowest type of trip during the event. Thus, each event can be described with a set of
meaningful statistics. Comparisons between various events make it possible to describe which types of events the city can
easily endure, and where there is room for improvement. For longer-lasting events like Hurricane Sandy, it is possible to
examine different stages of the event in greater detail.

3. Application to hurricane sandy with New York City taxi data

In this section, the previously described methodology is applied to a dataset of New York City taxi trips. This dataset,
which was obtained through a Freedom of Information Law (FOIL) request, covers four years of operation and details nearly
700 million trips. Many events are detected within this four year span and compared quantitatively. Special attention is
given to the Hurricane Sandy and some interesting properties are discovered.

3.1. The dataset

The New York City data used in this work details every yellow taxi trip that occurred in the city between 2010 and 2013
inclusive. The dataset contains 697,622,444 trips, which requires 180 GB to store in a PostgreSQL database. Each trip records
the pickup and dropoff dates, times, and coordinates, as well as the metered distance reported by the taximeter. The trip data
also includes fields such as the taxi medallion number, fare amount, and tip amount which are not relevant to the present
analysis. Table 1 contains a small subset of this data for reference, and the full dataset is made publicly available (Donovan
and Work, 2014) in CSV format with this manuscript. The dataset only includes trips occupied by a passenger, and does not
include (empty) roaming trips in search of passengers.

Since the data contains only two coordinates for each trip, the quality is lower than GPS data collected by traffic moni-
toring companies, which contain the location of vehicles at periodic rates up to once per second. In spite of the lack of inter-
mediate waypoints in the data, the methods presented in this article are able to analyze the city-scale resilience of the traffic
conditions.

As with many large datasets, the taxi trip data contains errors. Some errors are easy to identify, such as pickup or dropoff
coordinates of ð0; 0Þ, or trips with metered distances in excess of one million miles. Other errors are identified by examining



Table 1
A small subset of the data used in this analysis. Each row corresponds to an occupied taxi trip.

Pickup datetime Dropoff datetime Duration (sec) Distance (mi) Pickup lon Pickup lat Dropoff lon Dropoff lat

2013-05-01 00:02:11 2013-05-01 00:14:28 737 2.9 �74.00 40.74 �74.01 40.71
2013-05-01 00:02:12 2013-05-01 00:12:31 618 1.8 �74.00 40.73 �73.98 40.72
2013-05-01 00:02:12 2013-05-01 00:07:39 326 1.3 �73.97 40.76 �73.96 40.77
2013-05-01 00:02:13 2013-05-01 00:04:35 141 0.6 �73.99 40.75 �74.00 40.75
2013-05-01 00:02:14 2013-05-01 00:04:09 115 0.5 �73.98 40.75 �73.99 40.74

338 B. Donovan, D.B. Work / Transportation Research Part C 79 (2017) 333–346
the consistency of redundant information contained in each trip. For example, the winding factor is computed as the metered
distance divided by the straight-line distance between the pickup and dropoff coordinates. Trips with a winding factor less
than one are geometrically impossible, although values slightly less than one are permissible due to errors in the GPS posi-
tioning data.

Other trips are discarded because they are not informative to the analysis of traffic conditions. For example, a winding
factor of five or more is technically possible, but it indicates that the driver did not proceed directly to the destination. These
trips are ignored because their paces might be corrupted by the traffic conditions in other unknown regions. Table 2 shows
the thresholds used in each filter as well as the quantity of trips that violate the threshold. Fig. 2 shows the distribution of the
trip data for each filtering metric. Overall, 11% of the data is discarded in this step. Other data reconciliation steps not
detailed here (e.g., unit conversions) allowed additional erroneous data records to be cleaned and used in the analysis.

3.2. Computational issues

Due to the size of the dataset, an efficient software implementation of the analysis is crucial. This section discusses the
algorithmic and practical aspects of the analysis, using the New York City taxi dataset as an example. In this way, concrete
figures can be used for quantities like runtime or data size. More general concepts like time complexity do not depend on the
dataset.

The overarching concern when performing any analysis on the dataset is due to its size (i.e., 180 GB), which is too large to
store in memory of most commodity computers available today. Consequently all calculations must be performed in an
online or streaming setting, where only a small subset of the data is loaded into memory at a given time. For larger datasets,
a fully distributed computing framework may be required.

The first step described in Section 2.2 is the most computationally expensive. All of the 697,622,444 individual trips are
aggregated into 35,064 mean pace vectors, and consequently t 2 0; . . . ;35;063f g. Recall that there are a total of
4� 365� 24þ 24 ¼ 35;064 hours in a 4 year dataset (including a leap day). Since the trip data is sorted chronologically,
it is possible to compute these mean pace vectors in a single pass. Recall from (2) that the mean pace computation involves
the sum of trip durations and the sum of trip distances. Thus, these two sums are initialized to zero for each of the origin-
destination trips. Each time a trip is read from the file, the relevant sums are incremented. The error filtering from Section 3.1
can also be performed at this stage, so an additional pass of the dataset is not required. When the start hour of the current
trip (rounded) is greater than the start hour of the previous trip, the sums are complete for the previous hour. The mean pace
vector is computed by division and output, then the sums are reset to zero. Thus, the computation is one large loop over the

entire dataset. A short pseudocode is given in Algorithm 1. Note that NUM_TYPES is the total number of trip types (i.e., k2).

Algorithm 1. Online Mean Pace Vector Extraction.
prev_hour :¼ �1
 . Start at beginning of time

sum_duration :¼ zeros(NUM_TYPES)
 . Initialize sums to 0

sum_distance :¼ zeros(NUM_TYPES)
 . Initialize sums to 0

for all trip 2 chronological_trips do
 . Loop over all trips

while trip.hour > prev_hour do� �
 . If previous hour is complete:

output prev hour; sum duration

sum distance
 . Output mean pace vector

sum_duration :¼ zeros(NUM_TYPES)
 . Reset sums to 0

sum_distance :¼ zeros(NUM_TYPES)
 . Reset sums to 0

prev_hourþ ¼ 1
 . Advance to next hour
end while

if trip.isValid() then
 . Data filtering

i category(trip.pickup, trip.dropoff)
 . Determine trip type

sum_duration[i] þ ¼ trip.duration
 . Update distance sum

sum_distance[i] þ ¼ trip.distance
 . Update duration sum
end if

end for



Table 2
The error thresholds that are applied to various features of the dataset. The last column shows the percentage of trips that violate each threshold. Some trips
may violate multiple feature thresholds.

Feature Lower threshold Upper threshold Portion of errors (%)

Latitude (Degrees) 40.65 40.9 3.61
Longitude (Degrees) �74.05 �73.85 3.91

Straightline Distance (Miles) 0 8 3.18
True Distance (Miles) 0 15 1.97

Winding Factor 0.95 5 6.04
Duration (Minutes) 1 60 0.89

Pace (Min/Mi) 0.667 60 0.45
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Fig. 2. Distributions of individual features of taxi trips. Simple thresholds are used to filter trips that contain errors, or are otherwise uninformative. Note
that the straightline distance is the Euclidean distance between start and end coordinates, while the metered distance is the value returned by the odometer.
The winding factor is the metered distance divided by the straightline distance. A winding factor less than 1 is geometrically impossible, and a large value
indicates that the taxi did not proceed directly to its destination.

B. Donovan, D.B. Work / Transportation Research Part C 79 (2017) 333–346 339



340 B. Donovan, D.B. Work / Transportation Research Part C 79 (2017) 333–346
Since each trip is accessed only once, the computation is OðNÞ, where N is the total number of trips. The computation of
each hour time-slice is independent, making it possible to employ parallel processing if the data is partitioned ahead of time.
The analysis was implemented in python and run on an 8-core 2.5 GHz machine with 24 GB of ram. The extraction of all
35,064 mean pace vectors took about 75 min, using roughly 40 MB of RAM for each of the eight processes. The fact that
the runtime is much shorter than the real timespan of the dataset combined with the single-pass property means that this
preprocessing could be performed in realtime. In other words, this system could realistically collect trips as they occur,
update the relevant sums, then output the mean pace vector at the end of the hour.

The remaining computations involve mean pace vectors instead of raw trip data. They also have linear time complexity
and are much faster than the preprocessing. Recall from (5) and (6) that, at a particular hour, the mean and covariance need
to be computed for all hours in the periodic pattern except that hour. The naive implementation of this calculation has a quad-
ratic time complexity, since each mean pace vector much be compared against every other mean pace vector. However, it is
possible to compute all of these quantities in linear time. Instead of directly computing the mean of all values except aðtÞ, the
sum of all values including aðtÞ is computed up front. Then, in the loop, aðtÞ is subtracted from this sum. Formally, the inclu-
sive reference set, Qtþ, is defined in a similar way to (5), except that it includes the mean pace vector aðtÞ. In other words,
Qtþ ¼ faðhÞjh � t mod 168g ¼ Qt [ faðtÞg: ð8Þ

Unlike the reference set from (5), the inclusive reference set is identical for values of t that occur at the same point in the

periodic pattern. Thus, Qtþ and the sum of all vectors in Qtþ only need to be computed once. To compute the sum of all vec-
tors in Qtþ except aðtÞ, it is sufficient to subtract aðtÞ from this sum. Thus, the mean computation can be written as
lðtÞ ¼ 1
jQt j

X
a2Qt

a ¼ 1
jQtþj � 1

X
b2Qtþ

b

0
@

1
A� aðtÞ

0
@

1
A: ð9Þ
A similar technique is used for the sum of outer products in the covariance computation (6). This method avoids redoing
most of the addition in each iteration, allowing for a significant improvement on large datasets. Once lðtÞ and RðtÞ are com-
puted,MðtÞ can be computed in constant time. Thus, the entire operation runs in linear time. On the samemachine, this com-
putation ran in less than 30 s, producing the timeseries ofMðtÞ. Again, this operation would be feasible in a real-time system.
However, it is worth noting that it may be desirable to re-generate old values of MðtÞ in light of new information.

Once MðtÞ is generated, the event detection described in Section 2.4 can also be performed in linear time. Events and
spaces between events are stored as a linked list, where each node contains the start time and end time. Scanning through
MðtÞ chronologically, a new node in the linked list is generated each timeMðtÞ crosses above or below the threshold. Then, to
remove short spaces between events, this linked list is iterated upon. Each time a non-event node of less than the desired
duration is discovered, that node and its two neighbors are replaced with one larger node. On the same machine as the pre-
vious computations, it took less than one second to perform the event detection.
3.3. Extraction of pace features

The map of New York City is first split into four large regions, shown in Fig. 3. For the remainder of the analysis, the zones
will be referred to in the following way: Upper Manhattan (U),Midtown (M), Lower Manhattan (L), and East of the Hudson River
(E). Note that the Eastern region is connected only by bridges and tunnels and thus problems with this infrastructure will
tend to increase travel times between this region and others. Specifically relevant to Hurricane Sandy is the Lower Manhat-
tan region, since it experienced severe flooding and power outages. Choosing four large regions in this way satisfies the first
goal outlined in Section 1.1 because it defines meaningful city-scale properties. Instead of looking at every street in New York
in detail, it defines large areas with key geographic and infrastructural properties. The travel times between these regions
reflect the overall performance of city-scale transportation infrastructure. It is worth noting that the methodology allows
for an arbitrary choice of regions, which can be chosen manually or automatically via graph clustering techniques. The pre-
sent implementation chooses zones manually to aid interpretation of the results. The regions are also selected to study areas
where the taxis typically operate, and consequently some regions (e.g., Staten Island) are not included in the analysis due to
the lack of taxi trips to/from the region.

Recall that a taxi can take one of 16 possible trips between these regions. Aggregating these trips by type and hour as in
Section 2.2 produces the 16-dimensional mean pace vector, aðtÞ, at all points in time. Fig. 4 shows three typical weeks of
mean pace vectors (as identified by visual inspection of the Mahalanobis distance time series), revealing the expected weekly
periodic pattern assumed in the analysis. Note the data from these three weeks are only used for illustration purposes and
not in any formal analysis.

Several elements of the pace vector over the four year dataset are estimated with an extremely large number of trips (e.g.,
10% of the elements in the pace vector time series have more than 3200 trips), while 80% of the elements have more than 225
trips in the given hour. At the extreme tail, we find 97% of the elements are estimated with more than 50 trips in the hour,
and 99.9% of the elements in the pace vector time series have at least 10 trips.



Fig. 3. Division of New York City into four large regions denoted U, M, E, and L. A random sample of 0.01% of the taxi trips in 2012 are shown. Pickups
locations are marked in green, and the corresponding dropoffs are marked in red. The majority of trips occur in Manhattan, with especially high
concentration in the Midtown region. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)
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3.4. Analysis of events

As detailed in Section 2.3, the expected behavior is generated for all times t according to lðtÞ and RðtÞ. An interesting way
to view the mean pace vector aðtÞ is by standardizing it, element by element, producing the standardized pace vector. The ith
element of this vector is given by
SðtÞi ¼
aðtÞi � lðtÞiffiffiffiffiffiffiffiffiffiffiffiffi

RðtÞi;i
q : ð10Þ
Intuitively, the standardized pace vector tells how many standard deviations away from the mean the pace of each cat-
egory of trips is at time t. In other words, it is possible to identify the trips that are going slower or faster than expected, and
how significant this difference is. Fig. 5 shows the standardized pace vector during the week of Hurricane Sandy. This figure
gives some intuition on the behavior of various regions of the city during and after the hurricane. It also includes labels indi-
cating the occurrences of various phases of the event, obtained from a post-Sandy study by Kaufman et al., 2012. The most
notable finding is that the slowest traffic occurred on Wednesday October 31st, almost two days after the hurricane struck
land. On this day, some airports, buses, and commuter rails attempted to resume normal service, but much of the infrastruc-
ture was still damaged (Kaufman et al., 2012).

However, it is even more surprising that Midtown-to-Lower Manhattan and Lower Manhattan-to-Lower Manhattan tra-
vel times are significantly lower than expected during this time. The pace of these trips remains almost five standard devi-
ations below the mean until Saturday the 3rd, despite the severe flooding and power outages in Lower Manhattan. The fact
that a hurricane can actually make traffic move faster in some areas of the city indicates that the usage of the infrastructure
changed. It is likely that the hurricane decreased demand on the transportation network in Lower Manhattan until the infras-
tructure recovered.

This standardized pace vector gives a meaningful interpretation of unusual travel times between various regions of the
city. However, it fails to account for correlations between these typical travel times i.e., the off-diagonal elements of RðtÞ. In
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Fig. 4. The mean pace vector, aðtÞ for three typical weeks, starting on April 4, 2010. A periodic pattern is observable, with high paces during rush hour.
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contrast, the Mahalanobis distanceMðtÞ considers the full covariance matrix. As described in Section 2.4, events are detected
whenMðtÞ goes above a threshold for a significant period of time. Fig. 6 shows this process, along with the average pace of all
taxis. Note Fig. 6 also indicates that the disruption caused by Hurricane Sandy actually begins in the late evening of October
28, nearly 24 h before the storm hit the city. Fig. 5 gives further insight as to why the Mahalanobis distance is extreme during
this period, namely that the traffic conditions were generally much faster than would be typically expected during those
times.

Table 3 shows the top ten events, sorted by duration. At the top of the list is Hurricane Sandy, taking over five and a half
days for travel times to return to normal, which is more than three times the recovery time of Hurricane Irene. The longer
duration of Hurricane Sandy agrees with the results of Ferreira et al. (2013), which showed that the total number of Man-
hattan taxi trips returned to normal more quickly during Hurricane Irene than Hurricane Sandy. At its worst, Sandy added
over two minutes to each mile driven by taxis in the city, while Irene added less 40 s. This is in contrast to the results of
Ferreira et al. (2013), which showed that the peak drop in the number of taxi trips was greater during Hurricane Irene.
The blizzard of December 2010, while shorter, added four minutes of travel time to each mile at its peak.



Standardized Pace Over Time − Week of Hurricane Sandy

Sandy Hits Land

Weather Improves

Partial Metro
Service Resumes

Carpool Restrictions

Power Restored

10−28 10−29 10−30 10−31 11−01 11−02 11−03

L−L
L−M
L−U
L−E
M−L
M−M
M−U
M−E
U−L
U−M
U−U
U−E
E−L
E−M
E−U
E−E

Standardized Pace (Z−Score)

−5 −4 −3 −2 −1 0 1 2 3 4 5
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Hurricane Sandy. Missing data (hours where there are less than five occurrences of a given trip) are marked with black Xs.
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legend, the reader is referred to the web version of this article.)
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Table 3
Comparison of New York City transportation infrastructure resilience to the 10 longest events. The duration in hours, and the maximum/minimum pace
deviation in minutes/mile is given for each event. Note that a positive number indicates a delay while a negative indicates a decreased pace. The final column
indicates which of the 16 trips most frequently had the highest standardized pace during the event. Labels for events (the first column) are determined
manually.

Event Start time Duration (h) Max (min/mi) Min (min/mi) Worst trip

Sandy 2012-10-28 21:00:00 132 2.25 �1.6 E?M
Blizzard 2010-12-26 13:00:00 112 4.41 0 M?M
Blizzard 2011-01-31 08:00:00 49 2.04 0 E? E
Irene 2011-08-27 13:00:00 43 0.64 �1.66 E? E

Unknown 2013-10-12 03:00:00 33 1.09 0 E? L
Blizzard 2013-02-08 06:00:00 26 1.54 �0.58 E? E
Blizzard 2010-02-10 06:00:00 24 0.67 �1.01 E? E

New Years 2012-12-31 15:00:00 20 1.42 �2.66 E?M
Memorial 2011-09-09 08:00:00 19 1.66 0 U? U
Blizzard 2011-01-28 02:00:00 18 2.57 0 L? L
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Note it is difficult to evaluate the accuracy of the results in Table 3, since the true severity of each event is not known. If a
training set of events is available, one could raise or lower the detection threshold until the desired balance between type I
and type II errors is reached.
4. Conclusions and future work

This analysis has shown that it is possible to detect and measure the effects of unusual events on transportation infras-
tructure using only taxi GPS data. This is a first step toward assessing and improving city-scale resilience. Of key importance,
the method is extremely low cost, because it does not require the installation of any additional sensors beyond GPS data
streams available from GPS equipped fleet vehicles such as taxis, or personal navigation services. This method proposes com-
puting origin-destination paces, or average travel time per mile between various regions of the city. The effects of various
events are quantified by the sizes and durations of pace deviations from typical values. Importantly, this measurement is
done in a probabilistic way, so significant events can be distinguished from random day-to-day fluctuations.

The main benefit of the method is that it is quantitative, and can presumably be applied to any city with large volumes of
GPS trip data. The main limitation of the method is that it only provides a partial view of the resilience of the infrastructure.
For example, it does not indicate the actual state of the physical infrastructure (e.g., if an individual road segment is damaged
or destroyed), or the demand placed on the infrastructure (e.g., the number of people in the city desiring travel over the
infrastructure). Similarly, the method only indicates the magnitude and duration of the disruption, it does not indicate
why a particular event recovers faster or slower than another. Regardless, it does represent a practical step towards building
comprehensive real-time analytics for measuring infrastructure resilience.

The proposed method is applied to a dataset from New York City, and Hurricane Sandy is analyzed in detail. The analysis
shows this was the longest event in the four year dataset, and one of the most severe in terms of peak pace deviation. At its
worst, Hurricane Sandy caused over two minutes of delay per mile, but actually resulted in faster traffic for most of its dura-
tion. Most interestingly, the spike in delay occurred two days after the hurricane struck. This post-disaster traffic congestion
was extreme, suggesting that more traffic management might be necessary following an event. The analysis of an extreme
event like Hurricane Sandy demonstrates the ability of the proposed method to capture and describe atypical city-scale
properties of the transportation network.

Several extensions to the methodology are anticipated in our future work. In this work, the origin-destination regions are
manually selected to aid interpretation. Automatic region identification is potentially possible by leveraging recent advances
in road graph partitioning (e.g., the patented algorithm of Delling et al. (2011)) to emphasize travel times of trips crossing
connection-critical infrastructure. It is also possible to apply the outlier-detection methods to other types of paces. For exam-
ple, instead of measuring paces between various origin-destination zones, one may desire to compute approximate paces on
each link of the network graph. Algorithms exist which can estimate link travel times (for example Hunter et al., 2009; Zhan
et al., 2013; Santi et al., 2014; Zhan et al., 2016b), but they are computationally expensive for large datasets. If the same
outlier-detection methods are applied to link-level pace data, it is possible to examine whether such a heavy computation
is necessary. If the results are unchanged, the simpler method presented in this article may be sufficient. Otherwise, an
higher resolution approach may provide additional insight, for example by explicitly including the network structure from
the road graph.

We also note the current method does not allow direct comparison of some holidays that occur on a fixed date, such as
Independence Day (4 July) in the US, because it appears on different days of the week in the dataset, Practically, identifying
an extreme holiday compared to the typical holiday would require significantly more data, since only four observations of
the holiday are present in the current dataset. Regardless, extensions that directly exploit the temporal structure of the traf-
fic patterns is an interesting future direction.
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We emphasize that the method as presented is a static analysis and does not account for changes like gradual increases in
travel demand or changes in the infrastructure capacity. As more data becomes available, it may both be possible and nec-
essary to de-trend the data. Alternatively, old data can be discarded, and the method could be rerun using the most recent
years only. Such techniques are conceptually straightforward extensions that may require additional practical engineering
effort to implement them in a computationally efficient framework.

Finally, application of the methodology across multiple cities would enable resilience comparisons both across event
types within a city, as well as the same event type across different cities. We note that our preliminary efforts to acquire
taxi data in other large cities in the US have been initially unsuccessful, for example due to the fact that the data is stored
by the payment processors that manage the credit card readers in the taxis, and not the city. It is however currently possible
to acquire suitable taxi datasets in other parts of the world (Zhang et al., 2015; Yuan et al., 2010).
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