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We consider the problem of modeling traffic phenomena at a macroscopic level. Increasing
availability of streaming probe data allowing the observation of non-stationary traffic
motivates the development of models capable of leveraging this information. We propose
a phase transition model of non-stationary traffic in conservation form, capable of propa-
gating joint measurements from fixed and mobile sensors, to model complex traffic phe-
nomena such as hysteresis and phantom jams, and to account for forward propagation
of information in congested traffic. The model is shown to reduce to the Lighthill–Whi-
tham–Richards model within each traffic phase for the case of stationary states, and to
have a physical mesoscopic interpretation in terms of drivers’ behavior. A corresponding
discrete formulation appropriate for practical implementation is shown to provide accu-
rate numerical solution to the proposed model. The performance of the model introduced
is assessed on benchmark cases and on experimental vehicle trajectories from the NGSIM
datasets.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

1.1. Motivation

The field of traffic modeling entails the design and analysis of mathematical tools for accurate representation of traffic
dynamics. Road networks can be studied at different scales (Lesort et al., 2003). At a fine scale, the representation of traffic
is closer to the true nature of the phenomena on the road. However, a detailed traffic model requires a large volume of accu-
rate measurements for calibration and validation, and correspondingly large computation power. Consequently, different
scales have been historically associated with different applications, depending on data availability and computational
requirements.

At a nanoscopic scale, vehicles are considered to behave independently under the control of a driver who reacts to stimuli
from neighboring vehicles according to a specific behavioral model. Traffic dynamics can be modeled as a set of coupled or-
dinary differential equations (ODE) with decision variables resulting from a demand model, see for instance Ahmed et al.
(1996). At a microscopic scale, vehicles are considered to behave independently by reacting to stimuli from neighboring vehi-
cles according to a dynamical model. Traffic dynamics can be modeled as a set of coupled ordinary differential equations
edu (D.B.
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(Brauer and Nohel, 1989). Nanoscopic and microscopic models have been used mostly for off-line non-real-time simulation
and planning, see Fellendorf (1994) for VISSIM, and Cameron and Duncan (1996) for Quadstone Paramics.

At a mesoscopic scale, vehicles are considered as a large set of atomic elements with individual behavior according to mac-
roscopic laws or relations. Traffic dynamics can be modeled using gas-kinetic models (Prigogine and Herman, 1971) or as
cellular automata (Chowdhury et al., 2000). Mesoscopic models have been widely applied to real-time on-line and off-line
network-wide control and dynamic traffic assignment, with significant prior data collection for calibration, see Mahmassani
et al. (1994) for DYNASMART, and Ben-Akiva et al. (2002) for DynaMIT.

At a macroscopic scale, vehicles are considered to behave as a continuum medium. Traffic dynamics is modeled as a dis-
tributed system, using partial differential equations (PDE) inspired from hydrodynamics theory (Lighthill and Whitham, 1956;
Richards, 1956; Garavello and Piccoli, 2006). Consequently, in this framework, the effect of network-wide route choices is
not conveniently accounted for. One of the strengths of macroscopic models resides in the level of complexity they capture
at a relatively low analytical and computational cost, and with limited data requirements for calibration. This has motivated
the use of macroscopic models in particular for real-time on-line estimation and corridor management, see Messner and
Papageorgiou (1990) for METANET, Chow et al. (2008) for TOPL, Bayen et al. (2011) for Mobile Millennium. Furthermore,
the mathematical theory of hydrodynamics modeling brings a solid mathematical structure to macroscopic models. This the-
oretical strength can be leveraged for the development of mathematically sound finer-scale models, by equivalence, see Ga-
zis et al. (1959), Helbing (2001), Hoogendoorn and Bovy (2001), and Lesort et al. (2003), and serve as an anchor for the
development of consistent multi-scale modeling frameworks, such as the AIMSUN simulation software (Barcelo et al., 1998).

These properties of macroscopic models have motivated sustained research on extension of seminal models such as the
Lighthill–Whitham–Richards (LWR) model, presented in the following section, with the goal of capturing complex observed
phenomena missing from the LWR theory. Challenges in the design of so-called higher-order models relate to the develop-
ment of sound physical understanding, well-defined analytical structure, and preserved computational tractability of the
solution algorithm. In this article, we introduce and analyze a macroscopic flow model with phase transitions, posed as a
perturbation around the LWR model. We show that allowing the speed function to take values around the classical stationary
bivariate relation enables the simulation of higher-order traffic phenomena at the same computational cost as classical solu-
tion methods for the LWR model, and with a preserved physical interpretation.
1.2. First order scalar macroscopic models

The basis for the theory of macroscopic traffic modeling was set by the seminal articles from Lighthill and Whitham
(1956) and Richards (1956), that introduced a PDE model describing the evolution of the density k(t,x) of vehicles at time
t and location x
@kðt; xÞ
@t

þ @Qðkðt; xÞÞ
@x

¼ 0; ð1Þ
where the flow is expressed as a function of the density Q(k(t,x)). This so-called LWR model expresses the conservation of
vehicles on the road. Different traffic models were later shown to be equivalent to the LWR formulation, in particular the
Newell car-following model (Newell, 2002) and the cell-transmission model (CTM) (Daganzo, 1994), in the case of a triangular
flux function Q(�) (Newell, 1993), also called triangular fundamental diagram:
QðkÞ ¼
kvmax if k 6 kc

ðk� kjÞw if k P kc

�
ð2Þ
where vmax, kc, kj and w denote the free-flow speed, the critical density, the jam density and the backward moving wave speed,
respectively, which are required to satisfy
kcvmax ¼ ðkc � kjÞw ð3Þ
for continuity of the flow at the critical density. Density values below the critical density correspond to free-flow states and
density values above the critical density correspond to congestion states. For non-vanishing values of the flow q and the
speed v, the definition of the flux function Q(�) is equivalent to the definition of a speed function V(�) through the equality
q = vk. The use of a single-valued fundamental diagram mapping a density value to a unique flow value dates back to the
observations in Ohio by Greenshields (1935), in the Lincoln tunnel by Greenberg (1959), and in the Holland tunnel by Edie
et al. (1963).

The LWR theory has been validated with experimental data for traffic modeling (see Nagel and Nelson, 2005 for instance),
and in particular the triangular fundamental diagram from Eq. (2) has been shown to accurately model the stationary relation
between density and flow, under proper time–space aggregation of traffic measurements (Castillo and Benitez, 1995; Cassidy
and Coifman, 1997; Cassidy, 1998). One of the most desirable properties of the LWR model lies in its ability to capture the
formation and growth of queues at bottlenecks. However the LWR model is known to be unable to reproduce more complex
observed traffic phenomena such as stop-and-go waves, traffic hysteresis, and phantom jams (Hoogendoorn and Bovy, 2001).
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1.3. Non-stationary traffic flow

The introduction of more complex macroscopic models for traffic flow dates back to the Payne–Whitham model (PW)
(Payne, 1971), which consists in a 2 � 2 system1 of PDEs. The first equation is the LWR PDE (see Eq. (1)) and the second equa-
tion models the acceleration of vehicles as resulting from a reaction to local traffic conditions and a relaxation around the sta-
tionary relation. In a discrete form with a minor modification at on-ramps (Papageorgiou et al., 1990), this model was later used
extensively for estimation and control (Wang and Papageorgiou, 2005; Wang et al., 2007).

Several remarks were raised (Castillo et al., 1994; Daganzo, 1995) on the lack of physical consistency of so-called higher-
order models, in which vehicles with negative speed, and anisotropy property, were shown to arise. Anisotropy characterizes
the fact that modeled drivers react to stimuli from the front and from behind.2 These considerations led to the development of
improved non-scalar models that did not exhibit these flaws; using a convective derivative in Aw and Rascle (2000), and a so-
called non-equilibrium model in Zhang (2002).

Independently, Kerner proposed the three-phase theory (Kerner and Rehborn, 1996, 1997; Kerner, 1998) postulating the
existence of three phases of traffic; free-flow, synchronized flow, and moving jam, instead of the classical free-flow and conges-
tion. So-called third order PDE models inspired from physical systems such as the model from Helbing (1995), introducing the
speed variance as a traffic state, have also been proposed.

The relative strengths and weaknesses of first and second-order models have been outlined in several articles (Castillo
et al., 1994; Daganzo, 1995; Papageorgiou, 1998; Lebacque and Lesort, 1999; Hoogendoorn and Bovy, 2001; Lesort et al.,
2003), including discussions on the expected modeling abilities of extensions to state-of-the-art macroscopic traffic models.
This coincides with the emergence of sustained research focused on the understanding and modeling of specific phenomena
missing from the LWR theory; stop-and-go waves, hysteresis patterns, capacity drop, and the understanding, validation, and
modeling of their candidate causes; lane changes, heterogeneous drivers, bounded acceleration, acceleration and deceleration
curves. Complementary efforts have investigated the nature of these phenomena and proposed models to reproduce them,
with specific emphasis on:

� Development of parsimonious models able to reproduce the capacity drop (Papageorgiou et al., 1990), hysteresis patterns
(Zhang, 2002), stop-and-go waves (Li, 2005).
� Validation of the causality hypothesis and development of models for bounded acceleration (Lebacque, 1997), accelera-

tion and deceleration waves (Yeo and Skabardonis, 2009), lane changes (Laval, 2005; Laval and Daganzo, 2006; Jin, 2010),
heterogeneous drivers (Chiabaut et al., 2010; Laval and Leclercq, 2010).

From the perspective of intelligent transportation systems, a critical feature of traffic models consists in their ability to
handle streaming measurements for accurate estimation of traffic conditions (Wang and Papageorgiou, 2005; Mihaylova
et al., 2006; Work et al., 2010; Blandin et al., 2012). Observability of quantities required for on-line model calibration, ability
to take advantage of measurements of various traffic quantities, computational tractability and model accuracy are essential
properties for traffic monitoring.

In this work, we propose the analysis of the phase transition model (PTM), shown to be an extension of classical scalar first
order macroscopic flow models derived from the LWR model described by Eq. (1). The PTM was introduced by Colombo
(2002, 2003) following Kerner’ remarks (Kerner and Rehborn, 1996, 1997). It was later extended in Blandin et al. (2011)
to account for a constant speed in free-flow, and a variety of possible stationary fundamental diagrams in congestion. The
corresponding system of PDEs has been shown to be well-posed and an efficient numerical scheme has been proposed to
compute its numerical solution (Chalons and Goatin, 2008). In particular, the PTM does not lead to vehicles with negative
speeds, and does not exhibit anisotropy.

The focus of the present work is on the assessment of accuracy and practicality of the PTM for traffic modeling and on-line
traffic estimation. We show that, by allowing the classical state variable density k to be complemented in congestion by a
perturbation variable p at the stationary state, the PTM is able to propagate the impact of non-stationary dynamics, rather
than predict its emergence. It is observed that for time–space diagram reconstruction from initial and boundary conditions,
significant accuracy is gained from the ability to account for joint observations of different traffic quantities. Specific atten-
tion is given to the physical mesoscopic interpretation of the model, and the practicality of implementation of the associated
discrete solution algorithm. In particular the convexity of the state-space of the model, required for the use of finite volume
schemes such as the Godunov scheme, is assessed. The performance of the proposed model and its ability to model complex
traffic phenomena such as hysteresis patterns, phantom jams, forward-moving discontinuities in congestion, is assessed on
benchmark cases and on experimental vehicle trajectories from the Next Generation SIMulation (NGSIM) datasets (NGSIM,
2006).

The main contributions of the present article are the following:
1 A set of two equations for a 2-tuple of state variables.
2 The justification for this appellation is the fact that in a so-called anisotropic model, we have k1 6 v 6 k2, were v denotes the speed of vehicles, and k1,2 the

characteristic speeds at which information propagate.
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Fig. 1. Observed fundamental diagrams for NGSIM datasets. The mapping of density to flow, for quantities corresponding to the aggregation of all
mainlines, is not single-valued in congestion. The datasets and numerical discretization parameters are described in Section 4.1.
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1. Extension of LWR theory: we show that the PTM can be seen as a first order extension of the LWR theory at the fundamen-
tal diagram in the congestion phase. An appropriate discretization scheme, the modified Godunov scheme, is motivated by
a physical interpretation, and described in details.

2. Increased modeling capabilities: we show that the PTM is able to model forward-moving shock waves and hysteresis phe-
nomena in the congestion phase. We illustrate that the model can create phantom jams in specific scenarios.

3. Performance assessment on real measurements: we compare the performance and analyze the respective strengths of the
calibrated CTM and PTM on the NGSIM datasets for I-80.

The remainder of the article is organized as follows. In Section 2 we introduce the phase transition model in the contin-
uous setting. In Section 3 we describe an appropriate solution algorithm that can be viewed as a discrete version of the phase
transition model. Section 4 describes the NGSIM datasets used for numerical illustrations and validation. Advanced modeling
capabilities of the PTM are presented in Section 5, on synthetic benchmark cases and on experimental datasets. Calibration
and analysis of the PTM for the NGSIM datasets is proposed in Section 6. Finally, Section 7 makes concluding remarks and
presents related research issues on data fusion.

2. Continuous phase transition model

In this section, we present the continuous phase transition model (Blandin et al., 2011), derive its mathematical structure
in the context of non-stationary traffic, and illustrate its applicability by solving the corresponding Riemann problem (Garav-
ello and Piccoli, 2006).

2.1. Model definition

Similar to first-order models, the phase transition model consists of a PDE modeling the dynamics of traffic, and an empir-
ical parametric fundamental diagram representing a relation from density to flow.

To account for the spread of the density-flow relation observed in congestion in experimental datasets (see Fig. 1), and in
accordance with the definition of the fundamental diagram as a stationary relation, we consider a new speed function VPTM(�)
that can be considered to be a first-order extension of the classical density-speed relation in congestion:
VPTMðuÞ¼:
vmax in free�flow
VðkÞð1þ pÞ in congestion

�
ð4Þ
where u ¼: (k,p) is a 2-tuple where k is the density and p is an additional real-valued variable, independent of the density,
that models a perturbation around the stationary relation. The free-flow speed is again denoted vmax, and V(�) is the station-
ary speed function associated with the flux function Q(�) in congestion. Note that once the stationary relation V(�) is cali-
brated, the perturbation p can be computed from joint observations of density and speed, or density and flow, according
to relation (4). The flow of vehicles is naturally defined as the product of speed and density:
Q PTMðuÞ¼
: kVPTMðuÞ ¼

kvmax in free�flow
kVðkÞð1þ pÞ in congestion:

�
ð5Þ
When the perturbation vanishes (p = 0), the fundamental diagram defined in (4), or equivalently (5), reduces to the clas-
sical relation between stationary states. Values of speed higher or lower than the stationary fundamental diagram are admis-
sible for non-stationary states (p – 0). Fig. 2 illustrates that the perturbation can be allowed to change sign (top and bottom
rows) or be restricted to a constant sign (middle row for the case of a positive sign).
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Fig. 2. PTM fundamental diagrams: in density-perturbation coordinates (left column), density-speed coordinates (center column), density-flow coordinates
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The parameters of the fundamental diagram are the parameters of the stationary relation, and the bounds pmin and pmax

on the perturbation (see Fig. 2). To guarantee the positivity of speeds, it is clear that it is necessary to have the following
inequality:
pmin > �1: ð6Þ
In particular, the PTM guarantees that vanishing speeds only arise at densities corresponding to vanishing stationary
speed, which is the property P2 of Garavello and Piccoli (2009). Further details on the impact of the choice of the bounds
pmin and pmax for the perturbation are discussed in Section 2.2 on model analysis and in Section 6 on model validation.

The PTM fundamental diagram is defined as an extension of the stationary diagram in congestion and is able to accom-
modate different stationary profiles. For illustration purposes, the triangular fundamental diagram from Eq. (2) is shown in
Fig. 2, top and middle rows, and the case of the exponential fundamental diagram is illustrated in Fig. 2, bottom row.

Remark 1. The perturbation p defined in Eq. (4) accounts for variations of traffic speed around its stationary values. Note
that no specific cause is attached to the value of the perturbation. This corresponds to the implicit modeling assumption
made in this article that, at an aggregate level, the evolution of traffic flow is determined only by the current state (density,
perturbation and associated values of flow, density), and by road properties captured by the set-valued PTM fundamental
diagram, irrespective of other causal variables (lane changes, heterogeneous drivers, acceleration and deceleration waves).

The dynamics of the phase transition model is governed by different systems of PDEs for the free-flow phase and for the
congestion phase
Free�flow : @k
@t þ

@ðkvÞ
@x ¼ 0

Congestion :
@k
@t þ

@ðkvÞ
@x ¼ 0

@p
@t þ

@ðpvÞ
@x ¼ 0;

(
8>><
>>: ð7Þ
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where in Eq. (7), the speed v is defined by v ¼: VPTM(k,p) according to Eq. (4), and thus has a different algebraic expression in
free-flow and in congestion. In free-flow, the evolution of the density k satisfies the LWR model, described in Eq. (1). In con-
gestion, the evolution of the state composed of the density k and the perturbation p is governed by two coupled conservation
laws stating that these two quantities are conserved, and that they propagate at a speed v given by the fundamental diagram
defined in Eq. (4). One might note that according to (7), the variable p denotes a density of perturbation. Similar to the quan-
tity k(t,x) corresponding to the total number of vehicles at time t in a neighborhood of x, averaged over the spatial size of the
neighborhood, the quantity p(t,x) can be understood as representing the sum of proportional speed deviations from the sta-
tionary speed, at the observed k(t,x), due to the fact that all drivers in a neighborhood of x may not drive at the stationary
speed V(k(t,x)). In that sense the quantity p can be computed as the sum of these deviations averaged over the considered
neighborhood, and understood as a density of perturbation. For concision, we refer to p as a perturbation throughout the
article.

The free-flow phase and the congestion phase are formally defined in the following section, in which we construct the
solution to the PDE (7).

2.2. Model analysis

In this section, we present the properties of the solution to the initial-boundary value problem (IBVP) associated with the
PTM, defined in Eq. (7). We remind the reader that the variable u denotes the 2-tuple (k,p). For (t,x) 2 [0,T] � [a,b], the IBVP
reads
3 A s
conserv
PTM :

Free�flow : @k
@t þ

@ðkvÞ
@x ¼ 0

Congestion :
@k
@t þ

@ðkvÞ
@x ¼ 0

@p
@t þ

@ðpvÞ
@x ¼ 0

(
8>><
>>:

Fundamental diagram : v ¼ VPTMðuÞ
Initial condition : uð0; xÞ ¼ u0ðxÞ

Boundary condition :
uðt; aÞ ¼ uaðtÞ
uðt; bÞ ¼ ubðtÞ;

�

8>>>>>>>>>>>><
>>>>>>>>>>>>:

ð8Þ
where u0, ua, ub denote the initial, upstream and downstream boundary conditions respectively. Solving the IBVP defined in
(8) (on the time–space domain [0,T] � [a,b]) consists in constructing the time–space diagram of traffic corresponding to the
dynamics of the PTM, the fundamental diagram VPTM(�), observations ua and ub from upstream and downstream sensors lo-
cated at x = a and x = b respectively, and knowledge of the traffic state u0 between sensors at some initial time 0. The con-
struction of the solution to the IBVP is guided by the analysis of the system of PDEs ruling the evolution of the system in
congestion. We refer the interested reader to Blandin et al. (2011) for specific details on the following derivations, and in
particular for the result that the system of PDEs from Eq. (7) corresponding to the congested phase is hyperbolic.3 Note that
the boundary conditions cannot be imposed in the strong sense as literally described in (8), but need to be imposed in the weak
sense, see Strub and Bayen (2006) for the case of the LWR PDE.

The eigenvectors associated with the Jacobian of the congestion part of the system of Eq. (7) are
e1ðuÞ¼:
k

p

� �
; e2ðuÞ¼:

VðkÞ
�ð1þ pÞV 0ðkÞ

� �
ð9Þ
with the respective eigenvalues
k1ðuÞ¼: VPTMðuÞ þ rVPTMðuÞ � e1ðuÞ; k2ðuÞ¼: VPTMðuÞ ð10Þ
and with the associated Riemann invariants (Toro, 1997):
r1ðuÞ¼:
p
k
; r2ðuÞ¼: VPTMðuÞ: ð11Þ
The details of the analysis leading to these results are available in Blandin et al. (2011), in particular the fact that the sec-
ond term in the first eigenvalue in (10) is negative, which guarantees the anisotropy of the system. Eqs. (9) and (10) indicate
that in congestion, the system can evolve either along trajectories tangent to the eigenvector e1, or along trajectories tangent
to the eigenvector e2. Eq. (11) indicates that the quantity p/k is invariant along the trajectories of the first type (tangent to e1),
and the speed v is invariant along trajectories of the second type (tangent to e2).

Remark 2. We remind the reader that the LWR theory describes the emergence of contact discontinuities, shock waves, and
rarefaction waves, at spatial discontinuities of the solution to a scalar conservation law. With a concave diagram, a positive
spatial gradient of density corresponds to a shock wave, and a negative spatial gradient of density corresponds to a
ystem of conservation laws is called hyperbolic if the Jacobian of the system is diagonalizable with real eigenvalues. Most of the theory of systems of
ation laws is concerned with hyperbolic systems.
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rarefaction wave (Ansorge, 1990) (the converse is true for a convex diagram). In the specific case for which the fundamental
diagram is affine, contact discontinuities arise, which model the propagation of a discontinuity without mixing of the
upstream and downstream states, unlike a shock-wave.

First-type trajectories: since p, by definition, denotes a perturbation around the stationary state, the first invariant defined
in Eq. (11) can be understood as the average perturbation per driver. A complete analysis (Blandin et al., 2011) shows that
the first type of trajectories is genuinely non-linear (GNL) in general, hence can give rise to rarefaction waves or shock waves,
as in the LWR theory. In particular, the trajectory of the first type for which p/k = 0 is conserved, i.e. for a vanishing pertur-
bation, corresponds to the evolution of the LWR solution.

Second-type trajectories: the second type of trajectories, for which the speed v is conserved, is linearly degenerate (LD), and
gives rise to contact discontinuities, which correspond to discontinuities propagating without mixing of the upstream and
downstream state. This type of evolution does not exist for the congestion phase in the LWR model, but has been observed
in practice (Cassidy and Windover, 1995), and is identical to the evolution of traffic in the free-flow phase of the LWR model
with a triangular fundamental diagram. These discontinuities propagate downstream at the speed of vehicles.

For stability of the model, it is clear that a trajectory of the system should not exit the admissible state space ([0,kj] for a
scalar model of density). This requires us to define the boundary of the admissible domain as the extremal admissible tra-
jectories of the system. Consequently, we define the congestion phase Tc as a domain delimited by extremal values of the
Riemann invariants (11), that are invariant along trajectories:
Tc¼: ðk; pÞj
pmin

kj
6

p
k
6

pmax

kj
and 0 6 v 6 vmax

� �
;

where pmin and pmax denote the minimal and maximal physically admissible values, respectively, for the perturbation var-
iable, and kj, vmax denote the jam density and free-flow speed, respectively. The curves p/k = pmin/kj and p/k = pmax/kj corre-
spond to the lower and upper envelope, respectively, of the congestion domain depicted in dashed line in Fig. 2 (with pmax > 0
for the three rows, pmin < 0 for the top and bottom rows, and pmin = 0 for the middle row).

Remark 3. In order to enforce positivity of speed, the condition described in Eq. (6) for the lower bound pmin must be
satisfied. Characteristics speeds along first-type trajectories are negative only if the parameter pmax is not too large, see
Blandin et al. (2011) for analytical derivations for different models.

The free-flow phase Tf is defined as:
Tf¼
: kj0 6 k 6 k�c
� �

ð12Þ
where the point defined by k ¼ k�c 6 kc corresponds to the intersection of the free-flow phase and the lower envelope of the
congestion phase, see Fig. 2. For continuity of the flow at kc between the free-flow phase and the stationary relation in con-
gestion, the condition V(kc) = vmax must be satisfied. This relation corresponds to Eq. (3) for the triangular diagram.

Remark 4. The PTM exhibits similarities with the non-equilibrium model (Zhang, 2002); in the congestion phase, both
models have trajectories of the first type that are GNL in general and trajectories of the second type that are LD. Moreover,
the second Riemann invariant, defined in Eq. (11) right for the PTM, is the speed for both the non-equilibrium model and the
PTM. Aside from the existence of different dynamics for the free-flow phase and the congestion phase in the case of the PTM,
with the use of a classical single-valued density-flow relation in free-flow according to empirical observations, the main
difference between the two models lies in the nature of the first type of trajectories. For these trajectories, the Riemann
invariant is v � V(k) in the non-equilibrium model, whereas it is p/k in the PTM. Consequently, for the non-equilibrium
model, the first type of trajectories can be obtained by a vertical translation of the equilibrium curve in (k,v) coordinates,
whereas for the PTM, these trajectories converge toward a vanishing speed at the jam density. This is illustrated for the
triangular fundamental diagram in Fig. 3.

The interested reader is referred to Colombo (2003) and Blandin et al. (2011) for results of well-posedness of the Cauchy
problem associated with the PTM, to Colombo et al. (2007) for the well-posedness of the IBVP associated with the PTM, to
Dafermos (2010) for more details on conservation laws in general, and to Garavello and Piccoli (2006) for more details on
conservation laws in the context of traffic flow on networks. In the next section, we present the Riemann problem and a Rie-
mann solver for the PTM.

2.3. Riemann problem

A critical property of a traffic model is its ability to provide simple, physically correct solutions to elementary benchmark
scenarios of interest for traffic (Lebacque and Lesort, 1999). For hyperbolic conservation laws, a classical benchmark scenario
is a Riemann datum, which is a centered, piecewise constant, initial condition:
uðt ¼ 0; xÞ ¼
uup if x < 0
udown if x > 0:

�
ð13Þ
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A Riemann problem is defined as a Cauchy problem for an initial datum of the type (13). The Riemann solver is the math-
ematical method constructed to provide the solution to the Riemann problem. In other words the Riemann solver produces
the evolution in time of the initial traffic conditions defined by the Riemann datum (13). In the case of the PTM, u ¼: (k,p) in
congestion and u ¼: k in free-flow. The Riemann solver defined in Blandin et al. (2011), in the case of system trajectories of the
first type with concavity of constant sign, is the following4,5:

1. If (uup,udown) 2 Tf � Tf: the solution to the Riemann problem for the PTM coincides with the solution to the Riemann prob-
lem for the LWR model. It consists of a contact discontinuity6 from uup to udown. This is illustrated in Fig. 4.

2. If (uup,udown) 2 Tc � Tc: we denote the intermediary state by um ¼
: (km,pm), defined as the point of the congestion phase Tc

satisfying
4 It is
illustrat

5 The
6 A c

left and
pm
km
¼ pup

kup

VPTMðumÞ ¼ VPTMðudownÞ:

(

The solution to the Riemann problem consists of a shock wave or rarefaction wave along a curve of the first type from uup to
um, followed by a contact discontinuity along a curve of the second type from um to udown. This is illustrated in Fig. 5, for the
clear that along trajectories of the first type, shock waves or rarefaction waves can occur. In the interest of space, in this section we provide graphical
ions for only one of the two types of waves for each scenario.
illustrations in this section are provided for the case of a triangular stationary relation, with positive perturbation (pmin = 0) for simplicity.

ontact discontinuity is a wave occurring for a characteristic field with constant characteristic speed. The speed of the discontinuity corresponds to the
right identical characteristic speeds.
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case in which a shock wave, arises from uup to um.
3. If (uup,udown) 2 Tc � Tf: we note um ¼

: (km,pm) the point of the congestion phase Tc defined by:
7 The
(with n
pm
km
¼ pup

kup

VPTMðumÞ ¼ VPTMðudownÞ ¼ vmax:

(

The solution to the Riemann problem consists of a shock wave or rarefaction wave along a curve of the first type from uup to
um, followed by a contact discontinuity along a curve of the second type from um to udown. This is illustrated in Fig. 6, for the
case in which a rarefaction wave, represented by a fan on the right sub figure, arises from uup to um.
4. If (uup,udown) 2 Tf � Tc: we note um ¼

: (km,pm) the point of the congestion phase Tc defined by
pm
km
¼ pmin

kj

VPTMðumÞ ¼ VPTMðudownÞ;

(

and we note QPTM(�) the flux function defined in Eq. (5). We assume that the entropy condition
Q PTMðuupÞ � QPTMðumÞ
kup � km

P k1ðumÞ;
which guarantees that the shock-like phase transition is entropic, is satisfied7. The solution to the Riemann problem consists
of a shock-like phase transition from uup to um, followed by a contact discontinuity along a curve of the second type from um to
udown. This is illustrated in Fig. 7 for the case of a phase transition with negative speed.
entropy condition states that the slope, in density-flow coordinates, of the line connecting uup and um, is greater than the first characteristic speed at um

otations of Eq. (10)).
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In the following section we leverage the definition of the Riemann solver from this section to introduce a discretized mod-
el for the PTM, derived as a modification of the seminal Godunov scheme (Godunov, 1959).

3. Discretized phase transition model

In this section, we present a formulation of the PTM in discrete time and discrete space, which has been shown (Chalons
and Goatin, 2008; Blandin et al., 2011) to provide an accurate numerical approximation to the solution of the PTM in a con-
tinuous setting (7). This so-called modified Godunov scheme is derived from the seminal Godunov scheme, and we present a
physical interpretation from a mesoscopic perspective.

3.1. Discrete model definition

We consider a discretization of time and space in intervals of size Dt, Dx, respectively, and note
un

j ¼ kn
j ; p

n
j

� 	
; j ¼ 1; . . . ; J; n ¼ 1; . . . ;N, the value of the numerical solution in the discretization cell centered at jDx,

(n + 1/2)Dt.
The classical Godunov scheme consists of two steps, generally summarized by a conservative formulation, involving a

numerical Godunov flux, for the dynamics of the discrete solution. First, the solution to the Riemann problems generated
at time nDt by the couples un

j ;u
n
jþ1

� 	
is computed on the time interval [nDt, (n + 1)Dt]. Second, the solution to the Riemann

problems is averaged at time (n + 1)Dt on each cell [(j � 1/2)Dx, (j + 1/2)Dx].
The main modification to the original Godunov scheme is due to the existence of phase transitions, which can yield a state

outside the admissible state-space after the averaging step of the classical scheme. This can be prevented by considering that
the discrete solution at jDx, nDt, applies to a space extent D�xn

j different from Dx, and which belongs to a single phase. We
note �un

j the discrete solution on the modified cells. The modified Godunov scheme consists of the following sequential steps:

� Forward propagation: computation of the discrete solution �unþ1
j on the modified grid with cells of size D�xn

j . This step con-
sists of computing the average of the solutions to the Riemann problems between neighboring un

j ;u
n
jþ1

� 	
, on modified

cells containing a single phase, free-flow or congestion.
� Sampling: computation of the discrete solution unþ1

j on the regular grid by sampling from the discrete solution �unþ1
j on the

modified grid.
� Projection: projection of the solution onto the congested phase, in the case of a cell boundary between congestion and

congestion or congestion and free-flow.

These steps are described in more detail in the following sections.

3.1.1. Forward propagation
The discretized model used for propagating the state forward is defined as follows:
D�xnþ1
j

�unþ1
j ¼ Dxun

j � Dt qdown
MG un

j ; u
n
jþ1

� 	
� qup

MG un
j�1;u

n
j

� 	h i
ð14Þ
where qup
MGðua;ubÞ and qdown

MG ðua;ubÞ denote the upstream and downstream numerical modified Godunov flux, respectively, be-
tween the state ua upstream and the state ub downstream. The numerical modified Godunov flux is defined as follows:
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If ðua;ubÞ 2 Tf � Tf

qup
MGðua;ubÞ ¼ qdown

MG ðua;ubÞ ¼ kavmax

If ðua;ubÞ 2 Tc � Tc

qup
MGðua;ubÞ ¼ qdown

MG ðua;ubÞ ¼ ðkmVPTMðumÞ;pmVPTMðumÞÞ
If ðua;ubÞ 2 Tc � Tf

qup
MGðua;ubÞ ¼ kbvmax � kbrPTðum; ubÞ

qdown
MG ðua;ubÞ ¼ ðkmVPTMðumÞ; pmVPTMðumÞÞ � umrPTðum;ubÞ

If ðua;ubÞ 2 Tf � Tc

qup
MGðua;ubÞ ¼ ðkmVPTMðumÞ;pmVPTMðumÞÞ � umrPTðua;umÞ

qdown
MG ðua;ubÞ ¼ kavmax � uarPTðua;umÞ

8>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>:

ð15Þ
where um denotes the intermediary point, defined in Section 2.3, arising between the upstream state ua and downstream
state ub. The velocity function VPTM(�) is introduced in Eq. (4). The last right-hand-side term in the third and fourth cases
of Eq. (15) denotes the speed rPT(ua,ub) of the phase transition arising between the upstream state ua and the downstream
state ub. The phase transition speed can be computed using the Rankine–Hugoniot relation between the states across the
phase transition
rPTðua;ubÞ¼
:

QPTM ðuaÞ�QPTMðubÞ
ka�kb

if ua; ub belong to different phases

0 otherwise

(
ð16Þ
where QPTM(�), introduced in Eq. (5), denotes the flow of vehicles. One may note that the Rankine–Hugoniot speed in the first
line of Eq. (16) expresses the conservation of the density k of vehicles at discontinuities. This guarantees the conservation of
vehicles across phase transitions in the third and fourth cases of Eq. (15). The quantity D�xnþ1

j is defined as:
D�xnþ1
j ¼: Dxþ Dt rPT un

j ;u
n
jþ1

� 	
� rPT un

j�1;u
n
j

� 	� 	
ð17Þ
Note that D�xnþ1
j may be different from Dx only if a phase transition arises at time nDt at the upstream or downstream

boundary of the cell centered at jDx. The perturbation term p is independent from the density only in congestion. In free-
flow, the perturbation term is uniquely determined by the value of the density (see Fig. 2), hence it does not appear in
the definition of the free-flow phase (12), does not have specific dynamics (7) in free-flow, and its value is not meaningful
in free-flow. This explains why it does not have to be conserved at phase transitions (third and fourth cases of Eq. (15)), since
it is a meaningful quantity only on one side of the phase transition. Within the congestion phase, it is clearly conserved (sec-
ond case of Eq. (15)).

3.1.2. Sampling
In the case of neighboring cells belonging to different phases (third and fourth cases of Eq. (15)) the solution of the Rie-

mann problem must be integrated on a domain that belongs to the same phase rather than on each cell. This modification to
the original Godunov scheme is required due to the non-convexity of the union of the congestion and free-flow phases Tf [ Tc,
which implies that the averaging step of the classical Godunov scheme might produce a state outside of the admissible do-
mains. This explains the additional last term in the third and fourth cases of (15), compared to the classical modified Godu-
nov scheme. The additional terms in the third and fourth cases of Eq. (15) specify that the averaging of the solution to the
Riemann problem is done only within each phase.

The discrete solution unþ1
j on the regular grid is computed by sampling uniformly in space between the values

�unþ1
j�1 ; �u

nþ1
j ; �unþ1

jþ1 on the spatial domain corresponding to the cell j. In the case represented in Fig. 8, unþ1
j is sampled from

�unþ1
j�1 and �unþ1

j , which cover the cell j at time n + 1, according to their rate of presence in the cell. The value unþ1
j�1 is taken equal

to �unþ1
j�1 since the whole spatial domain corresponding to cell j at time n + 1 belongs to the domain of existence of �unþ1

j�1 . The
value unþ1

jþ1 is sampled from �unþ1
j and �unþ1

jþ1 , which cover the cell j + 1 at time n + 1, according to their rate of presence in the cell.
It has been shown that the Van der Corput sequence, known to be uniformly distributed, is appropriate for this procedure
(Chalons and Goatin, 2008).
Phase transitions: arising between neighboring cells are depicted in oblique solid lines. The boundaries between regular cells are depicted in vertical
lines. The solution �unþ1

j at time tn+1 = (n + 1)Dt is defined on cells of size D�xnþ1
j delimited by the trajectory of phase transitions. This figure

onds to the case where only two phase transitions arise at the 4 cell boundaries represented.
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3.1.3. Projection
The definition of the modified Godunov flux (15) guarantees that no averaging on the solution to the Riemann problem

between states belonging to different phases occurs. However, the congestion phase Tc itself is not convex at the intersection
with the free-flow phase (see Fig. 2 left column). To account for this non-convexity, a projection step has been proposed in
Blandin et al. (2011) and shown to give accurate results, due to the low curvature of the phase boundary at this location. This
step consists in projecting any non-admissible value resulting from the modified Godunov scheme onto the congestion
phase, along the first trajectories (that preserve the first Riemann invariants). This process is illustrated in Fig. 11, domain B.

Remark 5. The congestion phase Tc of the PTM is convex at each boundary except at the boundary corresponding to the free-
flow speed (see Fig. 2). This limited non-convexity can be corrected by a third step in the modified Godunov scheme (see
boxed algorithm below). In the case of the non-equilibrium model, the non-convexity of the congestion domain ranges from
the critical density to the jam density (see Fig. 3 left), unless a Greenshields (linear) equilibrium velocity function is used.
Consequently the use of a similar modified Godunov scheme would yield a more significant error in general than in the case
of the PTM.

In summary, at each time (n + 1)Dt, the discrete solution unþ1
j ; j ¼ 1; . . . ; J to the PTM can be computed from the discrete

solution un
j ; j ¼ 1; . . . ; J at the previous time nDt as follows.

1. Forward propagation:
� compute D�xnþ1

j according to Eq. (17) for cells j for which a phase transition arises at a boundary.
� compute �unþ1

j ; j ¼ 1; . . . ; J, using the discrete model dynamics described in Eqs. (14) and (15).
2. Sampling: compute the value unþ1

j , j = 1, . . . , J by sampling the candidate values �unþ1
j�1 , �unþ1

j
�unþ1

jþ1 on the domain correspond-
ing to the cell j.

3. Projection: if a state with velocity greater than the free-flow speed vmax and admissible first Riemann invariant arise, pro-
ject along first Rieman invariant on the congestion phase (see Fig. 11, domain B).

A formulation similar to the supply–demand for scalar conservation laws, which is known to be equivalent to the Godu-
nov scheme, can also be derived for the above algorithm within each phase. In the following section, we present a physical
perspective on the PTM dynamics.

3.2. Mesoscopic interpretation

In this section we show that a meaningful mesoscopic interpretation, outlined in Blandin et al. (2010), can be associated
with the discrete numerical method presented in the previous section and with the solution to the Riemann problem in Sec-
tion 2.3, see Daganzo et al. (1999) for a related discussion on a Markovian perspective for modeling of complex traffic phe-
nomena. In particular, we provide a physical interpretation for the numerical flux between two cells that depends on their
corresponding phases.

First, we note that according to its definition in Eq. (4), the perturbation variable p indicates how much the speed of the
associated traffic state deviates from the stationary state. Hence from the mesoscopic perspective it can be viewed as an indi-
cation of the aggressiveness of the corresponding element of flow. It follows that the quantity p/k is the average aggressive-
ness per driver; it is positive if the observed speed is higher than the stationary speed, and negative otherwise.

Free-flow upstream to free-flow downstream: the flux between two cells in the free-flow phase Tf is the flow from the up-
stream cell (first case of Eq. (15)). This is in accordance with the definition of the free-flow phase as a phase where the traffic
demand is lower than the traffic supply, hence the demand from the upstream cell can be accommodated by the downstream
cell, and the corresponding upstream flow can be realized between the two cells.

Congestion upstream to congestion or free-flow downstream: the flux between two cells in the congestion phase is the flow
of the intermediary state um (second and third case of Eq. (15)). In this case, the middle state um has same value of p/k as the
upstream state uup, and same speed v as downstream state udown (see second and third case of Section 2.3). The fact that the
numerical flux between two cells is defined by the average aggressiveness of the upstream state uup and the speed of the
downstream state udown can be understood as follows: drivers from the upstream cell adapt their speed to the speed of
the drivers from the downstream cell. They adapt their speed and pick their spacing according to their natural driving behav-
ior, represented here by the average aggressiveness of the element of flow to which they belong. Hence the numerical flux
between the two cells is the flow that corresponds to a personalized modification, by the upstream drivers from the state uup,
of their speed, in order to match the speed of the downstream drivers.

Free-flow upstream to congestion downstream: the flux between two cells in the congestion phase is the flow of the inter-
mediary state um (fourth case of Eq. (15)). In this case, the middle state um has the lowest possible average aggressiveness p/k
compatible with the speed v of the downstream state udown (see fourth case of Section 2.3). This can be understood as fol-
lows; in the free-flow phase, the demand is not constrained by the supply and drivers are free to drive at the free-flow speed,
hence the traffic state is entirely defined by its density. In particular, the aggressiveness of drivers is uniquely determined
from the value of the density. When the drivers from the free-flow phase enter the congestion phase, they switch from a
phase in which the demand is the defining constraint to a phase in which the supply is the defining constraint. This naturally
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yields a degree of aggressiveness that represents their driving speed compared to the stationary speed. Since the free-flow
drivers emerge from a free-flow phase, the average aggressiveness of their corresponding element of flow is as low as pos-
sible. However, they have to adapt their speed according to the speed of the downstream traffic. They modify their speed to
reach the speed of the downstream drivers, which is the second defining element for the intermediary state. In that sense the
aggressiveness of drivers is created by the interaction of a free-flow phase upstream and a congestion phase downstream.
This is similar to the fact that congestion in the LWR model arises only from junctions.
4. Vehicle trajectories datasets

In this section we present the datasets used for numerical illustrations of the PTM physical properties in Section 5.

4.1. Datasets specifications

We consider the following NGSIM datasets (NGSIM, 2006) from highway I-80:

1. I-80 4:00–4:15: vehicles trajectories are recorded at a 0.1 s resolution for a 0.34 miles stretch of freeway I-80 Northbound
at Powell Street, Emeryville, CA, with six lanes including a HOV lane, during 15 min from 4 pm to 4:15 pm (2052 vehi-
cles). We consider the middle stretch from relative mile 0.03 to relative mile 0.3, which is a straight line. We remove
the first and last 100 s to avoid boundary effect. We discretize the dataset into 14 cells and 749 time-steps.

2. I-80 5:00–5:30: vehicles trajectories are recorded at a 0.1 s resolution for a 0.34 miles stretch of freeway I-80 Northbound
at Powell Street, Emeryville, CA, with six lanes including a HOV lane, during 30 min from 5 pm to 5:30 pm (3626 vehicles).
We consider the middle stretch from relative mile 0.03 to relative mile 0.3, which is a straight line. We remove the first
100 and last 250 s to avoid boundary effect. We discretize the dataset into 14 cells and 1104 time-steps.

The choice of the number of cells for discretization of the dataset is driven by the sampling frequency of the collected data
for accurate computation of flow, density and speed according to Edie’s generalized definition (Edie, 1963). Under this def-
inition, the parameters that characterize the traffic conditions in a time–space domain A can be obtained as:
Table 1
Discreti

I-80
I-80
kðAÞ ¼ tðAÞ=jAj ð18aÞ
QðAÞ ¼ dðAÞ=jAj ð18bÞ
VðAÞ ¼ dðAÞ=tðAÞ; ð18cÞ
where k(A), Q(A), and V(A) are the density, flow, and speed in domain A respectively, jAj is the domain area (in units of time-
distance), t(A) is the total time spent in A by all vehicles that cross the domain, and d(A) is the total distance traveled by those
vehicles.

We want to have a time-step ‘‘large’’ compared to the sampling period and a cell size ‘‘large’’ compared to the distance
traveled by the vehicles during a sampling period, see Lesort et al. (2003) for a detailed discussion on the notion of scale in
traffic modeling. Here we consider a time-step of 10 times the sampling period, and a cell size of 10 times the distance trav-
eled at the free-flow speed (taken as 70 mph) between two consecutive reports. The average point speed of the vehicles is
17 mph and 12 mph for I-80 4:00–4:15 and I-80 5:00–5:30, respectively. The discretization parameters for each dataset are
given in Table 1.

In the following analysis, we consider the computed values of density, flow and speed according to Edie’s generalized Def-
inition 18, for the discretization grid associated with the parameters from Table 1, as ground-truth traffic state for bench-
marking the performances of the PTM and the CTM.

4.2. Dataset properties

The density time–space diagrams of the NGSIM datasets used for model testing and validation are reproduced in Fig. 9. In
this figure, the five leftmost mainline lanes are considered for computation of the density, flow, and speed according to Edie’s
generalized definition, with discretization parameters described in the previous sub section.

Several heavy congestion patterns can be observed propagating upstream at similar speeds. Heavy congestion can also be
observed propagating downstream in the I80 5–5:30 dataset, starting from the upstream boundary at around 750 s in rel-
ative time.
zation parameters: the time-step and cell size are chosen as a function of the sampling period.

Sampling period Time-step Cell size Average ] points per cell

4–4:15 0.1 s 1 s 102 feet 71 points
5–5:30 0.1 s 1 s 102 feet 96 points



Fig. 9. Density (vpm) time–space diagrams for I80 4–4:15 (top) and I80 5–5:30 (bottom).
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One may note that the datasets considered exhibit only congestion phenomena, hence only allow to validate the PTM in
the congestion phase. This is a clear limitation of the experimental results presented in this article, that should be comple-
mented in the future by an analysis of the performance of the PTM on datasets more representative of general traffic
properties.
5. Model properties

In this section we present the properties of the PTM on benchmark tests and on the experimental vehicle trajectories de-
scribed in Section 4.
5.1. Set-valued fundamental diagram

In this section, we quantify how the set-valued nature of the congestion phase of the PTM fundamental diagram increases
the accuracy with which non-stationary traffic observations are accounted for by the admissible domain of the model. We
propose a method for projecting state values falling outside of the state space back onto the state-space for observations
either erroneous or not predicted by the model, and compare its performance with a similar method for the LWR model.
In an estimation setting, the figures presented in this section indicate appropriate range of values for the error statistics asso-
ciated with the boundary of the state-space.
5.1.1. PTM theory
A common issue faced by applied researchers lies in the possible incompatibility of real measurements and state-space

values of the theoretical model. In this section, we propose a simple method for projecting measurements that do not belong
to the model state-space onto its boundary, and we illustrate the associated error for both the PTM and the LWR model.

The PTM state variables include the density k and an additional perturbation variable p in congestion that captures non-
stationary traffic states observed in practice (see Fig. 10). However, for measurements outside of the union Tf [ Tc of the free-
flow phase and the congestion phase, a method has to be designed to project the observations onto the admissible domain.

For the LWR model, this can be accomplished by assuming that measurements of density outside of the range [0,kj] are
not valid or correspond to the endpoints {0,kj}, that measurements of speed outside of the range [0,vmax] are not valid or
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Fig. 10. Set-valued congestion phase: the PTM triangular fundamental diagram is able to capture to some extent the cloud of points observed in the
congestion phase. The figures correspond to a visual fit of a triangular stationary relation with positive and negative perturbation, and a free-flow speed
vmax = 70 mph. Note that the apparent linear edge on the left of the cloud of points, does not correspond to the free-flow speed vmax, but to the maximal
speed of vehicles in the conditions considered, approximatively 30 mph and 20 mph for the left and right sub figure respectively.
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correspond to the endpoints {0,vmax}, and that a measurement of a given quantity automatically yields another quantity
using the stationary relation.

In the case of the PTM, for traffic observations falling outside of the domain Tf [ Tc, we propose to project along the eigen-
trajectories of the system, i.e. along the curves of constant average aggressiveness p/k or constant speed v. Here we address
the case of perfect measurements. The projection method is illustrated in Fig. 11.

Remark 6. In the case of a joint measurement from different traffic quantities, for instance loop counts and loop
occupancies, or probe speeds and loop counts, the set-valued nature of the PTM fundamental diagram in congestion
explicitly captures a two-dimensional admissible domain for this joint traffic measurement. In the case of measurement of a
single quantity, according to the PTM, in congestion, the measurement corresponds to a set of admissible states. Additional
assumptions can be made to restrict this set to a single value, for instance the assumption of stationary state, used in the
LWR model.
5.1.2. Empirical validation
In this section we illustrate the average absolute error associated with the process of projection onto the fundamental

diagram for the CTM and the PTM. We consider the discretized values of flow, density, and speed from the NGSIM datasets,
as measurements of the ground-truth traffic state, and we assume that the associated measurement error (due to sensing
and processing error) can be neglected in the analysis presented in this section.

For points falling outside of the fundamental diagram of the PTM, we compute the average absolute error between the
measurement, and its projection onto the diagram using the method described in the previous section. For this illustration,
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Fig. 11. Projection onto PTM diagram: outliers with a density corresponding to the free-flow phase (domain A in right figure) are projected along iso-
density curves (vertical dashed lines in left figure). Outliers with higher density than the maximal free-flow density k�c
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and higher speed than the free-

flow speed (domain B in right figure) are projected along iso-average aggressiveness curves, or trajectories of the first type (dashed curves in left figure),
except for outliers with higher speed than the free-flow speed and higher average aggressiveness than its maximum allowed value (domain C in right
figure), which are projected onto the maximal capacity point of the diagram (dashed curves in left figure). Outliers with higher density than the maximal
free-flow density and lower speed than the free-flow speed (domain D in right figure) are projected along iso-speed curves, or trajectories of the second type
(dashed lines emanating from the origin in left figure).
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the fundamental diagram parameters chosen are the optimal parameters computed in the following section using density
error metric (see Tables 3 and 4, first line, in the case of the PTM). The associated density and speed errors are represented
in the second and last columns of Table 2, respectively.

We also represent the error associated with using the stationary relation in the CTM. Specifically, in the first column of
Table 2, we present the error on density when observing speed and computing the density from the stationary relation. In the
third column of Table 2, we present the error on speed when observing density and computing the speed from the stationary
relation.

It is clear from Table 2 that inferring the density from speed measurements and the stationary relation yields a very high
error (first column). One may also note that for the PTM, since the projection is often realized along iso-speed trajectories,
there is a very low resulting error on speed.

The respective accuracy of the dynamics of the two models is presented in Section 6.2.

5.2. Forward-moving discontinuity in congestion phase

One of the specific features of the stationary bivariate relation for traffic is that information propagates downstream in
free-flow, and upstream in congestion. The PTM has a two-dimensional state in congestion that allows for two speeds of
propagation of information. The PTM is usually calibrated to have the first speed of propagation negative (see Section 6.1)
according to the stationary state theory. The second speed of propagation is always positive (see Section 2.2), and corre-
sponds to the speed of vehicles at the downstream state. In this section we study the increased modeling capabilities brought
by this feature.

5.2.1. PTM theory
In the congestion phase, two types of waves can arise in the PTM solution (see Section 2.2). Waves of the second type are

contact-discontinuities; they connect two states uup = (kup,pup) and udown = (kdown,pdown) with identical traffic speed
v = VPTM(uup) = VPTM(udown), and move at the speed v of traffic. This phenomenon is illustrated in Fig. 12.

This type of waves models the propagation without dispersion of traffic phases with different density and flow, but iden-
tical speed. Since the discontinuity propagates at the speed of traffic, this phenomenon does not depend on the sign of the
flow difference between the upstream and the downstream phase, and, unlike for a shockwave, no mixing is introduced be-
tween the two states on each side of the discontinuity. In particular, the interface between two groups of vehicles with dif-
ferent densities and flow but identical speed is preserved with time.

5.2.2. Empirical validation
The aggregate time–space diagrams for density and speed in the I80 5–5:30 dataset are presented in Fig. 13. In addition to

several backward moving shock waves spanning the entire domain, we observe a clear forward-moving discontinuity in the
time–space diagram for density, emanating from the upstream of the section around time 750 s, while no forward-moving
discontinuity appears in the time–space diagram for speed. A number of forward-moving discontinuities are observed dur-
ing the episodes of light congestion (blue in Fig. 13). One may note that the forward-moving discontinuities for the episodes
of light congestion travel faster than the forward moving discontinuity corresponding to heavy congestion (red in Fig. 13), as
the PTM would predict. Finally the comparison of the top and bottom plots of Fig. 13 illustrates that discontinuities in den-
sity can propagate forward or backward, whereas discontinuities in speed only propagate backward, which corresponds to
the constitutive properties of the PTM detailed in Section 2.2. The ability of the model to reproduce this phenomenon is illus-
trated in Section 6.2.

5.3. Hysteresis phenomenon

The phenomenon of hysteresis has been studied with much attention by the transportation community (Newell, 1962;
Treiterer and Myers, 1974; Zhang, 1999), with different candidate explanations; acceleration and deceleration waves, het-
erogeneous drivers, lane changes. Recent results (Laval, 2011) seem to discard the hypothesis of acceleration and decelera-
tion waves in favor of the hypothesis of heterogeneous drivers. The model proposed in this article is consistent with this
theory in the sense that loops can form in both directions, irrespective of the speed gradient.
Table 2
Average projection error: average absolute error associated with the stationary state hypothesis for the CTM and with the projection on the set-valued
fundamental diagram for the PTM. The first column corresponds to the computation of density from speed observation using the stationary relation, and the
converse for the third column (LWR model in both cases). The second column corresponds to the error in density due to projection, and similarly for the speed
in the fourth column (PTM in both cases). For each dataset, the error is averaged for all values of density, speed, and flow represented in Fig. 10, obtained from
vehicle trajectories according to the method described in Section 4.1 to handle NGSIM data.

Density CTM error (vpm) Density PTM error (vpm) Speed CTM error (mph) Speed PTM error (mph)

I-80 4–4:15 58.9 8.5 5.4 0.1
I-80 5–5:30 61.0 5.2 3.4 0.0
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Fig. 12. Forward-moving discontinuity in congestion: the interaction between states uup and udown with the same speed, yields a forward-moving contact
discontinuity in the congestion phase. Inverting the location of uup and udown on the road also yields a forward-moving contact discontinuity.

Fig. 13. I80 5–5:30 time–space diagrams: density in vpm (top) and speed in mph (bottom). A forward-moving discontinuity corresponding to heavy
congestion (in red) arises from the upstream boundary around time 750 s. No forward-moving discontinuity in speed is observed. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)
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The existence of hysteresis loops in density-flow coordinates can be traced back to the solution to the Riemann problem
described in Section 2.3 (second case of uup, udown, in the congestion phase Tc). An intermediary state um arises between the
initial upstream state uup and the initial downstream state udown. The upstream state uup and the intermediary state um have
the same value of the average aggressiveness per driver p/k. The downstream state udown and the intermediary state um have
the same value of speed v. The relative value of these two quantities for the upstream and downstream states uup and udown

impacts the orientation of the loop (see Fig. 14).
Only two configurations are possible in congestion for which no hysteresis loop arises.

� In the case of an upstream state uup and a downstream state udown with the same value of the average aggressiveness p/k,
no hysteresis occurs, and the only difference introduced by switching the two states is the change of nature of the con-
necting wave (shock or rarefaction).
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� In the case of an upstream state uup and a downstream state udown with same value of speed v, the connecting wave is a
contact discontinuity for the two permutations of the initial setting, and corresponds to the forward-moving discontinu-
ity described in Section 5.2.

The type of hysteresis phenomena modeled by the PTM is similar to the hysteresis described in Zhang (2002), and can be
physically explained using the mesoscopic interpretation presented in Section 3.2. The NGSIM dataset used in this study
unfortunately did not enable us to observe any of these phenomena directly (the dataset is very limited in time and space).
Note that these hysteresis phenomena are for macroscopic quantities, not for trajectories, see Laval (2011) for instance.

5.4. Phantom jam

The emergence and propagation of traffic disturbances causing drivers to decrease their speed for no clear reason in con-
gestion, or so-called phantom jams, is well-known to most commuters and the topic of active research, with recent expla-
nations tracing its cause back to the heterogeneity of driving behaviors (Laval and Leclercq, 2010). It is clear from the
solution to the Riemann problem defined in Section 2.3 that the PTM is not able to model the emergence of extreme8 values
of speed. However, in this section we show that the PTM is able to model the emergence of extreme values of density and flow.

We motivate the subsequent macroscopic description by the mesoscopic model described in Section 3.2, in which drivers
from an upstream phase adjust their speed to the speed of the drivers from the downstream phase, according to their own
driving behavior. One might note that this mesoscopic model can be obtained similarly by expressing the fact that upstream
drivers maximize their speed under the constraint of their driving behavior, and the speed of the downstream drivers, that
they cannot exceed without creating an accident.

In the congestion phase, the solution to the Riemann problem associated with the PTM exhibits different types of hyster-
esis loops (see previous section). It is clear that the intermediary state arising always has a speed in the interval defined by
the speeds of the upstream and downstream states. However, different loop behaviors can arise (see Fig. 14):

1. Clockwise loops are the cause of the emergence of intermediary states with extreme values of density (top row). In the
case of a transition from a high speed to a low speed, a higher value of density arises (top left case) whereas in the case of
a transition from a low speed to a high speed a lower value of density arises (top right case).
8 In the context of a Riemann problem, by extreme value of speed we mean a value of speed outside of the interval defined by the speeds of the upstream and
downstream states.
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2. Counter-clockwise loops are the cause of the emergence of intermediary states with extreme values of flow (bottom row).
In the case of a transition from a high speed to a low speed, a lower value of flow arises (bottom left case) whereas in the
case of a transition from a low speed to a high speed a higher value of flow arises (top right case).

In the four cases described above, from a mesoscopic perspective, the difference in flow and density between the down-
stream state udown and the middle emerging state um is explained by the fact that the upstream and downstream drivers
have different levels of aggressiveness, translating into different preferred spacing for the same speed.

This feature of the PTM seems appropriate for modeling the propagation of disturbances in traffic. In Fig. 14, one can note
that if udown is viewed as a disturbance of uup, then the intermediary state um arising is always an amplified disturbance, in
density or flow, and this amplified disturbance travels upstream (negative wave speed connecting uup and um). Note that this
phenomenon is a locally convected phenomenon, i.e. it results from the emergence of um from uup and udown. It is very dif-
ferent from convective instabilities commonly observed in fluids, characterized by a dispersion relation (Saffman, 1992), that
amplify over time.

6. Model validation

In this section we present a method for calibrating the parameters of the PTM, and numerical results obtained on the
datasets described in Section 4.

6.1. Model calibration

The parameters of the PTM consist of the free-flow speed, the parameters of the stationary relation used in the congestion
phase (4), and the parameters pmin and pmax, specifying the maximal admissible range around the stationary relation for the
fundamental diagram in congestion. The parameters are depicted for several different fundamental diagrams in Fig. 2.

Several algorithms can be found in the literature for calibration of a single model parameter, in particular in the case of
the CTM. The jam density kj and the free-flow speed vmax are usually assumed to be known, and the congestion wave speed w
can be estimated using different methods. An algorithm for the estimation of the congestion wave speed based on vehicle
trajectories can be found in Lu and Skabardonis (2007). This parameter can similarly be estimated considering a Lagrangian
approach as described in Chiabaut et al. (2009).

In this section, we consider a methodology similar to the methodology described in Cremer and Papageorgiou (1981), for
joint estimation of all parameters of the model from macroscopic quantities.

6.1.1. Methodology and results
We propose to compare the time space diagrams reconstructed by the PTM and the CTM from the knowledge of initial

and boundary conditions. Given a training data set of macroscopic measurements, the method consists of the definition
of a cost function, the direct computation of the initial and boundary condition, and of the identification of the set of param-
eters at which the minimum of the cost function is attained for the reconstructed time space diagrams. We consider the L1

metric:
L1ðuPTMÞ ¼
P

n

P
jjuPTMðnDt; jDxÞ � uNGSIMðnDt; jDxÞjP

n

P
jjuNGSIMðnDt; jDxÞj ; ð19Þ
in which we note uPTM(nDt, jDx) the value of the quantity u, at the time-step indexed by n, at the cell indexed by j, computed
using the discrete PTM on a grid with discretization parameters Dt and Dx. We use a similar notation for the ground-truth
uNGSIM obtained by discretizing the NGSIM vehicle trajectories.

The quantities uNGSIM and uPTM must be defined on the same discretization grid. The reference uNGSIM is defined on the
physical grid described in Section 4.1, chosen according to data availability. The discrete solution uPTM to the PTM can be
computed on an arbitrarily refined numerical grid. The discrete solution converges toward the analytical solution when
the refinement of the numerical grid increases. The level of refinement of the grid is guided by the numerical benchmarks
from Blandin et al. (2011) and Chalons and Goatin (2008), which provide empirical results on the distance to the analytical
solution of the PDE as a function of the refinement level. The values of the reference uNGSIM on the refined grid can be ob-
tained from its values on the coarse physical grid in a straightforward manner.

In order to assess the importance of the error variable used for calibration, we propose to compute the error metric (19)
when u is successively defined as k, q and v. Due to the non-linearity of the models investigated, and the consequent non-
convexity of the optimization problem considered, the cost function is optimized by exhaustive enumeration on a grid with
parameters Dk = 10 vpm, Dv = 5 mph, Dw = 0.5 mph, Dpmin = 0.1, Dpmax = 0.1. The optimal parameters for I80 4:00–4:15 and
I80 5:00–5:30 are presented in Tables 3 and 4 respectively. In the interest of space, we only consider the instantiation of the
PTM for a triangular stationary relation, with potentially positive and negative perturbation, as depicted in Fig. 2, top row.

The optimal parameters obtained fall into the range of plausible values from a physical perspective. There is significant
dependency of the optimal parameters to the error variable (which arises for the CTM as well, see Table 5). One might note
that the optimal value of the congestion wave speed obtained for the five aggregated lanes is greater than the typical value



Table 3
Optimal parameters for I80, 4:00–4:15: PTM parameters that minimize the L1 error metric, obtained from the ground truth field for density (k), flow (q) and
speed (v).

Error variable Optimal parameters L1 Error

k�j v�max w⁄ p�min p�max k q v

Density (k) 160 50 14 �0.01 0.94 0.152 0.185 0.164
Flow (q) 150 40 15.5 �0.21 0.77 0.164 0.176 0.157
Speed (v) 120 40 13.5 �0.99 0.99 0.160 0.190 0.137

Table 4
Optimal parameters for I80, 5:00–5:30: PTM parameters that minimize the L1 error metric, obtained from the ground truth field for density (k), flow (q) and
speed (v).

Error variable Optimal parameters L1 error

k�j v�max w⁄ p�min p�max k q v

Density (k) 190 55 13 �0.25 0.95 0.130 0.170 0.165
Flow (q) 180 55 13.5 �0.75 0.45 0.141 0.164 0.170
Speed (v) 150 55 13 �0.05 0.35 0.145 0.172 0.161
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for a single lane (around 11.5 mph), which might be due to tentative lane changes. The optimal value of the congestion wave
speed is fairly stable across error variables, however the jam density exhibits large relative variations, in particular for the I80
datasets in which the congestion level is more important.

The optimal parameters obtained for different error variables can vary significantly for a given dataset, in particular for
the perturbation parameters. In the case of the density error variable, one might note that the parameter pmax often takes
larger values than the parameter pmin in absolute value. This corresponds to a fundamental diagram with a wider domain
in congestion above the stationary relation than below, and using the mesoscopic interpretation from Section 3.2, to a great-
er number of aggressive drivers than non-aggressive drivers.

One might note that a natural calibration of the PTM, which would consist in using the parameters of a calibrated CTM for
the stationary relation of the PTM, and second in maximizing the spread between pmin and pmax in order to minimize the
projection error described in Section 5.1, is not obtained as a result of the optimization procedure. The optimal values of
the classical parameters kj, and w of the PTM, are very similar to the optimal values of the parameters of the CTM (see Ta-
ble 5), however the parameters pmin and pmax are not often set to their extremal values. We recall that the parameter pmin is
lower bounded by �1 to guarantee positivity of speed (6), and that large values of the parameter pmax correspond to positive
first characteristic speed in congestion, which is not desirable for physical reasons. This result illustrates that the set-valued
diagram of the PTM is valuable for accurate modeling of traffic state, but that there is a trade-off between a wide congestion
phase and congestion dynamics close to the dynamics associated with the stationary relation.

In the next section, we analyze the sensitivity of the model to the parameters, in the case of density as error variable.
6.1.2. Model sensitivity
The sensitivity of the error metric (19) to the parameters around the optimum indicates the order of magnitude of the

error likely to occur in a practical setting, where uncertainties arise in the calibration procedure. These uncertainties can
be due to inherent measurement noise, to numerical error in the optimization routine, or to the fact that the parameters
are calibrated from a visual fit. Thus the ability of the model to guarantee good performances for parameters in a neighbor-
hood of the optimum value is an important factor contributing to the model choice.

We propose to assess the sensitivity of the error metric to the parameters in two different ways. We compute the partial
variation of the error metric around the optimum, i.e. the variation of the error metric when a single parameter varies around
the optimum. We also compute the total variation of the error, i.e. the variation of the error metric when a single parameter
varies around the optimum, and consequently the other parameters are re-calibrated according to this change.

Fig. 15 presents the results for the congestion wave speed w, and Fig. 16 presents the results for the perturbation param-
eters pmin and pmax. One may note that for both models, the total variation of the error metric is relatively low for variations
around the optimal value, i.e. re-calibration of the other parameters of the model is able to account for a lack of optimality of
the considered parameter.

The results for the partial variation of the congestion wave speed differ significantly for the CTM and the PTM. It is clear
that lower values of the congestion wave speed have a relatively low impact on the error metric, for both models. However,
the CTM error is highly sensitive to higher values of the congestion wave speed, which can be explained by noting that the
optimal free-flow speed is low, and that subsequently, modifying the value of the congestion wave speed toward higher val-
ues impacts the phase to which observations around the optimal critical density belong to. This is not the case when mod-
ifying the value of the congestion wave speed toward lower values. This high sensitivity, in the case of higher values than the
optimal congestion wave speed, does not occur with the PTM, which may be due to the two-dimensional nature of the con-



Table 5
Optimal parameters for I80, 4:00–4:15: CTM parameters that minimize the L1 error metric, obtained from the ground truth field for density (k), flow (q) and
speed (v).

Error variable Optimal parameters L1 error

k�j v�max w⁄ k q v

Density (k) 160 25 13.7 0.158 0.198 0.180
Flow (q) 170 28 13.4 0.159 0.184 0.162
Speed (v) 170 31 13.7 0.161 0.185 0.159
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gestion phase, and the corresponding choice of the perturbation bounds pmin and pmax, which illustrates the higher robust-
ness of the PTM to calibration error for this parameter.

In the case of the perturbation parameters, it is observed in the right subfigure of Fig. 16 that both minimal and maximal
perturbation parameters variations have comparable influence on the error, when other parameters are not re-calibrated. On
the other hand, the left subfigure of Fig. 16 illustrates that although the error does not vary widely on the grid proposed,
specific coordinated values of the perturbation parameters increase the error. The numerical results illustrate that it can
be useful to have a large value for the maximal perturbation, only if the absolute value of the minimal perturbation is
not too large. This can be understood as the fact that imposing a specifying ratio between the absolute values of the pertur-
bation parameters de facto restricts the number of points considered for calibrating the other parameters, and can lead to a
bias in the estimated shock wave speed. The left subfigure of Fig. 16 also illustrates that having large absolute values for the



Table 6
Model accuracy: L1 error on the I80 5:00–5:30 testing dataset, for parameters obtained following the training procedure using (a) density, (b) flow, and (c)
speed as the error variable on the I80 4:00–4:15 training dataset, between the reconstructed profile and the ground-truth profile for density, flow, and speed,
for the CTM and the PTM.

Density Flow Speed

(a) Optimal density parameters
PTM 0.139 0.167 0.165
CTM 0.146 0.242 0.227

(b) Optimal flow parameters
PTM 0.141 0.173 0.163
CTM 0.146 0.195 0.191

(c) Optimal speed parameters
PTM 0.142 0.171 0.165
CTM 0.147 0.190 0.189
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two perturbation parameters, resulting in a large congestion phase, yields a large error. This can be understood as a trade-off
between having a large congestion phase, allowing to capture more non-stationary points, and having non-stationary waves
with speeds comparable to waves between corresponding stationary states.

6.2. Model comparison

In this section we propose a comparative quantitative analysis of the ability of each model to reconstruct the time–space
diagram from the knowledge of initial and boundary conditions.

6.2.1. Methodology and quantitative results
In order to assess the performance of the PTM, we propose to compare the model with a classical well-known discrete

model from the literature, for which implementation details and calibration procedure are well documented: the CTM.
We assume that boundary conditions are known upstream and downstream, as well as an initial condition. These terms

are computed explicitly from the spatio-temporal discretization of vehicle trajectories (see Section 4.1). This corresponds to
the computation of the solution to the IBVP defined in Eq. (8) and in practical terms to the case of measurements from sen-
sors (loops, radars, probes, etc.) available at given locations on the freeway as boundary conditions, and a spatial profile as-
sumed to be known at some instant (cameras, satellite, empty road, etc.) as initial condition. The traffic profile on the stretch
of road between the sensors, from the time at which the spatial profile is known, is computed by running the models forward
in time. For initial or boundary conditions falling outside of the fundamental diagram, we use the projection methods de-
scribed in Section 5.1.1 for both the CTM and the PTM.9

We compare the solution to the initial-boundary value problem for the CTM and the PTM as follows:

� Training procedure: we calibrate the model parameters on the I80 4:00–4:15 dataset, for a given error variable (e.g. den-
sity, flow or speed).
� Testing procedure: we compare the models on the I80 5:00–5:30 dataset on the reconstructed density, flow, and speed

fields. We use the set of parameters obtained from the training procedure.

The optimal parameters for the PTM are included in Table 3. The CTM is also calibrated using the procedure described in
the previous section and the optimal parameters are included in Table 5.

Remark 7. The values of the free-flow speed vmax obtained after calibration can be significantly lower than classical values
for both models (e.g. for the CTM in the case of the I80 4:00–4:15 dataset, with values of 25 mph). It is clear that the cost
function does not depend on the free-flow speed for sufficiently high values of the free-flow speed. Since the NGSIM datasets
exhibit heavy to moderate congestion with maximal speeds between 20 mph and 30 mph (see Fig. 10), it is expected that
optimal values of the free-flow speed fall above this range. Further analysis show that for all datasets, the cost function
increases by about 1% per mph for free-flow speed values under the optimal free-flow speed, however the variations of the
cost function stay within a 0.5% range for values of the free-flow speed higher than its optimal value. Since the I80 5:00–5:30
dataset exhibits heavier congestion than the I80 4:00–4:15 dataset, this remark legitimates the use of the free-flow speed
calibrated on the I80 4:00–4:15 dataset for testing on the I80 5:00–5:30 dataset.
We compute the L1 error (19) for the three error variables density, flow, and speed, for the three sets of optimal param-
eters based on the error variable. The results for the CTM and the PTM are presented in Table 6.
9 For completeness, different projections have been tested for the PTM, in particular iso-density in the congestion phase. The results obtained are not
significantly different from the ones presented in this section and are omitted in the interest of space.



Fig. 17. Time–space diagrams for I80 5–5:30, for density (top row), flow (center row), speed (bottom row), for the CTM (left column), the PTM (right
column) and the ground-truth profile (center column).
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The results from Table 6 illustrate that the CTM and PTM have relatively similar performances in the estimation of density
irrespective of the error variable considered in the parameter calibration. This is consistent with the fact that the PTM is a
direct extension of the LWR model in congestion, and specifically of the CTM for the numerical results presented in this sec-
tion. Thus, even though the PTM has a larger state-space, the corresponding dynamics do not necessarily provide significant
added value compared to the CTM when estimating density conditions, regardless of the error variable used for calibration.

However, the PTM shows a clear superiority for the other two relevant traffic variables (flow and speed in that case). For
both the variable flow and speed, the error is reduced by 10–25% by the PTM compared to the CTM. Moreover, the error re-
sults for the PTM remain fairly constant for all the estimated traffic variables, regardless the parameter calibration approach.
This illustrates that the PTM calibration is more robust in the sense that optimal parameters for a given error variable yield a
low error for other error variables as well and that errors in the parameter estimation lead to small perturbations in the final
results. In the following section, we study the difference in the reconstructed time–space profiles from a qualitative
perspective.
6.2.2. Qualitative analysis
The time–space diagrams for the dataset I80 5:00–5:30 with the discretization parameters detailed in Section 4.1 are rep-

resented in Fig. 17 for the CTM, the PTM and the ground-truth profile obtained directly by discretization of the vehicles tra-
jectories. One may note that flow and speed are computed a posteriori from the density field in the case of the CTM, whereas
in the case of the PTM, speed is obtained from the density k and perturbation p fields, and the flow is obtained classically as a
product of density and speed.

The comparison of the reconstructed density fields for the CTM and the PTM shows that the PTM is able to some extent to
propagate forward observations gathered at the upstream boundary. The capability of the PTM for hysteresis modeling is
illustrated for the density variable in the second part of the time domain for the upstream part of the section, where inter-
actions between forward moving discontinuities and backward moving shock waves yield curved propagation of congestion
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waves. However, one might note that the impact of these more complex phenomena is not clear overall since the L1 error for
density is similar for the two models (Table 6, left column).

The comparison of the reconstructed flow fields for the CTM and the PTM shows that the PTM allows the propagation of
forward moving discontinuities in flow, and density, within the backward moving congestion phase around the center of the
time period. The comparison of the reconstructed speed fields for the CTM and the PTM shows that the PTM captures more
extensively the high speed waves at the beginning of the time period. Similarly, high speed values around the center of the
time period, and the downstream end of the section, are more accurately captured by the PTM.

7. Discussion

In this article, we analyzed the phase transition model, which consists of an extension of the Lighthill–Whitham–Richards
model to capture non-stationary congestion phenomena. We presented the structure of the solution to the continuous mod-
el, and an appropriate discretization scheme. We proposed a physically motivated mesoscopic interpretation related to the
behavior of heterogeneous drivers, and showed that the solution to the Riemann problem exhibits a simple structure con-
venient for analytical and algebraic investigations.

We studied the performances and features of the phase transition model on benchmark cases and on the Next Generation
SIMulation trajectories datasets, and illustrated that the model is able to capture several complex traffic phenomena not ac-
counted for by the Lighthill–Whitham–Richards model: set-valued fundamental diagram, hysteresis patterns, forward mov-
ing discontinuity in congestion, and amplification of disturbances.

The ability of the phase transition model to represent more complex traffic phenomena and account for observations of
different traffic quantities jointly or independently is promising for future research. In particular, the model proposes a ro-
bust framework for traffic estimation with fixed sensors and probe data, with no requirement to convert measured traffic
quantities, which is known to degrade the validity of typical assumptions on the observation error.
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