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Abstract

During a pandemic such as COVID-19, managing public transit effectively becomes a critical
policy decision. On the one hand, efficient transportation plays a pivotal role in enabling the
movement of essential workers and keeping the economy moving. On the other hand, public
transit can be a vector for disease propagation due to travelers’ proximity within shared and
enclosed spaces. Without strategic preparedness, mass transit facilities are potential hotbeds
for spreading infectious diseases. Thus, transportation agencies face a complex trade-off
when developing context-specific operating strategies for public transit. This work provides
a network-based analysis framework for understanding this trade-off, as well as tools for
calculating targeted commute restrictions under different policy constraints, e.g., regarding
public health considerations (limiting infection levels) and economic activity (limiting the
reduction in travel). The resulting plans ensure that the traffic flow restrictions imposed
on each route are adaptive to the time-varying epidemic dynamics. A case study based
on the COVID-19 pandemic reveals that a well-planned subway system in New York City
can sustain 88% of transit flow while reducing the risk of disease transmission by 50 %
relative to fully-loaded public transit systems. Transport policy-makers can exploit this
optimization-based framework to address health-and-economic trade-offs and make proactive
transit management plans during an epidemic outbreak.
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1. Introduction

Operating public transit amid post-peak and post-epidemic periods is a double-edged
sword: on the one hand, it provides basic and low-cost mobility services to those not own-
ing cars or who place environmental concerns at the center of commuting decisions; on the
other hand, human mobility, especially commuting by mass transit, contributes to the spa-
tial propagation of infectious disease. Policy-makers face this health-and-economic trade-off
when lifting the restrictions and restarting public transit systems during the unprecedented
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COVID-19 pandemic. There is evidence (van Dorn et al., 2020; Cohen and Kupferschmidt,
2020) that the epidemic outbreak had a disproportional impact on mass transit operators
and passengers compared with other groups of the population. McLaren (2020) jointly ana-
lyzed census and mortality data and found that a significant portion of the racial disparity
in COVID-19 deaths could be attributed to the use of public transit.

Due to safety concerns, many countries have implemented a temporary closure of transit
systems (Lewnard and Lo, 2020); in some countries, ridership of public transit has dropped
up to 90% (Amekudzi-Kennedy et al., 2020; DeWeese et al., 2020). While the potential risk
of epidemic exposure inside subway carriages or buses has been well-recognized (Feng et al.,
2020), there is a lack of scientific knowledge about the corresponding prevention strategies.
This work aims to answer a critical question frequently raised by transportation agencies
and researchers: How to control traffic flows in public transit networks to improve safety
and preparedness during periods of spreading infection?

To answer this question, we first model the spread and mitigation of a particular epidemic
disease through public transit networks using a metapopulation compartment model. The
risk of disease transmission associated with public transit depends on the characteristics of
the disease and the intervention policies implemented across the entire environment being
modeled (Figure 1). In particular, we focus on movements between residences and work
locations.1 We propose a mathematical-programming based approach for designing targeted
public transit policies, with the intent of minimizing the public health risk while maximizing
mobility, in the context of dynamically evolving epidemics. We show that by applying
targeted interventions on high-risk transit routes and regions, most inelastic travel demand
can be satisfied while the spatial propagation of the infectious disease is restrained.

Figure 1: Illustration of transmission of infectious disease in public transit; Susceptible population is under
the risk of infection in public-transit commuting trips and contacts in home and work regions.

1We do so for simplicity of exposition and due to the detailed movement data available in this context.
The model presented can be easily generalized to include other movements.
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1.1. Objectives and main contributions

This work focuses on optimizing the commute networks’ operations under disruptions
caused by emerging infectious diseases. We are specifically interested in controlling the
mobility patterns with dual objectives – providing reliable access to public transit services
while slowing the communicable disease invasion.
The main contributions of this work are:

1. Developing an optimization-based analysis by integrating the spatial epidemic model
and the commute network model.

2. Providing a forward-backward iterative method to solve the large-scale transit traffic
control policies and obtain insight for effective interventions.

3. Investigating the optimal subway route operations plans in Manhattan, New York City
(NYC) and evaluating the impact on COVID-19 pandemic transmission.

The method developed in this work can be applied to any infectious disease that can
be potentially transmitted through public transit services, e.g., risk of aerosol and contact
transmissions inside vehicles. The spatial epidemic model on the commute networks captures
the influence of two most commonly implemented regulations: quarantine policies (popu-
lation with severe symptoms is forced to stay at home) and social-distancing policies on
public transit. Our work is one of the first attempts to investigate the transit traffic control
policies with monitoring feedback considering the combined effects of repetitive commuting
patterns and epidemic dynamics. The model developed in this work requires access to only
publicly-available data and thus can be easily adopted by local transportation agencies to
make data-driven responsiveness and preparedness plans.

1.2. Related work

There is a resurgence of interest in modeling the disease contagion processes associated
with recurring commuting trips. The development of advanced metapopulation network
models coincides with the pattern of increasingly frequent epidemics in recent years. Keeling
et al. (2010) initiated the stream of network models for the spatial spreading of infectious
disease in the commuter-to-work networks. They addressed that the infection dynamics in
the recurrent commute networks were significantly different from their counterparts in the
kernel and random mobility networks. Balcan and Vespignani (2011) drew a similar conclu-
sion, whereas the diffusion rate and recurrent commuting rate jointly determine whether or
not the global spreading of the infectious disease occurs. Bichara and Iggidr (2018) analyzed
how the heterogeneous groups, patches, and mobility patterns affect the disease prevalence
by a multi-group compartment model. Since the individual’s commuting patterns are no
longer random, Yashima and Sasaki (2016) found that the commute networks’ topological
characteristics such as the networks’ degree distribution become relevant. When the degree
of networks follows a heavy-tailed distribution, the disease invasion threshold decreases sig-
nificantly. Hence, the epidemic is not preventable by merely random interventions such as
quarantine and vaccination. Therefore, studying the relationship between commute networks
and disease dynamics is of interest to epidemiology and transportation research.

A vast body of literature has extensively investigated transportation networks’ operations
after disruptions (e.g., natural disasters) and incidents such as strikes and epidemics as
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in this work. As transportation systems are essential for the functioning of cities after
disruptions, their resilience has become a key design principle (Zhou et al., 2019). This
stream of work focuses on enhancing the networks’ ability to maintain operations during the
disruptive period or minimize the required resources for recovery. Note that the enhancement
of transportation networks’ resilience is only a derivative of measurements in prior work.

In an attempt to identify the risk of taking public transit during the outbreak of COVID-
19, an infectious disease with millions of confirmed cases globally, Mo et al. (2020) proposed
an individual encounter model that characterizes the transmission of the disease on public
transportation facilities. As an agent-based model, the encounter model captures the proba-
bility of contact between individuals and thus evaluates the risk of transmitting disease from
an infectious person to a susceptible one. They calibrated the model using the smart card
data from Singapore. Using a similar approach, Qian et al. (2020) conducted a cross-city
comparison of the contact networks using the smart card data from China. They constructed
a universal generation model to explain the correlation between the metro contact network’s
properties and the risk level of transmissible diseases. Note these prior works all use the
contact networks as the epidemic model to capture the social activity contacts; thus, rich
trajectory data is required for model fitting. More importantly, these models only studied
the spreading of the infectious disease in transit, ignoring the interactions between com-
muters and other residential population. Considering the short commuting period compared
with other activities during the day, separating these two populations does not capture the
long-tail implications of controlling traffic patterns. As a result, these models may under-
estimate the value of public transit intervention policies. Chang et al. (2020) combined the
metapopulation model and commute networks to explain why the infection rates among dis-
advantaged groups were higher than the rest. Compared to agent-based models such as the
individual encounter model, metapopulation models require access to demographic survey
data that is normally publicly available.

Previous research typically only investigated the descriptive and predictive models, whereas
this work aims to develop a prescriptive model for transit networks. The remaining paper
is organized as follows. Section 2 blends the advances in the metapopulation epidemic mod-
els with the network fortification models. The resulting optimization lays the foundation
for making transportation policy that balances the need to return to normal activities and
prevent public health hazards. Section 3 derives general rules for managing public transit
under public health measures. Section 4 implements this model in a case study of New York
City’s subway systems and tests the public transit control policy’s impact on spreading the
contagious disease. Section 5 draws the final conclusion.

2. Methodology

2.1. Metapopulation model for commute networks

This work focuses on the recurring commuting trips, which account for 79% of all transit
trips in the United States (including work and school trips) (Lee and Hickman, 2014). Com-
muting remains the primary demand for traveling during the epidemic period and revives
rapidly in reopening the economy (Wang et al., 2020; Hu et al., 2020).

The commute mobility patterns are mainly modeled by the following three approaches.
First, we may model the movement in urban commute networks on the individual level.
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Reconstructing the contact networks requires access to massive human motion trajectory
data notwithstanding (Mo et al., 2020). Tracking passengers’ use of public transit and
alternative modes is costly. Thus, any control policies derived from the contact networks are
slow to implement, occasionally impossible due to privacy concerns, and biased due to the
limited electronic device users.

The second approach for modeling traveling patterns is random mobility models. These
models assume that passengers follow certain movement distributions such as random walk
over the network. Nevertheless, prior work has revealed that recurring commute trips (i.e.,
individuals take the fixed routes back and forth) significantly impact the disease dynamics
and the derived control policies (Keeling et al., 2010). Therefore, random mobility models are
not suitable for public transit applications and developing safe and effective transit control
policies based on movement data.

A third option that is promising is the use of metapopulation models. First, conventional
transportation planning has been using basic geography units such as traffic analysis zones
(TAZ) or census tracts, so considerable resources and datasets are already in local transporta-
tion agencies’ hands. A vast stream of literature has developed fundamental methods for
generating and analyzing these grid-based models. Second, leveraging the richness of urban
planning and transportation models associated with these basic geography units, researchers
can explore the connections to commuters’ demographic features to develop context-specific
plans in preventing epidemics. For example, how to connect the use of public transport
to the racial disparities (McLaren, 2020). Finally, epidemic response policies and guidance
are often made on a macroscopic network level. In what follows, we introduce how to con-
struct such a metapopulation model for a public transit system (called “commute network”
throughout this paper). All the notation used is in the paper is summarized in Table A.2 in
Appendix A.

During the day, each resident is in one of three statuses: at home (“H”), at work (“W”),
or commuting (“C”). A commute network integrates two separate systems: a home-and-
work network GHW = (VHW , EHW ) consisting of basic geography units such as census tracts
or TAZs, and public transit networks GC = (VC , EC) serving daily commute between these
home-and-work regions (Figure 2).

1. Home-and-work network GHW :

(a) Residents live in a closed complete network with a fixed population Nv ∈ Z+ for
each v ∈ VHW . We denote NNN = [Nv]v∈VHW whenever there is no possibility of
confusion.

(b) Each region v ∈ VHW has a set of neighboring outflow regions N+(v) := {u ∈
VHW : (v, u) ∈ EHW} and a set of inflow regions N−(v) := {u ∈ VHW : (u, v) ∈
EHW}. The fraction of residents at v travels to u ∈ N+(v) is rvu ∈ [0, 1]. Flow
conservation ensures that the fractions satisfy

∑
u∈N+(v) rvu = 1 for all v ∈ VHW .

2. Public transit network GC :

(a) VC represents a set of public transit routes available to commuters. Each route
may contain a single public transit line or transfers between multiple modes or
lines.

(b) Expanding V = VHW ∪ VC such that edges EC connect each region v ∈ VHW to
accessible routes w ∈ VC .
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(a) Original geographical map with transit (b) Commute network

Figure 2: Construct commute network by integrating home-and-work network and public transit network

(c) We define the outflow and inflow to public transit as C+(v) and C−(v), respectively,
upon edges EC . The fraction of population living in v ∈ VHW takes the route
w ∈ VC is pvw ∈ [0, 1]. The summation of fractions

∑
u∈C+(v) pvu ≤ 1 holds for all

v ∈ V if C+(v) 6= ∅ because residents can choose other modes of transport such
as walking or driving.

3. Effective population:

(a) We define the effective work-time population as N e
v (t) :=

∑
u∈N−(v) ruvNu.

(b) The effective commuting population as Ce
v(t) :=

∑
w∈C−(v) pwvNv(t) by assuming

that commuters take the same route back and forth so that pvw = pwv for any
w ∈ C−(v).

(c) Let ρN and ρC be the traffic flow fraction matrix ruv for the home-and-work and
pvw for the the public transit network, respectively. We can rewrite the effective
population as N e(t) = ρᵀNN(t) and Ce(t) = ρᵀCN(t).

We call the integration of the two networks a commute network G = (V , E). The route is
represented as a vertex in commute networks because contagious diseases such as COVID-19
can spread via respiratory, aerosol, or contact transmission in vehicles. Experiments have
shown that the infectious virus particles can be detected from surfaces for up to 24 hours
or even three days (Van Doremalen et al., 2020; Chin et al., 2020). These results imply
that travelers may be exposed to the disease in a carriage carrying infectious passengers at
different times. Since the risk of being exposed is possibly exceeding direct personal contact,
the metapopulation model has captured the average effect of the infection in the daily use
of transit service.

A common concern is that the traveling behavior may shift away from public transit
systems because of the epidemic outbreak (Wang et al., 2020), and the government’s dis-
ease control plans, such as reducing the public transit service time or alternative seating,
exacerbate this trend. In addition, travelers may switch to a different mode, take a different
route, or follow different schedules to avoid contacting potentially infectious population. The
travel rate pvu for each v ∈ VHW and u ∈ C+ implicitly incorporates a mix of route and mode
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choices. Since factors such as traveling time and trip purpose still play a central role in these
distributions during an epidemic, this work uses fixed fractions pvu throughout the analysis.
Estimating travel behavior changes requires new empirical research using post-epidemic data
and is beyond the scope of this work.

2.2. Spatial epidemic model

Spatial epidemic models are widely used to model the spread of infectious disease and
quantify workable disease control strategies. Many infectious diseases have an extended
period from infection to onset of symptoms, which causes a significant challenge in addressing
control strategies. For example, the respiratory symptoms of COVID-19 appear in as few as
two days or as long as 14 days after exposure (Chin et al., 2020). To capture this feature,
we use a standard metapopulation SEIR epidemic model that divide the population at time
t ∈ R+ at each vertex, Nv(t), into four groups, susceptible, exposed, infectious, and recovered
as Sv(t), Ev(t), Iv(t), and Rv(t), respectively; i.e., Nv(t) = Sv(t) + Ev(t) + Iv(t) + Rv(t) for
all v ∈ VHW . In addition to these compartments, we track the proportion of cases that are
symptomatic, which we denote as α(t). In each period, the symptomatic infectious population
Qv(t) = α(t)Iv(t) is assumed to be quarantined in the home region v. The quarantined
population is isolated from the rest while the non-symptomatic individuals, (1− α(t))Iv(t),
continue to move in commute networks. The standard SEIR model is presented in Figure 3.

Figure 3: SEIR model on commute networks under quarantine policies.

The transmission of the disease is captured by three parameters in the SEIR model: the
contact rate βv (the average number of contacts per person per time), the mean latent period
1/δ, and the recovering rate γ. The contact rate βv is vertex-dependent because different
regions v ∈ VHW and public transit lines v ∈ VC may employ different risk mitigation
measures.

The Spatial SEIR model expands the aggregate SEIR model to commute networks using a
graph-representation in Mori et al. (2020). The dynamics of the susceptible population, i.e.,
the rate of becoming exposed once having infectious contact with the infected population,
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is described as follows:

dSv(t)

dt
=− pHSv(t)

(
(1− α(t))βvIv(t)

Nv

)
− pWSv(t)

 ∑
u∈N+(v)

(1− α(t))rvuβu[ρNI(t)]u
[ρNN ]u


(1)

− pCSv(t)

 ∑
w∈C+(v)

(1− α(t))pvwβw[ρCI(t)]w
[ρCN ]w

 ,

where pH , pC and pW represent the fraction of time during the day involving staying in the
home region, commuting, and in the workplace, respectively. These three terms calculate
the probability of being exposed in the home region, work region, and while taking public
transit, respectively. As in the standard SEIR model, (1 − α(t)) percentage of the infected
population is isolated at their home region. Note that

∑
v∈VHW [ρᵀCN ]v ≤

∑
v∈VHW Nv as we

do not assume that every trip (u, v) is carried by public transit, and choosing other modes
such as driving bear no risk of contagion in commuting.

The Spatial SEIR model on commute networks can be written in a compact matrix form:

∂St
∂t

= −pHSᵀ
t I
H
t − pWSᵀ

t I
W
t − pCSᵀ

t I
C
t , (2)

∂Et

∂t
= −∂St

∂t
− 1

δ
Et,

∂It
∂t

=
1

δ
Et − γIt

∂Rt

∂t
= γIt,

The Spatial SEIR model guarantees that dNv/dt = 0 for each v ∈ VHW and t ∈ R+.
These population vectors are given by:

St = [Sv(t)]
ᵀ
v∈V , Et = [Ev(t)]

ᵀ
v∈V ,

It = [Iv(t)]
ᵀ
v∈V , Rt = [Rv(t)]

ᵀ
v∈V ,

IHt = [βv
Iv(t)
Nv

]ᵀv∈V
IWt = [

∑
u∈N+(v) rvuβu

(1−α(t))[ρN I(t)]u
[ρNN ]u

]ᵀv∈V

ICt = [
∑

w∈C+(v) pvwβw
(1−α(t))[ρCI(t)]w

[ρCN ]w
]ᵀv∈V

.

We can obtain the basic reproduction number R0 from the epidemic dynamics, which is a
critical measurement to guide disease control. R0 is the average number of secondary cases
produced by one infected individual introduced into a completely susceptible population
(Yashima and Sasaki, 2016). Emerging infectious diseases such as COVID-19 spread more
rapidly in a region if R0 is large. In addition, R0 also determines what proportion of the
population should be immunized or vaccinated to eradicate the infectious disease.

The basic reproduction number R0 is calculated by the dominant eigenvalue of the next
generation matrix (NGM) G0 ∈ R|VHW |×|VHW |. The epidemic dynamics described by eq.(2)
can be split into two parts (a) the rate of appearance of new infections in compartments
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denoted as a matrix F , and (b) the rate of transfer into compartments denoted as a matrix
V . NGM is defined by G0 = FV −1. The derivation of NGM for the Spatial SEIR model
is a tedious but crucial task for the remainder of this paper. We describe how to compute
the Jacobian matrix of the equation system eq.(2) and the explicit expression of NGM in
Appendix B.

The time-varying measures of the disease reproduction rate in a partially susceptible
population is measured by the effective reproduction number Rt, which is the dominant
eigenvalue of effective NGM Gt at time t ∈ R+. We can take a shortcut by obtaining
the expression for changes in Rt as a result of parameter changes in the epidemic model.
For a fixed time t, let ζ and η be the eigenvectors associated with Rt in the eigenvector
decomposition of Gt, i.e., ζᵀGt = Rtζ

ᵀ, Gtη = Rtη, and normalized such that ζᵀη = 1. If
we vary the Spatial SEIR model parameters by controlling the transit ridership through the
planning horizon, we can evaluate the change of the reproduction number as:

∆Rt =
ζᵀ∆Gtη

ζᵀη
. (3)

2.3. Optimizing transit flows with disease reproduction constraints

The control for this public transit system is how to curb traffic flows on particular routes
to balance the increasing commuting demand and the hastening spreading of infectious dis-
ease. For each u ∈ VHW , w ∈ VC , we let xuw ∈ [0, 1] denote the proportion of subpopulation
allowed to use this public transit route. Such a control can be realized by reducing service
frequency on a particular route, imposing capacity regulations inside public transit vehicles,
or limiting capacity at these transit stops. In the fixed flow control case, xxx is fixed at time
t = 0; in the extended version, the policy-maker adaptively changes the guidance for using
public transit xxx(t) after observing that R0 hits certain thresholds over the planning horizon
t ∈ [0, T ].

2.3.1. Fixed flow control policy

Our decision xxx ∈ R|VHW |×|VC | is the proportion of flows allowed to use public transit on
each route (v, w), v ∈ VHW , w ∈ VC . Our primary goal is to set an initial control plan
throughout [0, T ] to maximize the transit network’s throughput while protecting the public
from the risk of exposure to infectious diseases. We can formulate the problem as follows:

maximizexxx
∑

(v,w):v∈VHW ,w∈VC

xvwpvwNv (4)

s.t. ∆R0(xxx) ≤ κ(R0(1)−R0(0))

0 ≤ xvw ≤ 1, ∀v ∈ VHW ,∀w ∈ VC .

The right-hand side of the disease reproduction constraint in eq.(4) means that the change
of basic reproduction number due to opening public transit is within a tolerance κ ∈ [0, 1]
from the worst case. The worst case is measured by R0 with the full reopening of transit
(xxx = 1 called the “control-free” case) and the best case is with no opening of transit at all
(xxx = 0 called the “shutdown” case). Lemma 2 gives a more rigorous proof. Despite the fact
that this constraint can be explicitly calculated by eq.(3), we use this relative measure of
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the disease spreading because of the instability of input data. The exact values of NGM are
sensitive to input data, such as the epidemic model’s parameters and route choice estimation
in the metapopulation model. In contrast, the relative value of R0(1) − R0(0) is a stable
measure, and the derived control policy is more robust to the modeling errors.

The explicit expressions of constraints are derived from the NGM in Appendix B. As-
suming a constant quarantine ratio of α, the NGM under control policy xxx at time t, Gt(xxx),
can be computed from the production of transmission and transition matrices. For each
tuple of u, v ∈ VHW , we have:

[Gt(xxx)]vv =
1

γ

[
pHβv(1− α)

Sv(t)

Nv

+ pW
∑

u∈N+(v)

r2vuβu
(1− α)Sv(t)[ρ

ᵀ
NN ]u

([ρᵀNN ]u)2
+

pC
∑

w∈C+(v)

x2vwp
2
vwβw

(1− α)Sv(t)[ρC(xxx)ᵀN ]w
([ρC(xxx)ᵀN ]w)2

]
,

[Gt(xxx)]vu =
1

γ

[
pW

∑
w∈N+(u)∩N+(v)

ruwrvwβw
(1− α)Sv(t)[ρ

ᵀ
NN ]w

([ρᵀNN ]w)2
+

pC
∑

w∈C+(u)∩C+(v)

xuwpuwxvwpvwβw
(1− α)Sv(t)[ρC(xxx)ᵀN ]w

([ρC(xxx)ᵀN ]w)2

]
.

With fixed xxx over the planning horizon t ∈ [0, T ], the disease reproduction constraint in
eq.(4) is given by:

ζᵀ(G0(xxx)−G0(0))η ≤ (R0(1)−R0(0))ζᵀη, (5)

where [G0(xxx)−G0(0)]vu =
pC

∑
w∈C+(v)

x2vwp
2
vwβw(1− α)

Sv
[ρC(xxx)ᵀN ]w

, v = u

pC
∑

w∈C+(u)∩C+(v)

xuwpuwxvwpvwβw(1− α)
Sv

[ρC(xxx)ᵀN ]w
, v 6= u.

Given controls xxx, there exists an obvious disease-free equilibrium Sv(0) = Nv and Iv(0) =
0 for all v ∈ V at t = 0. We can further simplify eq.(5) as:

[G(xxx)−G(0)]vu =


pC(1− α)Nv

∑
w∈C+(v)

x2vwp
2
vwβw

[ρC(xxx)ᵀN ]w
, v = u

pC(1− α)Nv

∑
w∈C+(u)∩C+(v)

xuwpuwxvwpvwβw
[ρC(xxx)ᵀN ]w

, v 6= u.
(6)

It is important to address that the optimal transit control policy computed above has
limitations for the following reasons. First, we assume that commuters’ choice of alternative
modes of transport (e.g., driving, walking, ride-hailing) is risk-free from contagious disease
throughout the analysis. Potential commuters disregard the travel plans if no option is avail-
able. Second, the control plan xxx is implemented at t = 0 and remains the same throughout
the planning horizon. This static policy is suboptimal in the face of infectious disease’s
evolving conditions. We propose a more general control policy in the next section.
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2.3.2. Flow control with monitoring feedback

In the course of disease preparedness plans, transportation planning authorities need to
make sequential decisions during [0, T ] when there is an evolving situation with regards to
an infectious disease. Since the basic reproduction number Rt(x(t)) represents the expected
future infections after adopting the public transit control x(t), we intend to design a control
policy adaptive to the progress of the infectious disease. The optimal control policy is derived
by solving the following extension of eq.(4):

maximize
∑
τ∈TTT

∑
(v,w):v∈VHW ,w∈VC

xvw(τ)pvwNv ·∆τ (7)

s.t. ∆Rτ (xxx(τ)) ≤ κRτ (0),Rτ (1)(τ)
[
Rτ (1)−Rτ (0)

]
, ∀τ ∈ TTT ,

0 ≤ xvw ≤ 1, ∀v ∈ VHW ,∀w ∈ VC .

The objective function is the cumulative network throughput over t ∈ [0, T ]. In the
transition from the widespreading of the infectious disease to reopening of economy, the
policy-maker prefers to set a series of thresholds of κ with regard toRt and wants to determine
corresponding transit control policies at periods TTT = {0, τ1, . . . , T}. This corresponds to the
public transit operator’s intention to lift the safety measures after the spreading of the
disease has slowed down. The disease reproduction constraint guarantees that this sequence
of health measures regarding Rτ is preserved at time τ ∈ TTT , and each control xxx(τ) persists for
∆τ periods. As a result, this constraint is adaptive to the impact of transit control policy up
to time τ . Note that κRt(0),Rt(1)(t) is dependent on the values realized at period t. Since the
fixed flow control policy is a special case of the multi-stage policy with monitoring feedback
by setting TTT = {0, T} and xxx(τ) = xxx, this derived policy is more effective than the policies in
eq.(4). On the contrary, the fixed policy is simpler to calculate and implement. Hence, we
use the fixed control policy as a starting point for the multistage control with monitoring
feedback in Algorithm 1.

Algorithm 1 Public transit flow control with monitoring feedback

Initial SEIR model SSS0,EEE0, III0,RRR0, population N , and network flow r over the commute
network.
Solve fixed control problem x̂xx and set the optimal control xxx(τ)← x̂xx for all τ ∈ TTT .
while t ≤ T do
xxx(τ) = x̂xx for τ < t
Let t← t+ ∆t:
· Forward step: Simulate spatial SEIR model and obtain SSSt and III t.
· Backward step: Solve the subproblems of optimization in eq.(7) with TTT = [t, T ] to

obtain the optimal control xxx∗(τ), τ ≥ t and optimal value OPT (t).
Ensure:Ensure:Ensure: ∆Rτ (xxx) ≤ κ(τ)(Rτ (1)−Rτ (0)) for all τ ≥ t
Update control by xxx(t)← xxx∗(t)
Update the objective value OPT ← OPT (t)

end while
return xxx(t) for t ∈ T amd the corresponding optimal value OPT .
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Solving control at t = [0, T ] is more challenging due to the confounding simulation-and-
optimization issue. Given policy xxx(τ), simulating the spatial SEIR model and compute the
trajectory of disease outbreak following this policy is time-consuming and control-dependent.
The workload grows exponentially when the length of Rt threshold list increase. This imposes
a need to reduce the enumeration of controls by separating the simulation and optimization
compounds using the following procedure in Algorithm 1.

We initialize the algorithm with the optimal fixed control policy. Then, in each backward
step, we update the control policy after the current period and simulate the epidemic dy-
namics up to the current period. This procedure is valid because Rt is a long-term measure
for the outbreak of contagious disease under prior controls. Given a sequence of controls
along TTT , the disease reproduction constraints have a knapsack structure, and the objective
function is a linear combination of realized network throughput. Nevertheless, the procedure
is suboptimal because we do not enumerate all possible states of SSSt and III t as evaluating each
policy is costly. It is worth noticing that the disease reproduction constraints in optimization
eq.(4) and eq.(7) are non-convex and the dimension of xxx ∈ R|VHW |×|VC | is large.

In practice, we can integrate the sequential data collection into the aforementioned anal-
ysis as follows:

1. At each period τ ∈ T, the observed infectious statistics is used to calibrated the
epidemic model (SSSt,EEEt, III t,RRRt).

2. If interventions starts in the middle of disease outbreak at period t̃ and controls were
not available in the early stage, we set xxx = 1 for periods [0, t̃] and resolve the control
problem with monitoring feedback for periods [t̃, T ].

3. General rules for public transit control policy

This section specifies the existence conditions for optimal control and highlights the
special structure and general rules for the optimal transit flow control policies. For ease of
analysis, we study the fully connected commute networks where each home region is reachable
from other work regions, and each commute region in VC connects to all regions in VHW .
This connectivity assumption does not lose generality because we can model inaccessible
routes by enforcing zero flow. The expanded network (V , E) based on transit route is not
fully connected as not each pair routes are connected. The following lemma provides the
existence conditions for optimal fixed control policy.

Lemma 1. If the operator uses a global proportional control on public transit flow, i.e., xvw
is a constant for all v ∈ VHW and w ∈ VC, the change of basic reproduction number is
proportional to the control-free case with the same constant.

Proof. Let set xvw = σ for all v ∈ VHW and w ∈ VC , which means that we allow a constant
ratio of residents to use public transit on each route. We have ρC(x) = σρC(1), and hence
ρC(x)ᵀN = σρC(1)ᵀN and xvw

[ρC(x)ᵀN ]w
= 1

[ρC(1)ᵀN ]w
. Since xvw

[ρC(x)ᵀN ]w
appear in each entry of

eq.(6), we have σ[G(1)−G(0)] = G(xxx)−G(0) and σ[R0(1)−R0(0)] = R0(xxx)−R0(0).

It is worth noting that this lemma is true because we assume that people have access
to alternative modes for commuting. Lemma 1 is an important building block for solving
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optimization in eq.(4) and eq.(7) because it means that, for any exogenous κ, we can set
xxx = κ to satisfy the constraints. In other words, the feasible set of the optimization problem
is nonempty.

Definition 1. A control policy xxx is more restrained than xxx′ if:

1. xvw ≤ x′vw for all v ∈ VHW and w ∈ VC and there exists edges such that xvw < x′vw.

2. Each pair of xvw > 0, xuw > 0 has dominating marginal effect on the controlled routes
(v, w) and (u,w) with regard to the effective population, i.e., x′vwx

′
uw

xvwxuw
≥ [ρC(x

′)ᵀN ]w
[ρC(x)ᵀN ]w

.

We then have the following lemma:

Lemma 2 (Monotonicity). If a public transit control policy xxx is more restrained than xxx′,
then R0(xxx) < R0(xxx

′).

Proof. Without loss of generality, we assume the NGM associated with xxx and xxx′ both have
linearly independent eigenvectors. NGM is nonnegative real-valued. We let the two NGM
be G := Gt(xxx) and G′ := Gt(xxx

′). The difference G′ −G in each entry is:
(1− α)NvpC

∑
w∈C+ βwp

2
vw

[ x′2vw
[ρC(x′)ᵀN ]w

− x2vw
[ρC(x)ᵀN ]w

]
, u = v

(1− α)NvpC
∑

w∈C+ βwpvwpuw

[ x′vwx
′
uw

[ρC(x′)ᵀN ]w
− xvwxuw

[ρC(x)ᵀN ]w

]
, u 6= v.

Let xxx′ = xxx+σσσ. For an arbitrary w ∈ VC , we can plug xxx′ into G′−G so we can represent
the NGMs as G′ = G+ σσσ′G with a relatively small perturbation σ′G. We can observe that,
if the conditions of restrained controls are satisfied, then each term above is nonnegative.
Note that σ′G ≥ 0 is a function of σ and x. According to the matrix perturbation theory
(Bhatia, 2007), we have λ′i = λi + ηᵀi σ

′Gη for each eigenvalue λi. By definition, R0 is the
largest eigenvalue of NGM and we conclude that R0(xxx

′) > R0(xxx).

Remark 1. Lemma 2 indicates that reducing the traffic flow on a particular public transit
route does not necessarily reduce R0(xxx).

This remark emphasizes the importance of solving a global optimization for transit flow
control to slow down the spreading of the infectious disease. Lemma 2 is not true if only
condition 1 of restrained control holds. A counterexample is as follows. Instead of computing
σ′G, we only need to show that, for any given xxx and arbitrary u ∈ VHW , v ∈ VHW , we have

[σ′G]vu =
(xvw + σvw)(xuw + σuw)

[ρC(x)ᵀN + ρC(σ)ᵀN ]w
− xvwxuw

[ρC(x)ᵀN ]w
.

We can easily find σvw > 0, σuw > 0 such that [σ′G]vu < 0 by having a third vertex v′

with Nv′σv′w � σvw + σuw. Hence R0(xxx) increases with xxx. The optimization problem eq.(4)
is thus non-trivial because we cannot use gradient-based search method or split the problem
by column decomposition.

A disease-free equilibrium of the Spatial SEIR model is obtained by setting III t = 0 and
SSSt = NNN . At this equilibrium, the expressions for G and R0(xxx) simplify dramatically, and
can be used to obtain interpretable bounds on R0(xxx) and ∆R0(xxx). The asymmetry between
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the home-and-work network and commute network motivates the derivation of the following
general rules for obtaining upper-bounds on the public transit operations. First, we examine
the behavior of R0(xxx).

Theorem 1. At the disease free equilibrium, with intervention xxx, we have

R0(xxx) ≤ 1− α
γ

max
v∈VHW

pHβv + pW
∑

w∈N+(v)

rvwβw + pC
∑

w∈C+(v)

xvwpvwβw

 . (8)

Proof. Since R0(xxx) is the spectral radius of G(xxx), we have R0(xxx) ≤ ‖G(xxx)‖ for any induced
matrix norm. Choosing the `1 norm, we have

R0(xxx) ≤ ‖G0‖`1 = max
v∈VHW∪VC

n∑
u=1

[G0(xxx)]uv.

Computing the sum of the entries for each column v of G0(xxx), we obtain

n∑
u=1

[G0(xxx)]uv =
pH(1− α)

γ
βv +

pW (1− α)

γ

n∑
u=1

n∑
w=1

ruwrvwβw
Nu

[ρᵀNN ]w

+
pC(1− α)

γ

n∑
u=1

m∑
w=1

xuwpuwxvwpvwβw
Nu

[ρC(x)ᵀN ]w

=
pH(1− α)

γ
βv +

pW (1− α)

γ

n∑
w=1

rvwβw +
pC(1− α)

γ

m∑
w=1

xvwpvwβw.

Taking the maximum over v gives the desired expression.

Remark 2. This bound in eq.(8) can be further simplified to

R0(xxx) ≤ (1− α) maxv∈VHW∪VC βv
γ

(
pH + pW + pC max

v,w
xvw

)
,

which makes clear the relationship to R0 in the single population model, which would be given
by (1−α)β

γ
.

In the absence of the transport network, a simple upper bound for R0(xxx) would be given
by the maximum R0 value for a particular vertex. Based on the above results, we can see
that introducing the commute network allows for further refinement of such an upper bound
via the control of public transportation flows. Furthermore, the coupling between the home-
work network and the transportation network means that minimizing such an upper bound
is not as simple as reducing capacity on the route with the highest flow rate. Instead, it is
necessary to account for flow and transmission rates together when determining the routes
with the largest impact on the spread of the virus.

Beyond bounding the value of R0(xxx) for changing transport flows, we can also examine
∆R0(xxx), which is serving as the constraint in the transport control problem. The following
theorem provides bounds on the change in R0(xxx) that can be achieved simply by controlling
xxx:
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Theorem 2. Assume we have a policy xxx that is more restrained than having no intervention.
Then at the disease free equilibrium ∆R0(xxx) = R0(1)−R0(xxx) satisfies

0 ≤ ∆R0(xxx) ≤ ‖ξ‖`1‖η‖`1
(
pC(1− α)

γ

)
max
v∈VHW

∑
w∈C+(v)

pvwβw(1− xvw),

where ξ and η are the left and right eigenvectors of G0(1) normalized such that ξᵀη = 1.

Proof. The inequality 0 ≤ ∆R0(xxx) follows from Lemma 2. Taking norms on both sides of
eq. (3) gives

|∆R0(xxx)| ≤ ‖ξ‖‖η‖‖∆G0(xxx)‖
for any induced matrix norm. Again choosing `1, we have

‖∆G0(xxx)‖`1 = max
v∈VHW

n∑
u=1

[∆G0(x)]uv

=
pC(1− α)

γ
max
v∈VHW

m∑
w=1

pvwβw

(∑n
u=1 puwNu

[ρC(1)ᵀN ]w
− xvw

∑n
u=1 xuwpuwNu

[ρC(x)ᵀN ]w

)
=
pC(1− α)

γ
max
v∈VHW

m∑
w=1

pvwβw (1− xvw) ,

which gives the result. Note that each term in the sum is positive because of the definition
of restrained policies.

In this result, the eigenvectors ξ and η encode the impact of network structure on the
spread of disease, while the maximum over v accounts for worst-case transmission rates.
Again, the coupling between disease transmission rates and public transportation flow rates
means that simply restricting flow on the busiest lines is not guaranteed to have the largest
impact on R0(xxx). However, it is possible to use these bounds to characterize potentially
optimal policies:

Proposition 1. To maximize the upper bound (maximize the potential impact on R0) we
should choose a policy x such that

xxx = arg max
xxx

[
max
v∈VHW

m∑
w=1

pvwβw (1− xvw)

]
.

The expression for xxx here does not guarantee optimality, but it can be used to guide
control strategies by characterizing the techniques that have the most potential impact.
However, directly solving this argmax problem is infeasible for large networks, so it cannot
replace the numerical methods implemented below. While the simpler expressions available
at the disease-free equilibrium provide clearly interpretable bounds on R0(xxx) and ∆R0(xxx),
these results can be generalized to Rt(xxx) and ∆Rt(xxx) as well.

Proposition 2. The basic reproduction number Rt(xxx) < 1 for any t ∈ [0, T ] if and only if

lim
k→∞

Gt(xxx)k = 0.
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Proposition 2 holds due to the convergence of the power series of the NGM as R0 is the
spectral radius of NGM for any control xxx. This condition has valuable practical meaning
because R0 < 1 is a central indicator that the infection cannot spread in a population.

In summary, solving for optimal flow control policies in eq.(4) or eq.(7) is computational
challenging because of the nonlinear disease reproduction constraints. We can leverage gen-
eral observations drawn above to improve computational efficiency. Besides, these observa-
tions also have important policy implications regarding transit-relate disease control plans.

4. Numerical results and case study

We validate the general rules for public transit control policies in Section 4.1 and test the
impact of input data in Section 4.2. In Section 4.3, we present the improvement of control
policy with monitoring feedback. To solve a case study of NYC’s subway system in Section
4.4, we investigate the impact of network complexity to shed light on solving the problem in
large-scale commute networks.

4.1. Calibrating metapopulation and epidemic models

We combine multiple sources of data to design and calibrate a realistic metapopulation
SEIR model with transit flows. Table 1 summarizes the epidemic model’s parameters from
existing COVID-19 literature and the calibrated traffic flow data used in the rest of the
numerical experiments. We consider an NYC case study because it has one of the world’s
largest public transit systems that keeps providing essential transportation services during
the COVID-19 pandemic. About 39% of the population in NYC use public transit for com-
muting, which is more than the population driving private cars (27%) (Tajalli and Hajbabaie,
2017). NYC was also one of the cities with the most COVID-19 cases in 2020. While the
ridership of the subway witnessed a significant drop (Wang et al., 2020) amid the early stage
of the epidemic, we hope to understand how a safe and effective management policy can help
achieve a good trade-off between risk mitigation and mobility.

Parameter
Epidemic model

Average contagion
rate β̄

Length of infectious
period 1/γ

Length of latent
period δ

Quarantine
ratio α

Value
0.422

(Prem et al., 2020)
6.5 days

Yang et al. (2020)
5.1 days

(Lauer et al., 2020)
0.15

(Nishiura et al., 2020)

Parameter
Public transit network

Origin-destination
daily flow

Subway ridership
in pandemic

Transit network
transfer connectivity

Source
Regional MTA
(NYC, 2020)

Wang et al. (2020)
MTA

(NYC, 2020)

Parameter
Spatial SEIR weights

(Clewlow and Laberteaux, 2016) Constraint κ
Hours active at home Hours in work Commute time

Value 8 hr 8 hr 1 hr 0.5

Table 1: Parameters and data sources for NYC case study
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We obtain the local infection rate βv as follows:

βv = β̄ · dv
d̄
, ∀v ∈ V ,

where β̄ is the average contagion rate reported from the city-level aggregated analysis, dv is
the population density in region v and d̄ is the average population density.

(a) Manhattan subway system’s average
daily commuting flow estimation

(b) Commute networks’ route flow distribu-
tion

Figure 4: Case study: controlling public transit (subway) in Manhattan, NYC dueing the outbreak of
COVID-19 in 2020.

Given the population Nv for v ∈ VHW and daily commuting flows on the home-to-work
network, we need to determine the probability of choosing each route pvw for each v ∈ VHW
and w ∈ VC . We assume that each potential commuters behavior can be modeled via the
following multinomial logit model (MNL):

pvw = P (y = w|dw) =
exp(εdw)∑

w′∈VC exp(εdw′)
,

where the Manhattan distance walking from the origin to nearest subway lines dw is the
single explanatory variable, y is the dependent variable for route choice, and ε is a constant
depending on commuters’ heterogeneity. Also, we assume that commuters use the same
route from home to work and back (Yashima and Sasaki, 2016; Qian and Ukkusuri, 2020).

Each route’s flow w ∈ VC is
∑

v∈VHW pvwNv and illustrated in Figure 4a. This route
choice estimation is arguably inaccurate due to the lack of accurate movement data during
the pandemic. We enhance the accuracy of route choice model by reweighing the routing
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probabilities by the MTA subway ridership data NYC (2020). This is because trips other
than commuting are also important components in the infectious contact in public transit.
Section 4.2 shows that optimal control policies are insensitive to these estimation errors.

The recurring commuting patterns and the corresponding route-specific controls on public
transit are necessary only if the density and the degree of the underlying commute network
have a heavy-tailed distribution (Yashima and Sasaki, 2016). The distributional assumption
is verified as the estimated distributions of the subway flow

∑
v∈VHW pvwNv in Manhattan,

NYC is obviously heavy-tailed in Figure 4b.

4.2. Aggregating commute networks and sensitivity analysis

We conduct three types of sensitivity analysis to understand the errors caused by model
reductions and the input data inaccuracy. These tests are conducted on a small commute
network of Figure C.14 in Appendix C).

• Test on route choice: A sensitivity analysis of the route choice model.

• Test on commute network characteristics: A sensitivity analysis of network prop-
erties such as the network degree.

• Test on epidemic model: A sensitivity analysis of the epidemic model’s parameters.

4.2.1. Sensitivity test on route choice

The first sensitivity analysis assumes that residents follow a random route choice model
with a uniform distribution in this sample network. Unlike the distance-based choice model
in the case study, we randomize the route choice to test how the lack of movement data
access affects the transit control policy. We evaluate the variations of both objective and
the reproduction rate of the emerging disease when people’s route choice deviates from their
daily routine before the epidemic.

We simulate 1, 000 experiments and repeatedly compute the optimal controls for public
transit flow from eq.(4). The upper bound for the total transit throughput of about 85
depends on the sampled choice model. Note that, if there is no intervention in commute
networks, i.e., xxx = 1, the disease spreads with R0 = 1.75; if the public transit is shut down,
the disease is under control with R0 = 1.39. Hence, the implementation of public transit flow
controls is critical for public safety. We draw additional observations from this experiment:

1. The optimal control xxx is small for regions with the large outflows and vice versa.

2. The objective and optimal controls xxx is relatively sensitive to the uncertain route choice
(Figure 5a) because pvw are linear coefficients in the objective.

3. The disease reproduction constraint is also sensitive to the route choice model (Figure
5b).

We conclude that the accurate estimation for the route choice model is critical for the
optimality of control plans. Hence, travel behavior changes during the on-peak and post-
epidemic time are worth further investigation. The transportation authorities should be
mindful of safe and reliable first- and last-mile connections to public transit during the
epidemic outbreak.
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(a) Effect on maximum flow (b) Effect on basic reproduction number

Figure 5: Sensitivity of fixed optimal transit flow controls with regard to the random route choice

4.2.2. Test on commute network characteristics

We solve the fixed transit flow controls in eq.(4) by nonconvex programming with an in-
creasing number of regions. Figure 6 shows that the computation time grow sub-exponentially
as the size of the problem (|xxx| = |VHW × VC |) increases.

Figure 6: Optimization eq.(4)’s running time grows with the network size

Since the large-scale problem quickly becomes unsolvable, mainly due to the nonlinearity
of the disease reproduction constraint, we are interested in reducing the complexity of the
underlying commute network. This step is necessary for real-world problems such as the
NYC case study. The commuter network in this study contains 288 census tract regions and
277 routes. Extrapolating the running time in Figure 6, computing the exact solution of
the NYC network (|xxx| ≈ 80, 000) by standard nonlinear programming methods is obviously
impractical. For example, using the trust-region method (Byrd et al., 2000) to solve to
optimally is expected to take 1015 − 1023 seconds on a standard computer (1.4GHz Intel i5,
8 GB RAM).

The complexity and the size of a commuter network are measured by the maximum
network degree. As a fully connected commute network is assumed throughout the analysis,
the degree of this network decreases when we aggregate regions into clusters. For example,
when dividing the area evenly into two regions, the maximum degree of the network is 3,
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and so on. To handle such a large-scale network analysis in the NYC case study, we can
cluster regions in VHW with similar demographic information. Besides, we aggregate the
inter-region commuting flows between these clusters. The question of optimality loss due to
this vertex-aggregation procedure naturally arises. In the following experiment, we keep the
constant total expected population ‖N‖1 = 100 when dividing the area of interest into finer
and finer grids. As a result, the degree of commute network (i.e., the number of connections
it has to other regions) increases from 2 to 16.

When the maximum degree of the commute network increases, the objective value of
eq.(4) is stable, but the basic reproduction number increases significantly. The main reason
is that the impact of critical regions is strengthened as the degree of network increases, and
the basic reproduction number at optimality increases accordingly. This result supports the
choice of relative measures on basic or effective reproduction number Rt over the absolute
values in eq.(4) and eq.(7), respectively. In summary, the network throughput is unaffected
by scaling the networks for computational efficiency, except that the control policies become
less targeted.

Figure 7: Sensitivity of the optimal control and the basic reproduction number regarding the commute
network’s degree; Bars at each data point are the empirical variance from M = 100 experiments

4.2.3. Test on epidemic model parameters

The accuracy of the epidemic model is highly dependent on the estimated parameters
in Table 1. However, these parameters, especially the contagion rate βv from the suscepti-
ble population SSSt to the infected population III t, are affected by the anti-contagion policies
(Hsiang et al., 2020) and social responsiveness (Chowdhury et al., 2020). For example, the
transmission rate β reported in literature varies from 0.17 to 0.8 (Yang et al., 2020; Prem
et al., 2020; Lauer et al., 2020; Wang et al., 2020) because of inaccurate data sources and
the social distancing effect. We test the sensitivity of objective function in eq.(4) and basic
reproduction number R0 with varying parameters from the literature. The sensitivity test
results are reported in Figure 8.

We draw the following observations from this sensitivity test:

1. As the average contagion rate β̄ increases due to lack of prevention strategies such as
social-distancing, the maximum public transit flow decreases to control the transmis-
sion. On the other hand, the basic reproduction number increases substantially.
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(a) Sensitivity of average contagion rate β̄ (b) Sensitivity of quarantine ratio α

(c) Sensitivity of infectious period 1/γ (d) Sensitivity of latent period δ

Figure 8: Sensitivity analysis of epidemic model parameters; Bars at each data point are the empirical
variance from M = 100 experiments

2. As the quarantine ratio α increases, the maximum public transit flow stays approx-
imately the same while the basic reproduction number decreases substantially. An
example of this case is when the testing rate increases and the infected population is
identified more effectively.

3. As the length of the infection period 1/γ increases due to healthcare quality deterio-
ration, the maximum public transit flow decreases because of the significant increase
in the basic reproduction number.

4. The latent period’s length δ has a negligible impact on the optimal control policy or
the disease spreading speed.

4.2.4. Social-distancing strategy on public transit

The contagion rate βw is reduced for all w ∈ VC when the public transit operator enforces
stricter social-distancing policies for public transit. Such a policy can assist the control of
the disease, as shown in Figure 9. To show the relative significance of implementing a social-
distancing policy in public transit, we vary the ratio of βw/β̄. As a result, the basic disease
reproduction number is reduced. Since eq.(4) and eq.(7) use relative disease reproduction
constraints, the objective function is not much affected. To this end, social-distancing in
public transit helps the public health measures and does not affect the maximal throughput
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in commute networks.

Figure 9: Effect of social-distancing policy on public transit; Bars at each data point are the empirical
variance from M = 100 experiments

The value of κ in the disease reproduction constraint renders the safety-and-mobility
trade-off. When κ increases from 0 to 1, the system puts more weight on efficiency and
less weight on safety. As shown in Figure 10, the total throughput in commute networks
increases significantly with larger κ. Note that the variation of the objective is considerable
when κ is between 0.2 − 0.6. In the case study of NYC, the same trade-off is presented in
the subway operational plans.

Figure 10: Safety-and-mobility trade-off; Bars at each data point are the empirical variance from M = 100
experiments

4.3. Numerical results for flow control with monitoring feedback

We demonstrate the insights obtained by solving a two-stage flow policy in the same
network. The computation of the dynamic policy in Algorithm 1 allows to iteratively simulate
the state SSSt and III t are dependent on xxx(τ), τ < t. On the other hand, the disease reproduction
constraints need to satisfied for all τ ∈ TTT .

κ(τ) is a sequence of endogenous variables that mitigates the safety-and-mobility trade-off
due to the evolving epidemic. As the constraint κR0(0),R0(1)(t) is dependent on the realized
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reproduction number at time t, the optimization automatically put more weights on eco-
nomics than health concerns as the severeness of the disease relieves. Suppose that we make
an initial flow control policy at t = 0 and allow to adjust the policy at t′ ∈ (0, T ] when
Rt′(1) hits a preset threshold. To demonstrate the strictness of health measures associated
with the basic reproduction number, we fix κ(0) = 0.5 and resolve the optimization eq (7)
with different values of κRt′ (0),Rt′ (1)(t

′). Note that, as κRt′ (0),Rt′ (1)(t
′) increases, the second

intervention is made earlier, and setting κ(t′) ≈ 1.0 is equivalent to relaxing the disease
reproduction constraint.

Figure 11: The optimal control when the health measures are relaxed over time; Bars at each data point are
the empirical variance from M = 20 experiments

In Figure 11, the maximum flow over the public transit network increases as κRt′ (0),Rt′ (1)(t
′)

increases, because the health measures are more critical for the disease control at the early
stage. In other words, setting a large threshold for a sequential transit control decision in-
crease the total throughput; thus, the transit agency’s quick responsiveness to the disease
outbreak is valuable for social benefit. On each route and location, we also observe the
inhomogeneous level of relieved flow in Figure C.15 in Appendix C when κ decreases or
increases because eq.(7) automatically and effectively lifts the restrictions on transit traffic
after the epidemic is under control.

4.4. Safety-and-mobility trade-offs in NYC’s reopening decisions

Obtaining the control policy directly for complex urban infrastructure networks is compu-
tationally challenging. Due to the small optimality gap from the sensitivity test, optimizing
a clustered commuter network does not influence the results’ generality. The census tracts in
Manhattan, NYC are aggregated to 15 regions (labeled 0-14 in Figure 12a) by spatial cluster-
ing. Considering commuters’ transfers, the NYC subway system contains 277 combinations
of subway lines, hence |VC | = 277 in the following analysis (transfers between subway lines
can refer to Appendix C).

We focus on the fixed traffic flow control policy in this case study because the early
interventions are more critical for safety in Section 4.3. The worst case that no intervention
on public transit (i.e., xxx = 1) is conducted, the basic reproduction number is R0(1) = 1.794.

23

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=3757210

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

wed



(a) Susceptible population N at t = 0 in
aggregate home-and-work network VHW

(b) Optimal public transit control x

Figure 12: Optimal public transit control policy in NYC case study

The most extreme case is a total closure of public transit (i.e., xxx = 0), the basic reproduction
number is R0(0) = 1.670. The optimal control policy shown in Figure 12b obtains 88%
(original network flow is 1.62 million) while reducing the gap of the basic reproduction rate
at R0 = 1.703.

Although the difference in basic reproduction number seems small, mainly due to the
short time spent in transit per day pC , the transit traffic control’s effect on transmitting
the infectious disease is significant. As we can see the epidemic dynamics in Figure 13,
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the difference between the optimal control and no-control scenarios reaches 50, 000 for the
susceptible population and 30, 000 for the infected population in Manhattan borough within
the first T = 100 days of the outbreak. These results emphasize the need for controlling the
disease transmission on the target region or public transit line during the reopening time,
especially with the second-wave of COVID-19 pandemic worldwide (Leung et al., 2020).

(a) Susceptible population (b) Infected population

Figure 13: Dynamics of COVID-19 under different public transit control policies

Regarding the route-level controls in Figure 13b, we make two additional remarks on
identifying the critical routes in transit traffic controls.

Remark 3 (Critical regions in commute networks). In fully connected commute networks,
the disease reproduction constraint is most sensitive to controls implemented on areas with
largest outflow.

Remark 4 (Route-based control). Limiting flow on a high-density route does not necessary
control the spreading speed of the disease most effectively.

Note that Remark 3 is consistent with the sensitivity analysis in Yashima and Sasaki
(2016). The R0-centrality measure is defined as −∂λ0(G)

∂Nv
, which is equivalent to the sensitivity

analysis on xvw in the current work.
Finally, the numerical results of NYC case study provide several interesting policy impli-

cations that can be generalized to other cities’ disease control plans:

1. The numerical results confirm the general rules derived in Section 3. For example,
the optimal subway control policy is almost uniform on each row (corresponding to a
home-and-work vertex) in Figure 12a. The most populated outflow vertex is curtailed
the most.

2. Shutting down public transit, as passengers may choose alternative modes, brings
marginal benefit comparing to the targeted traffic control policy in this work (Figure
13).
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5. Conclusion

This paper proposes a mathematical programming approach under disease reproduc-
tion constraints to resolve safety-and-mobility trade-offs in epidemic response plans. An
optimization-based analysis accommodates the essential demand for travel during the epi-
demic period and follows strict infectious disease safety measures. Public transit continues
to serve as a protected, low-emission, and low-cost option for economic reopening by maxi-
mizing the transit flow restricted by the requirement of epidemic prevention measures.

This main limitation of this work is that, in extreme cases, the route-target public transit
control policy has potential accessibility and equity problems. In the case study, transit
flows on high-risk lines are reduced between 40% and 90% due to the relative demographic
homogeneity in Manhattan, NYC. By either proposing new lower bounds for controls xxx or
reformulating the objective to a max-min problem, we can avoid this inequality issue. In
order to capture the system’s uncertainty, another promising research avenue is investigating
more realistic models such as stochastic epidemic models and heterogeneous behavior models.
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Appendix A. Summary of notation

Table A.2: Summary of notation

Notation Definition

Spatial SEIR model

GHW Home-and-work network consists of vertices (regions) VHW and edges EHW
GC Public transit network consists of vertices VC and edges EC
G Commute network integrates GHW and GC
Nv Population in region v ∈ VHW
N+(v) A set of neighboring outflow regions and N+(v) ⊂ VHW
N−(v) A set of neighboring inflow regions and N−(v) ⊂ VHW
C+(v) A set of neighboring outflow and C+(v) ⊂ VC
C−(v) A set of neighboring inflow and C−(v) ⊂ VC
N e
v (t) Effective work-home population

Ce
v(t) Effective commuting population

ρN Daily home-to-work flow fraction matrix with entries ruv
ρC Transit flow fraction matrix with entries puv
SSSt Vector of susceptible population
EEEt Vector of exposed population
III t Vector of infectious population
RRRt Vector of recovered population
βv Contact rate at vertex v ∈ V
γ Recovering rate of the disease
1/δ Mean latent period of the disease
α Quarantine ratio

pH , pW , pC
Proportion of time during the day spent at home, work, and commute
vertices, respectively

R0 Basic reproduction number
G0 Next generation matrix
Rt Effective reproduction number

Optimization model

xxx
Decision variable for static transit flow control xvw for all v ∈ VHW and
w ∈ VC

κ
Tolerance for the disease reproduction constraint in the static
control policy

ζ, η Left and right eigenvectors associated with Rt

τ The time period flow controls are implemented
∆τ Time duration each control is implemented

κRτ (0),Rτ (1)(τ)
Tolerance for the disease reproduction constraint in the
control policy
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Appendix B. Proof for the compartment model

Computing the next generation matrix (NGM) is a central task for computing R0 To com-
pute the next generation matrix, we actually only care about the infected subsystem, the set of
populations that contain infected individual consisting of Ev(t) and Iv(t) for all regions v ∈ V .
To compute the Jacobian, we need to compute ∂

∂Ev

(
dEu
dt

)
, ∂
∂Iv

(
dEu
dt

)
, ∂
∂Ev

(
dIu
dt

)
, ∂
∂Iv

(
dIu
dt

)
,

where each is evaluated at Su = Nu and Iu = 1. We collect the terms as follows:

[J ]EvEv =
∂

∂Ev

(
dEv
dt

)
= −1

δ

[J ]EuEv =
∂

∂Ev

(
dEu
dt

)
= 0

[J ]IvEv =
∂

∂Ev

(
dIv
dt

)
=

1

δ

[J ]IuEv =
∂

∂Ev

(
dIu
dt

)
= 0

[J ]IvIv =
∂

∂Iv

(
dIv
dt

)
= −γ

[J ]IuIv =
∂

∂Iv

(
dIu
dt

)
= 0

[J ]EvIv =
∂

∂Iv

(
dEv
dt

)
= − ∂

∂Iv

(
dSv
dt

)
= pHβv(1− α)

Sv
Nv

+ pW
∑

u∈N+(v)

r2vuβu
(1− α)Sv[ρ

ᵀ
NN ]u

([ρᵀNN ]u)2

+ pC
∑

w∈C+(v)

x2vwp
2
vwβw

(1− α)Sv[ρC(x)ᵀC]w
([ρC(x)ᵀC]w)2

[J ]EuIv =
∂

∂Iv

(
dEu
dt

)
= − ∂

∂Iv

(
dSu
dt

)
= pW

∑
w∈N+(u)∩N+(v)

βwruwrvw
(1− α)Sv[ρ

ᵀ
NN ]w

([ρᵀNN ]w)2

+ pC
∑

w∈C+(u)∩C+(v)

βwxuwpuwxvwpvw
(1− α)Sv[ρC(x)C]w

([ρC(x)ᵀC]w)2

Note there exists a disease-free equilibrium with Sv = Nv and Iv = 0 for all v ∈ V . In the
case of fixed control, we can directly plug in these values to further simplify the computation.
Note both F and V in dimension R2|V|×2|V| and hence we can write the NGM as:
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G = FV −1|>0 (B.1)

[F ]uv =



pHβv(1− α) + pW
∑

u∈N+(v) r
2
vuβu

(1−α)Nv [ρᵀNN ]u
([ρᵀNN ]u)2

+

pC
∑

w∈C+(v) x
2
vwp

2
vwβw

(1−α)Nv [ρC(x)ᵀC]w
([ρC(x)ᵀC]w)2

, u = v, u, v ∈ V

pW
∑

w∈N+(u)∩N+(v) βwruwrvw
(1−α)Nv [ρᵀNN ]w

([ρᵀNN ]w)2
+

pC
∑

w∈C+(u)∩C+(v) βwxuwpuwxvwpvw
(1−α)Nv [ρC(x)C]w

([ρC(x)ᵀC]w)2
, u 6= v, u, v ∈ V

, (B.2)

V =



1
δ
· · · 0 0 · · · 0

...
. . .

...
...

. . .
...

0 · · · 1
δ

0 · · · 0
1
δ
· · · 0 γ · · · 0

...
. . .

...
...

. . .
...

0 · · · 1
δ

0 · · · γ


. (B.3)

If we compute the expanded G from these expression for F and V −1 we get

G = FV −1|>0 =



0 · · · 0 1
γ
[F ]EvIv · · · 1

γ
[F ]EuIv

...
. . .

...
...

. . .
...

0 · · · 0 1
γ
[F ]EuIv · · · 1

γ
[F ]EvIv

0 · · · 0 0 · · · 0
...

. . .
...

...
. . .

...
0 · · · 0 0 · · · 0


|>0 (B.4)

and here the nonzero submatrix is the NGM, G. We can see that:

[G]vv =
1

γ
[F ]EvIv (B.5)

[G]vu =
1

γ
[F ]EuIv (B.6)

Appendix C. Commute networks in NYC numerical experiments

In the sensitivity analysis, the simulations use the following commute network (|VHW | =
4, |VC | = 6) with randomly generated population (with expected total population of 100)
and route choice. The flow between each pair of regions u, v ∈ V are sorted from high to
low by the home-and-work vertex index. The values are represented by the line opacity in
Figure C.14.

The route-based control policy for the flow control numerical experiments is shown in
Figure C.15. The underlying commute graph is the same as in Figure C.14. The epidemic
model’s parameters follow the NYC cast study in Table 1. We evaluate the control policy in
this relatively small network, mainly because of the epidemic dynamic model’s computational
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Figure C.14: Commute network for control policy validation

(a) At t = 0 (up) with κ(0) = 0.5 and t′ > 0
(down) with κ(t′) = 0.2.

(b) At t = 0 (up) with κ(0) = 0.5 and t′ > 0
(down) with κ(t′) = 0.9.

Figure C.15: Optimal transit flow control xxx∗(t) with different strictness of health measures

limitation. Since we are interested in the potential of the policy with monitoring feedback
compared to the fixed policy in this experiment, the derived results are general.

The connectivity of the subway system is required for constructing the commute network
in the NYC case study. Considering only the individual physical transit lines are not an
appropriate vertex representation in the commuter network. Infected passengers may transfer
between lines in a single trip and cause contagion on all visited lines. By limiting the number
of transfers to one, we can crawl the public transit data NYC (2020) to reconstruct the
commute network transfer graph as in Figure C.16. Each edge connecting two subway lines
are treated as a vertex w ∈ VC .
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Figure C.16: Connectivity of the MTA subway systems in NYC; Each edge in the graph is v ∈ VC in the
commute network
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