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a b s t r a c t

We consider the problem of sequential data assimilation for transportation networks using optimal
filtering with a scalar macroscopic traffic flow model. Properties of the distribution of the uncertainty on
the true state related to the specific nonlinearity and non-differentiability inherent to macroscopic traffic
flow models are investigated, derived analytically and analyzed. We show that nonlinear dynamics, by
creating discontinuities in the traffic state, affect the performances of classical filters and in particular
that the distribution of the uncertainty on the traffic state at shock waves is a mixture distribution. The
non-differentiability of traffic dynamics around stationary shock waves is also proved and the resulting
optimality loss of the estimates is quantified numerically. The properties of the estimates are explicitly
studied for the Godunov scheme (and thus the Cell-Transmission Model), leading to specific conclusions
about their use in the context of filtering, which is a significant contribution of this article. Analytical
proofs and numerical tests are introduced to support the results presented. A Java implementation of the
classical filters used in this work is available on-line at http://traffic.berkeley.edu for facilitating further
efforts on this topic and fostering reproducible research.

© 2012 Elsevier B.V. All rights reserved.
1. Introduction

1.1. Motivation

At the age of ubiquitous sensing, scientists and engineers
are faced with the challenge of leveraging massive cross-domain
datasets to solve increasingly complex problems and address
systemic issues at unprecedented scales [1]. In transportation
networks, the spread of crowd-sourced traffic data is revolutioniz-
ing traffic data collection. In parallel, the democratization of pub-
licly available and easily accessible high performance computing
resources offers scalable tools for massive data processing. This
conjunction of factors is accelerating the pace of development and
implementation of novel on-line traffic estimation methods and
filtering algorithms, from which real-time congestion control
strategies may be designed at the scale of mega-cities.

The theory of estimation is concerned with the problem of
providing statistics of a process state, based onmeasurements and
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a priori knowledge. The a priori knowledge of the process often
consists of a parametric model, which approximately describes
the process behavior mathematically. The definition of a loss
function allows for the formulation of the estimation problem
as an optimization problem and the identification of certificates
of optimality. When the estimated quantities are not directly
observed, (so-called latent variables) the estimation problem is
referred to as an inverse problem [2]. For physical systems, the
estimation problem, or data assimilation problem [3,4], is solved
using a data assimilation algorithm, which combines optimally,
in the sense of the loss function, the a priori knowledge of the
system, and the observations from the system. In particular, a
filtering algorithm provides the solution to an inverse problem
which includes the additional constraint that, for all times t , only
observations at or before time t can be used to compute estimates
at time t .

The basis for modern filtering theory was set by Kalman in
1960 who introduced a sequential filtering algorithm for linear
dynamical systems, the Kalman filter (KF) [5]. This algorithm
extended the work of Wiener [6] and proposed one of the first
results on optimal filtering for linear dynamical systems with
non-stationary statistics. The KF sequentially computes the best
estimate of the true state of a system from combined knowledge
of a model and observations. The KF has been widely applied by
the control community, notably to signal processing, sensor data
fusion, navigation and guidance [7,8].
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In the meteorology community, the estimation problem for
nonlinear systems has been heavily studied, with subsequent
development of sophisticated data assimilation techniques [3,4],
which fall into two major categories: variational methods and
optimal interpolation methods. Variational methods [4] consist
of finding the solution of a model (with or without stochastic
forcing) which minimizes a certain distance to observations. In
meteorology, a common formulation is the 3D-Var algorithm [9]
for the static problem and 4D-Var algorithm in the time-varying
case [10].

The need for solving the inverse problem for increasingly com-
plex systems, for which the classical assumptions of linearity of
the dynamics and normality of the error terms break, has moti-
vated the development of suboptimal sequential estimation algo-
rithms. Suboptimal sequential estimation algorithms, reviewed in
Sections 2.2 and 2.3, can be derived from the KF by different types
of methods:

1. Deterministic filters: extended Kalman filter (EKF) [11], unscented
Kalman filter (UKF) [12].

2. Stochastic filters: ensemble Kalman filter (EnKF) [13], particle
filter (PF) [14].

For traffic applications, it is also important to mention themixture
Kalman filter (MKF) [15], which provides optimality guarantees
for conditionally linear systems. A comprehensive review of the
application of data assimilation algorithms in the transportation
community can be found in the following section.

1.2. Sequential estimation for transportation networks

Sequential traffic state estimation dates back to the 1970s and
the work of Gazis [16,17], who independently used the KF and
the EKF to estimate traffic density in the Lincoln tunnel, New
York, for the purpose of traffic control. More recent work from
Papageorgiou [18,19] involves the application of the EKF to a non-
scalar traffic model [20]. The EKF has also been applied [21] to the
LWR equation with a Smulders [22] flux function.

The MKF [15] is an extension of the KF to conditionally lin-
ear dynamical systems. The MKF has been applied in the trans-
portation community [23–25] to the cell-transmission model (CTM)
[26,27], which exhibits piecewise linear dynamics, conditioned on
the phases of traffic (free-flow, congestion) upstream and down-
stream.

In recent years, sequential Monte Carlo methods, or PF, and
so-called ensemble methods such as the EnKF have been applied
to traffic estimation [28,29]. Ensemble methods [13] consist of
representing the first moment of the state estimate distribution
by a set of samples and using a linear measurement update,
whereas particle methods [30] consist in propagating a sample
representation of the full distribution of the estimate and using a
nonlinear measurement update.

Another notable filter is the UKF [12] which introduces an
unscented transformation providing an exact representation of the
first two moments of a distribution by a set of deterministically
determined samples (see [31] for a traffic application).

A variety of traffic models and filters have been shown to
perform well for practical applications. However, the problem of
the structural limits of data assimilation algorithms for traffic
estimation has not received much attention. It is well known
that, in practice, high accuracy can be achieved with sufficiently
accurate measurements in sufficiently large volumes. But with
massive datasets coming from increasingly diverse sources,
traceability and high quality of traffic data are not necessarily
guaranteed. Being able to identify the estimation errors inherent
to the structure of traffic phenomena is required for the design
of more robust, transparent data assimilation algorithms, and
scalable, appropriate data collection methodologies.

In this article, we propose to analyze the structural proper-
ties of one of the most classical macroscopic traffic flow models,
the Lighthill–Whitham–Richards (LWR) partial differential equation
(PDE) [32,33], in the context of estimation. We present the dif-
ficulties resulting from these properties, which create significant
challenges for the design of an optimal filtering algorithm for this
model. Themain contributions of the article are outlined in the fol-
lowing section.

1.3. Optimal filtering for LWR PDE

Structural properties of the LWR PDE and its discretized forms
impact the optimality of estimates produced by classical sequential
estimation techniques. The main contributions of this article are
the analysis and quantification of the lack of estimate optimality
resulting from the following properties of the LWR PDE, and its
numerical discretization using the Godunov scheme:
Nonlinearity of the fundamental diagram

One of the main properties of the LWR PDE is the nonlinear-
ity of its flux function (fundamental diagram), which allows the
modeling of traffic phases of different nature: free-flow and conges-
tion. Nonlinearities of themodel are the cause of the appearance of
discontinuities in the solution of the partial differential equation.
Consequently, the distribution of the uncertainty on the true state
is a mixture distribution at shock waves even for unimodal noise
distributions on the initial condition. In this article, we analytically
show the emergence of mixture distributions in the solution of
the PDE and numerically illustrate their importance on benchmark
tests.

Themixture nature of the distribution of the uncertainty on the
true state resulting from initial condition uncertainty propagating
through an uncertain model raises the question of the relevance
of minimal variance estimate for traffic applications. The estimate
produced by classical filters may indeed correspond to a state with
zero true probability, and the estimate covariance may exhibit
large values corresponding to a variability due to the coexistence
of differentmodes in the distribution of the uncertainty on the true
state, each with significantly smaller covariance.
Non-differentiability of the discretized model

The most common numerical scheme used to compute the
solution of the LWRPDE is theGodunov scheme [34], a finite volume
schemewhich consists of iteratively solving Riemann problems [35]
between neighboring discretization cells and averaging their
solution at each time-step on each spatial cell. In this article
we prove that this scheme is non-differentiable and derive the
expression of its non-differentiability domain.

The lack of differentiability of the Godunov scheme, a common
discretization of the LWR PDE, is relevant for data assimilation
algorithmswhose optimality guarantees are based on Taylor series
analysis, which assumes exact computation of the derivative up
to a certain order. This is the case in particular for the EKF,
which considers propagation of the estimate covariance using the
tangent (linearized) model. Numerical results quantify estimate
errors induced by this property of the discretizedmodel. The result
also affects the known order of accuracy of the estimate moments
of the UKF, since in this case the Taylor series does not exist up to
the required order.

This article can thus be viewed as a theoretical and numerical
study of the implications of the structural properties of the
Godunov scheme and CTM on filtering algorithms. It sheds some
new light on the proper use of these schemes for traffic estimation
purposes, and provides conclusions which are illustrated by
detailed numerical studies.
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While the results presented in this article are derived for
the Godunov scheme, because historically is was one of the
first numerical schemes proposed to solve scalar hyperbolic
conservation laws (and the LWR PDE in particular), other proposed
schemes such as the CTMexhibit the same features as the Godunov
scheme, and thus our analysis applies to them as well.

The remainder of the article is organized as follows. Section 2
introduces the general theory of sequential data assimilation and
optimal filtering. In Section 3wepresent themost classical discrete
and continuous macroscopic traffic models for which the study
is conducted. Section 4 focuses on the Riemann problem which is
the keystone of numerical solutions of continuous and discrete
scalar conservation models and the focus of our subsequent
analysis. Sections 5 and 6 point at the structural properties of
macroscopic trafficmodels derived from the LWRPDE, in particular
model nonlinearity in Section 5 and model non-differentiability
in Section 6. Section 7 gives concluding remarks and examines
associated issues regarding data fusion.

2. Sequential data assimilation

The theory of inverse problems [2] is concerned with the
estimation of model parameters. A specific type of inverse methods
consists in iteratively updating the estimates as data becomes
available [36], instead of solving an inverse problem once using
all measurements in batch. These so-called sequential estimation
algorithms, particularly appropriate for on-line estimation, often
rely on Bayes’ rule and a computationally explicit optimality
criterion (e.g. the Gauss–Markov theorem for minimum mean
squared error (MMSE) estimation). In the case of additive noise,
one of the most well-known sequential estimation algorithms is
the seminal Kalman filter [5].

2.1. Kalman filter

Given a system with true state at time t denoted by Ψt , and Yt
the vector of all available observations up to time t , the filtering
problem is concerned with the computation of an optimal estimate
of Ψt for a predefined loss function. Solvability of the estimation
problem heavily depends on the loss function used, and on the
statistics considered.

The use of the quadratic loss function dates back to the
estimation problem posed by Gauss in the 18th century for
astronomy [37,38]. The solution proposed by Gauss is the so-called
least-squares method, justified by the Gauss–Markov theorem [39].
The theorem proves that, assuming a linear observation model
with additive white noise, the best linear unbiased estimator (BLUE)
(best in the minimum variance sense), of a random processψt can
be computed as the solution to the ordinary least squares (OLS)
problem.

The role of the quadratic norm for estimation is further
emphasized by a result from Sherman [40], which shows that
for a large class of loss functions, which includes the quadratic
loss function, the mean of the conditional distribution p(ψt |Yt) is
optimal.

Formally, given a loss function L(·) such that:

L(0) = 0
∃ f real-valued convex s.t. ∀ψ1, ψ2 s.t. f (ψ1) ≥ f (ψ2)

then L(ψ1) ≥ L(ψ2),

(1)

given a random variable ψ , if the probability density function
associated with the random variable ψ is symmetric around the
mean, and unimodal, then E(ψ) is the optimal estimator of ψ for
the loss function L(·).
When applied to the conditional random variable ψt |Yt , this
shows that the conditional mean is the optimal estimator in the
sense of the loss function L(·) for this particular class of loss
functions and probabilities.

The statistical assumptions on the processes ψt and Yt are tied
to prior knowledge of the generative distributions. However, a
significant computational argument in favor of the use of normal
statistics is the optimality guarantee provided by combining the
two arguments above. Without any assumption on the statistics,
the Gauss–Markov theorem states that the BLUE is given by the
solution to the OLS algorithm. Sherman’s result (1) states that the
solution of theOLS is the conditionalmean. In theGaussian case the
conditional mean is linear, hence it is also the solution of the OLS
with constraint that the estimator be linear. Hence the BLUE of the
process is optimal, without restriction of linearity on the estimator,
if we assume that the statistics are Gaussian.

In his seminal paper [5], Kalman provides a sequential
algorithm to compute the BLUE of the state for dynamical systems,
under additive white Gaussian noise, with a deterministic linear
observation equation (this result was later extended to include
additive white Gaussian observation noise). The KF is defined in
a state-space model, which consists of a state equation and an
observation equation. In the following, we denote by xt the state at
time t , a discrete computable approximation of the deterministic
true state Ψt .

For transportation applications involving macroscopic vari-
ables, the state is typically a set of densities, speeds, or counts, de-
fined on a discretization grid. The true state consists of the true
traffic conditions on the road, which are only available to an oracle,
or some high fidelity datasets such as the NGSIM dataset [41]. For
simulation purposes, it is common practice to use awell-calibrated
model, or a Monte Carlo simulation with high number of samples,
as a proxy for the true state (to avoid the so-called inverse crime [2],
the model used for estimation should be different from the model
used for computing the true state).

We consider the following discrete linear model:

xt = At xt−1 + wt (2)

where we denote by At the state model or time-varying state
transition matrix at time t , and where the random variable wt ∼

N (0,Wt) is a white noise vector which accounts for modeling
errors. In particular in this setting the true state Ψt is assumed to
follow the dynamics At without additional noise. Measurements
are modeled by the linear observation equation:

yt = Ct Ψt + vt (3)

where vt ∼ N (0, Vt) is a white noise vector which accounts for
measurement errors assumed uncorrelated with modeling errors,
and Ct is the modeled measurement matrix at time t (also time-
varying, to integrate the possibility of moving or intermittent
sensors). The KF sequentially computes the BLUE at time t+1 from
the BLUE at time t as follows:

Forecast:

xt+1|t = At+1 xt|t
Σt+1|t = At+1Σt|t AT

t+1 + Wt+1
(4)

Analysis:


xt+1|t+1 = xt+1|t + Kt+1


yt+1 − Ct+1 xt+1|t


Σt+1|t+1 = Σt+1|t − Kt+1 Ct+1Σt+1|t

where Kt+1 = Σt+1|t CT
t+1


Ct+1Σt+1|t CT

t+1 + Vt+1
−1

.

(5)

The forecast step (4) consists in propagating the mean and
covariance of the state through the linear model (2). The analysis
step (5) amounts to the computation of the conditionalmean of the
state given the observations, for the linear observation model (3)
and jointly Gaussian statistics. The conditional covariance is
computed similarly. From a Bayesian perspective, the Kalman filter
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sequentially computes the posterior distribution of the state, based
on the prior distribution given by the state-space model.

When the statemodel is not linear, there is no general analytical
expression for the propagation of the statistics. Suboptimal filters
of different types have been derived. Stochastic methods consider
propagating the state through the nonlinear model using a sample
representation. Deterministic methods consist in propagating
analytical approximations of low order moments through the
model. Stochastic methods require in general sampling schemes
and pseudo-random generators for the correct execution of the
filters, unlike deterministic methods.

2.2. Deterministic filters

In this section we present the EKF and the UKF for nonlinear
systems. The EKF forecast step is based onmodel linearization. The
UKF consists in representing exactly the first two moments of the
prior distribution by a set of deterministic samples. In particular, no
sampling term is required for the application of these algorithms.

2.2.1. Extended Kalman filter
The EKF is an extension of the KF for nonlinear state-space

models. The EKF consists in using a Taylor series truncation of
the model at the current state to propagate the state statistics.
We present the case of a nonlinear state model combined with
a linear observation model, although a nonlinear observation
equation can also be considered through a similar linearization of
the observation operator at the analysis step. The forecast mean is
given by the nonlinear model, whereas the forecast covariance is
given by a first order approximation of the model. If we denote by
At+1 the linearization of the nonlinear model dynamics A(·, t) at
the state estimate xt|t , the forecast and analysis steps for the EKF
read:

Forecast:

xt+1|t = A(xt|t , t)
Σt+1|t = At+1Σt|t AT

t+1 + Wt+1
(6)

Analysis:


xt+1|t+1 = xt+1|t + Kt+1


yt+1 − Ct+1 xt+1|t


Σt+1|t+1 = Σt+1|t − Kt+1 Ct+1Σt+1|t

where Kt+1 = Σt+1|t CT
t+1


Ct+1Σt+1|t CT

t+1 + Vt+1
−1

(7)

where the only difference from the Kalman filter resides in the
propagation of the state mean at the forecast step, using the
nonlinear state model. Different sources of sub-optimality arise in
the derivation of the EKF:

1. Accuracy of the Taylor truncation:
a The model approximation used at the forecast step (6) for
the covariance propagation requires that the model Jacobian
be accurately computed.

b The mean given by the EKF is a first order Taylor series
approximation of theMMSE,whereas the covariance is a third
order approximation of the MMSE covariance.

2. Closure assumption: it is assumed that there is no significant
interaction between higher order statistics and the first two
moments of the state estimate.

Cases in which the closure assumption breaks, due to the
importance of higher order terms in the model Taylor series
have been documented, with illustrations of estimates biased and
inconsistent [12], and with diverging error statistics [42]. Cases in
which this assumption breaks, due to the importance of higher-
order statistics can be found in [43,44] in the case of bimodal
distributions.

Remark 1. An approximationmade in the EKF equations lies in the
propagation of the state covarianceΣt+1|t . This covariance is then
used at the analysis step (7) at which observations are combined
with the model forecast. The study of the resulting error structure
of the state covariance after propagation in the context of traffic is
to the best of our knowledge an open problem, and is a focus of this
article.

2.2.2. Unscented Kalman filter
The UKF [12] is built on the unscented transformation, which

consists in representing a distribution with mean µ and variance
Σ by a set of weighted samples, or sigma points, chosen determin-
istically such that theweighted samplemean isµ and theweighted
sample covariance isΣ [45]. For a state-space of dimension n, the
2 n+1 sigma points produced by the unscented transformation are
defined as

x0 = µ

xk = µ+ ((n + κ)Σ)
1
2
k k = 1, . . . , n

xk+n
= µ− ((n + κ)Σ)

1
2
k k = 1, . . . , n

(8)

where ((n + κ)Σ)
1/2
k denotes the kth column of the square root of

(n + κ)Σ . The corresponding weightswk are parameterized by κ ,
which controls the spread of the sigma points:
w0

=
κ

κ + n
wk

=
1

2(κ + n)
k = 1, . . . , n

wk+n
=

1
2(κ + n)

k = 1, . . . , n.

(9)

Choosing the samples according to (8) and the weights according
to (9) yields that the weighted sample mean and weighted sample
covariance are equal to the distribution mean and covariance for
any choice of κ . The forecast and analysis step of the augmented
UKF [46] can be written as:

Forecast:



Propagate sigma-points
xkt+1|t = A(xkt|t , t) k = 0, . . . , 2 n

Compute forecast mean and covariance

xt+1|t =

2 n
k=0

wk xkt+1|t

Σt+1|t =

2 n
k=0

wk

xkt+1|t − xt+1|t

 
xkt+1|t − xt+1|t

T
(10)

Analysis:

Compute sigma-points observations
zkt+1|t = Ct+1 xkt+1|t k = 0, . . . , 2 n

Compute observation mean and covariance

zt+1|t =

2 n
k=0

wk zkt+1|t

Zt+1|t =

2 n
k=0

wk

zkt+1|t − zt+1|t

 
zkt+1|t − zt+1|t

T
Compute covariance between forecast and observation

Yt+1|t =

2 n
k=0

wk

xkt+1|t − xt+1|t

 
zkt+1|t − zt+1|t

T
Compute posterior mean and covariance

xt+1|t+1 = xt+1|t + Kt+1

yt+1 − zt+1|t


Σt+1|t+1 = Σt+1|t − Kt+1 Zt+1|t K T

t+1
where Kt+1 = Yt+1|t Z−1

t+1|t

(11)

where the unscented transformation is first used to compute the
sigma points for the current estimates, which are then propa-
gated through the model and whose mean and covariance is com-
puted (10). At the analysis step, the forecast observation associated
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with each sigma point through the (potentially) nonlinear obser-
vation model Ct+1, is computed as zkt+1|t , which allows the com-
putation of the observation mean zt+1|t , observation covariance
Zt+1|t , and the covariance between forecast state and observation
as Yt+1|t . The analysis mean and covariance are then computed ex-
actly using Kalman equations (11).

Different sources of sub-optimality arise in the UKF:

1. Limited number of samples: the mean and the covariance
propagated by the UKF are third order approximations of the
MMSE and MMSE covariance.

2. Closure assumption: it is assumed that there is no significant
interaction between higher order statistics and the first two
moments of the state estimate.

The UKF has been applied to traffic estimation [31] and was
compared with the EKF for the Papageorgiou model (23). The two
filters were empirically shown to have similar performances for
joint state and parameter estimation [46] for this model (23). The
results of this comparison are completed by the analysis presented
in the present article in Sections 5 and 6, in which we study the
state distribution features due to model nonlinearities and non-
differentiability analytically andnumerically in the case of the LWR
model, and in which we show how they affect the EKF and the
UKF. In particular we analyze the true distribution structure at
shock waves of the LWR model, in the continuous and discrete
domain. The Papageorgioumodel is defined in the discrete domain,
and exhibits an anticipation term which reduces the sharpness
and amplitude of spatial variations. Consequently, the impact of
the existence of shock waves on the performance of the filters is
stronger in the case of the LWR model in the continuous domain,
as illustrated in the present article.

2.3. Stochastic filters

A wide variety of filters extend the Kalman filter for nonlinear
state models by representing the state by a set of random samples
(particles, ensemble members). The rules for sample propagation,
update, and for resampling, are of different types. The need
for pseudo-random generator at every step of these algorithms
justifies the appellation stochastic filters.

2.3.1. Ensemble Kalman filter
The EnKF [47,13] consists in representing the state statistics

by a set of ensemble members which are evolved in time and
whose mean is an estimator of the true state. The state error
covariance is represented by the ensemble covariance. Formally,
with N ensemble members, the EnKF equations read:

Forecast:

xkt+1|t = A(xkt|t , t)+ wk
t+1 k = 1, . . . ,N

xt+1|t =
1
N

N
k=1

xkt+1|t

Σt+1|t =
1

N − 1

N
k=1


xkt+1|t − xt+1|t

 
xkt+1|t − xt+1|t

T (12)

Analysis:xkt+1|t+1 = xkt+1|t + Kt+1

yt+1 + vkt+1 − Ct+1 xkt+1|t


k = 1, . . . ,N

Σt+1|t+1 = Σt+1|t − Kt+1 Ct+1 Σt+1|t

where Kt+1 = Σt+1|t CT
t+1


Ct+1 Σt+1|t CT

t+1 + Vt+1
−1

.

(13)

In the limit of large number of samples, the EnKF converges
toward the KF for linear systems. Due to the independent ensemble
forecasts (12), it is embarrassingly parallel and particularly
appropriate for efficient distributed computations. At the analysis
step (13), the modeled observation noise is explicitly added to the
measured observation, to capture the full observation noise in the
analysis equation [48]. In the context of traffic estimation, the EnKF
has been applied to the Bay Area highway networks with a traffic
model equivalent to the LWR PDE, formulated using a velocity
variable [29]. The principal source of sub-optimality arising in the
EnKF is sampling error:

1. Sampling error: the use of a finite number of ensemblemembers
introduces a sampling error in the estimate distribution.

Remark 2. The covariance given by the EnKF is the state error
covariance and not the state covariance. In the KF, the state mean
and state error covariance are propagated analytically. The state
error covariance coincides with the state covariance. On the other
hand, the EnKF analytically propagates ensemble members whose
mean is an unbiased estimator of the state mean, and covariance
coincides by definition of the update equationswith the state error
covariance, but not with the state covariance, except in the limit of
an infinite number of ensemble members.

Extensions of the EnKF allowing to obtain higher ordermoments of
the state distribution have also been considered [49] by integrating
a modified analysis step.

2.3.2. Particle filter
The PF, also known as bootstrap filter, or sequential Monte Carlo

method [50,30,14] can be traced back to the seminal articles of
Metropolis andUlam [51], later generalized byHastings [52]. These
methods represent the full statistics of the state by a set of samples
which are propagated through the statemodel.When observations
are received, sample weights are scaled by the relative likelihood
of the new observation, and the updated representation of the
probability distribution is re-sampled. Formally, the PF steps in the
case of N particles are as follows:

Forecast: xkt+1|t = A(xkt|t , t)+ wk
t+1 k = 1, . . . ,N

Analysis:



Re-weighting:

αk
t+1 = αk

t

p(yt+1|xkt+1|t)

N
k=1
αk
t p(yt+1|xkt+1|t)

k = 1, . . . ,N

Re-sampling:
Generate N samples xkt+1|t+1
from the distribution defined by
P(X = xkt+1|t+1) = αk

t+1, k = 1, . . . ,N.

The PF has been applied to the case of transportation systems [28]
on the stochastic model described in [53]. The particle filter is
the only filtering method able to capture the complete state
distribution, in the limit of infinite number of samples, without
restrictive assumption on the dynamics or on the statistics. Well-
known weaknesses of the PF relate to the problem of sample
degeneracy for high dimensional [54] systems. The use of an
appropriate proposal distribution at the re-weighting step is key
to reducing the sample weight variance given the system history,
but more sophisticated importance sampling or rejection sampling
techniques are often considered [50,55]. The sources of sub-
optimality in the PF relate to:

1. Sampling error: the use of a finite number of particles introduces
a sampling error in the estimate distribution.

The implicit particle filter is a notable extension [56] of the PF
which allows a priori the definition of the desired weights of
the particles after analysis and thus alleviation of the problem of
sample degeneracy in the case of the exponential family. Another
research track has explored the use of the EKF, EnKF or UKF to
compute a proposal distribution in the particle filter [55].
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Fig. 1. Fundamental diagrams: Greenshields (left), triangular (center), exponential (right).
Sustained improvements of the filters presented above have
been in large part driven by specific improvements for systems
exhibiting strong nonlinearity or non-normality, identified as the
causes of inaccurate estimates and forecast. In the following
section, we present the seminal macroscopic traffic models
which have been considered for real-time data assimilation on
transportation networks. The subsequent sections will then focus
on the analysis of the performance of the respective filtering
schemes on the models, which is one of the contributions of the
article.

3. Macroscopic traffic modeling

Macroscopic traffic modeling consists of considering traffic
phenomena as a continuum of vehicles, instead of modeling
individual vehicle dynamics. Macroscopic traffic models are
historically inspired from constitutive hydrodynamics models,
which exhibit similar properties to traffic flow. In this section we
introduce one of the most common scalar traffic models, as well as
some non-scalar models classically used for estimation.

3.1. Scalar models of traffic flow

Classical scalar models of traffic consider the traffic state at a
point x at time t to be fully represented by the density ρ(t, x)
of vehicles at this point. The evolution of the density of vehicles
can be modeled by a combination of physical principles, statistical
properties, and empirical findings. All the models considered in
this section are single-lane single-class models of traffic.

3.1.1. Continuous models
A classical state equation used to model the evolution of the

density ρ(·, ·) of vehicles on the road network is the LWR PDE
[32,33],which expresses the conservation of vehicles on road links:

∂tρ + ∂xQ (ρ) = 0 (14)

where the flux function Q (·), assumed to be space–time invariant
on limited space–time domains, denotes the realized flux of
vehicles with the density ρ, at the stationary state. The flux
function, or fundamental diagram, is classically given by an
empirical fit of the relation between density and flow. It can be
equivalently given by an empirical fit V (·) of the relation between
density and space-mean speed, which allows us to define the flux
function as:

Q (ρ) = q = ρ v = ρ V (ρ),

where the central equality is a definition of the flow q. A variety
of parametric flux functions can be found in the literature. One of
the earliest flux functions is the Greenshields flux function [57] or
quadratic flux function (represented in Fig. 1, left), which expresses
a linear relationship between density and speed, or equivalently a
quadratic relation between density and flow:
Q (ρ) = vmax ρ


1 −

ρ

ρmax


(15)

where vmax denotes the free-flow speed and ρmax the jam
density. The Newell–Daganzo flux function [27,58] or triangular flux
function, represented in Fig. 1, center, is a piecewise linear function
of the density, with different slopes in free-flow and congestion:

Q (ρ) =


ρ vmax if ρ ∈ [0, ρc]

ρc vmax
ρmax − ρ

ρmax − ρc
if ρ ∈ [ρc, ρmax]

(16)

where ρc denotes the critical density, which represents the density
at which the realized flow is maximal. The speed of backward
moving waves in congestion is given byw = vmax ρc/(ρc − ρmax).
Variations on a flux function based on an exponential relation
between density and flow [59,20], parameterized by a, such as the
one represented in Fig. 1, right, can be found in the literature:

Q (ρ) = ρ vmax exp


−
1
a


ρ

ρc

a
. (17)

The interested reader might also consider the Greenberg funda-
mental diagram [60] or the Van-Aerde fundamental diagram [61].

Remark 3. The LWR PDE models the evolution of traffic flow
on a road segment with uniform topology. A junction is defined
by a change of topology (crossing, number of lanes, speed limit,
curvature, etc.) on a road segment, which requires specific efforts
for physical consistency and mathematical compatibility with the
link model. A junction can be modeled as a vertex of the graph
representing the road network. With each vertex is associated
an allocation matrix A, where aij expresses the proportion of
the incoming flow from link j going to link i. For uniqueness of
the solution of the junction problem, different conditions have
been considered in the literature: for instance maximizing the
incoming flow through the junction [62,27] or maximizing a
concave function of the incoming flow [63]. A formulation using
internal dynamics for the junction [64] has been shown to be
equivalent to the vertexmodels for themerge anddiverge junction.
The interested reader is referred to the book by Garavello and
Piccoli [65] for more details on the junction problem.

For traffic applications, given an initial condition ρ0(·) defined
on a stretch [0, L], using the LWR model requires solving the
associated Cauchy problem, defined as the problem of existence
and uniqueness of a solution to the LWR PDE with initial
condition ρ0(·). If the initial condition is piecewise constant
(which is the case for many numerical approximations) and self-
similar,1the Cauchy problem reduces to the Riemann problem

1 A function f of n variables x1, . . . , xn is called self-similar if ∀α > 0 ∈

R, f (α x1, . . . , α xn) = f (x1, . . . , xn).
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(see Section 4.2). We focus our analysis for data assimilation
on the Riemann problem, which, by its simplicity, allows full
analytical and numerical characterization of the relation between
initial condition uncertainty and structure of the uncertainty in the
solution to the PDE.

3.1.2. Discretized link models
Given a discretization grid defined by a space-step 1x and

a time-step 1t , if we denote by ρn
i the discretized solution at

i1x, n1t and Cn
i the cell defined by Cn

i = [n1t, (n + 1)1t] ×

[i1x, (i + 1)1x], the discretization of the LWR PDE using the
Godunov scheme [34] reads:

ρn+1
i = ρn

i +
1t
1x


qG(ρn

i−1, ρ
n
i )− qG(ρn

i , ρ
n
i+1)


(18)

where the numerical Godunov flux qG(·, ·) is defined as follows for
a concave flux function Q (·)with a maximum at ρc :

qG(ρl, ρr) =


Q (ρl) if ρr ≤ ρl < ρc
Q (ρc) if ρr ≤ ρc ≤ ρl
Q (ρr) if ρc < ρr ≤ ρl
min(Q (ρl),Q (ρr)) if ρl < ρr .

(19)

Remark 4. Another common scheme for hyperbolic conserva-
tion laws is the random approximation scheme introduced by
Glimm [66], which consists in constructing an approximate solu-
tion by randomly sampling from the values of the solution in a
neighborhood at the previous time step. For the sake of concision,
the analysis in the present article is limited to finite volumemeth-
ods, and the Godunov scheme in particular.

TheGodunov scheme is a first order finite volumediscretization
scheme commonly used for numerical computation of weak
entropy solutions to one-dimensional conservations laws such
as the LWR PDE [67]. The design of the Godunov scheme
dynamics (18) results from the following steps:

1. At time n1t , for each couple of neighboring cells Cn
i , Cn

i+1,
compute the solution to the Riemann problem defined at the
intersection of cells Cn

i , C
n
i+1, by the left datum ρn

i and the right
datum ρn

i+1.
2. At time (n + 1)1t , on each domain {(n + 1)1t} × [i1x,
(i+ 1)1x] compute the average of the solution of the Riemann
problem. Specifically, integrating the LWR PDE on the domain
Cn

i ,
Cn
i


∂ρ

∂t
+
∂Q (ρ)
∂x


dsdy = 0 (20)

and applying the Stokes theorem on Cn
i to this equality yields:

1x ρn+1
i −

 (n+1)1t

n1t
Q (ρ(s, i1x))ds −1x ρn

i

+

 (n+1)1t

n1t
Q (ρ(s, (i + 1)1x))ds = 0, (21)

where we denote by ρn+1
i the space average of the solution

to the Riemann problems on {(n + 1)1t} × [i1x, (i + 1)1x].
Since the solution to the Riemann problems is auto-similar,
hence constant at i1x and (i+ 1)1x, if we denote respectively
by Q (ρn

i−1, ρ
n
i ), Q (ρ

n
i , ρ

n
i+1) the values of the corresponding

flow at these locations over the interval [n1t, (n + 1)1t], we
obtain:

1x ρn+1
i −1x ρn

i = 1t Q (ρn
i−1, ρ

n
i )−1t Q (ρn

i , ρ
n
i+1),

which is the dynamics equation (18) of the Godunov scheme.
The first step of the Godunov scheme is exact whereas the second
step, through averaging, introduces numerical diffusion (see [67]
for more details). The consequence of this diffusion on estimation
is further discussed in Section 5.

Remark 5. It must be noted that grid-free algorithms allow us to
compute numerical solutions of scalar conservation laws without
numerical diffusion [68], with a higher complexity in general. In
the case of transportation, some algorithms have been shown to
be exact for specific fundamental diagrams and particular initial
and boundary conditions [69–72].

The Godunov scheme has been shown to provide a numerical
solution consistent with classical traffic assumptions [73] and to
be equivalent to the supply–demand formulation for concave flux
functions with a single maximum. In the case of a triangular flux
function (16), the Godunov scheme reduces to the CTM [26,27]:

qG(ρl, ρr) = min

ρl V , ρc V , ρc V

ρmax − ρr

ρmax − ρc


,

which thus inherits the properties causing the filtering difficulties
motivating the present article. The Godunov scheme (18) defines
the state equation used by the estimation algorithms from
Section 2. Analysis of the nonlinearity and non-differentiability of
the Godunov scheme in the context of estimation are the subject
of Sections 5.2 and 6.

3.2. Non-scalar models of traffic flow

Non-scalar models of traffic flow consider additional state vari-
ables and additional physical principles tomodel traffic states. One
of the first non-scalar traffic flow models is the Payne–Whitham
model [74,75]:
∂tρ + ∂xq = 0

∂tv + v vx +
c20
ρ
∂xρ =

V (ρ)− v

τ
.

(22)

The first equation expresses the conservation of vehicles, and the
second equationmodels the evolution of speed, which is subject to
convection, anticipation, and relaxation (respectively second and
third left-hand side terms of second equation, and right-hand side
term of the second equation).

The EKF has been applied to networks2 for state and parameter
estimation [18,19], with the following discretization of the
Payne–Whithammodel Eq. (22):

ρn+1
i = ρn

i +
1t
1x


qni−1 − qni


vn+1
i = vni +

1t
1x

vni

vni−1 − vni


+
1t
τ


V (ρn

i )− vni


−
c20 1t
1x

ρn
i+1 − ρn

i

ρn
i + κ

qni = ρn
i v

n
i

(23)

where κ is a regularization parameter and the function V (·) is
the exponential fundamental diagram (17). Other notable models
with two state variables (so-called second ordermodels) include the
Aw–Rasclemodel [76], the non-equilibriummodel [77], or the phase
transition model [78,79]. Traffic models with three state variables
have also been proposed [80] by addition of a state equation for the
variance.

In this article, we focus our analysis on scalar models and
specifically on nonlinearity and non-differentiability of the flow

2 For simplicity we omit the network terms (sources and sinks) in equation (23).
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associated with the Riemann problem, which is an example
of a Cauchy problem representing the evolution of traffic
discontinuities, which are critical for several applications (see
following Section 4.1). This applies on a case-by-case basis to
higher order models with similar features. The discrete second
order model (23) is by definition unable to capture discontinuities
exactly, and differentiable, however structural properties of the
continuous Payne–Whitham model from which it is derived
exhibit similarities with the LWR model [81] and allow the
generalization of some of our conclusions.

4. Discontinuities and uncertainty

At the macroscopic level, traffic flow exhibits nonlinearities
which can be modeled using nonlinear conservation laws such as
the LWR PDE (14). Nonlinearities are the cause for discontinuities
which may arise in finite time in the solution to the Cauchy
problem associated with the PDE even with smooth initial and
boundary data. According to the definition of the solution to the
Riemann problem (25), shock waves persist when, at a spatial
discontinuity, the upstream density is lower than the downstream
density. Thus they cannot be neglected by any traffic application.
Physically, these discontinuities model the existence of queues,
which are one of the main foci of traffic flow research.

4.1. Estimation and control

Queue extremities are phenomena with very limited spatial
extent, which characterize the interface between significantly
different phases of traffic flow. This propertymakes themrelatively
hard to directly measure and monitor using classical fixed sensing
infrastructure. This is especially truewhen the upstream end of the
queue is stationary, and can only be directly measured if it lies on a
fixed sensor or by probe vehicles reporting measurements exactly
at the corresponding location.

Large traffic variations occurring on a short spatial extent,
typical of queue extremities, make them particularly hazardous,
and being able to alert drivers of sudden changes in speed is one
of the focal points of traffic safety applications [82].

For control applications, accurately locating the location and
propagation speed of queues is critical. Their location typically
impacts ramp metering algorithms directly, since they are often
designed around the values of the upstream and downstream
flow at the upstream end of the queue. In the absence of sensors,
the algorithm depends on the estimated flows upstream and
downstream of the ramp.

Furthermore, accurate estimation of the propagation speed of
queues is one of the most essential components of traffic forecast
and dynamic travel-time estimation. Estimating their propagation
speed requires the estimation of the left and right density at
the queue extremities, as well as accurate knowledge of the
fundamental diagram.

In the context of model-based estimation, the influence of
model nonlinearity and non-differentiability on the quality of the
estimates for traffic phenomena has not received much attention
in the traffic community with a few notable exceptions [46,83]
(see [84] for a related problem for atmospheric models, and [85]
for a study of non-differentiability in a general context). In the
following section, we consider the Riemann problem, which is a
benchmark problem for studying the solution to the LWR PDE, and
the evolution of shock waves. We then consider in Section 4.3 the
Riemann problem with a stochastic datum, which is used in the
following sections as a framework for the study of the propagation
of discontinuities in the presence of uncertainties.
4.2. Riemann problem

The Riemann problem is a Cauchy problem with a self-similar
initial condition, of the form:

ρ(t = 0, x) =


ρl if x < 0
ρr if x > 0. (24)

The solution to the Riemann problem is the solution to the
Cauchy problem associated with the PDE with initial condition
the Riemann datum (24). The Riemann problem is a key building
block for proofs of existence of solutions to the Cauchy problem for
general initial conditions in the space of bounded variations (BV),
via Helly’s theorem [68]. It is also critical to the design of numerical
schemes such as the wavefront tracking method [68] and the
Godunov scheme, which proceeds by iteratively solving the
Riemann problem between discretization cells, before averaging
its solution on each cell (see Eqs. (20) and (21)).

For a flux functionQ (·)with constant concavity sign, the unique
entropy solution to the Riemann problem is defined for (t, x) ∈

R+
\ {0} × R as follows

1. If Q ′(ρl) > Q ′(ρr) the solution is a shock wave

ρR

x
t
, ρl, ρr


=

ρl for
x
t
< σ

ρr for
x
t
> σ

(25)

where the location of the discontinuity is x = σ t , with σ given
by the Rankine–Hugoniot relation:

σ =
Q (ρl)− Q (ρr)

ρl − ρr
(26)

which expresses the conservation of ρ at the discontinuity.
2. If Q ′(ρl) < Q ′(ρr) the solution is a rarefaction wave

ρR

x
t
, ρl, ρr


=


ρl for

x
t

≤ Q ′(ρl)

(Q ′)−1
x
t


for

x
t

∈ (Q ′(ρl),Q ′(ρr))

ρr for
x
t

≥ Q ′(ρr).

The interested reader is referred to Evans [35] and Leveque [67]
for more details, and Garavello and Piccoli [65] in the context
of traffic. Shock waves and rarefaction waves respectively model
the upstream and downstream ends of a queue. One may note
that depending on the flow difference at the discontinuity, the
propagation speed may be positive or negative.

Remark 6. This brief description of the Riemann problem for the
scalar conservation law is also of interest for continuous non-scalar
traffic models in which discontinuities arise (see [78,81]).

For estimation purposes, it is appropriate to consider the
uncertain Riemann datum, which requires the definition of the
Riemann problem with stochastic datum.

4.3. Riemann problem with stochastic datum

We consider a Riemann problem for the PDE (14) with stochas-
tic datum [86] defined by:

ρ(t = 0, x) =


ϱl if x < 0
ϱr if x > 0 (27)

where ϱl, ϱr are random variables. We further denote by ς the
random variable defining the resulting shock speed, whose dis-
tribution is given by the distribution of the Rankine–Hugoniot
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speed (26) for the realizations of the stochastic datum (ϱl, ϱr). We
focus our analysis on the case in which each realization of the so-
lution to the Riemann problem with stochastic datum is a shock
wave. In the following proposition, we derive the analytical ex-
pression of the random field solution of the Riemann problemwith
stochastic datum in this case.

Proposition 1. The solution of the Riemann problem with stochastic
datum (ϱl, ϱr) (27) with bounded support, respectively Dl,Dr such
that sup(Dl) < inf(Dr), is a random field ϱt,x, defined by:

P

ϱt,x = ρ


= P


ϱl = ρ|ς >

x
t


P


ς >

x
t


+ P


ϱr = ρ|ς <

x
t


P


ς <

x
t


. (28)

Proof. By assumption on the Riemann datum, sup(Dl) < inf(Dr),
the solution of a realization of the Riemann problem is a shock
wave between a realization ρl of ϱl and a realization ρr of ϱr , with
shock-wave speed given by the Rankine–Hugoniot relation (26)
which defines the realizations of the stochastic shock-wave speed
ς . If we denote by 1I the characteristic function of interval I , the
solution to a realization of the Riemann problem at (t, x) ∈ R+

\

{0} × R is given by:

ρ = ρl1σ> x
t
+ ρr1σ< x

t

which is the solution of the deterministic Riemann problem in the
case of a shock wave (25). For (t, x) ∈ R+

\ {0}× R, a realization σ
of the shock-wave speed such that σ > x/t , the solution is drawn
from the left datum, which reads:

P

ϱt,x = ρ|ς >

x
t


= P


ϱl = ρ|ς >

x
t


.

Writing the similar equation for the case σ < x
t and using the law

of total probability, we obtain equality (28), and the proof. �

The case in which the supports of the left and right data do not
intersect and are such that all realizations of the Riemann problem
are rarefaction waves can be treated similarly. For simplicity, we
do not address here the case where the supports of the left and
right data have a non-empty intersection and consequently the
realization of the solution to the Riemann problem can be a shock
wave or a rarefaction wave.

Remark 7. For numerical simulations, correlated initial noise in
the Godunov scheme accurately models the Riemann problem.
Specifically, the Riemann problem with stochastic datum can be
modeled numerically by using the same realization of left initial
noise for all cells on the left of the discontinuity in the discrete
initial condition, and the same realization of the right initial noise
for all cells on the right of the discontinuity in the discrete initial
condition.

In the two following sections, we consider a Riemann problem
with stochastic datum modeling initial condition error. We show
specific consequences of the nonlinearity of the PDE on the
statistics of the distribution of the uncertainty on the true state
and compare the true solution of the so-called stochastic Riemann
problem with forecast state estimates given by the EKF, UKF and
EnKF. We also consider the solution to the discrete Godunov
scheme and assess how diffusion and modeling errors impact the
applicability of the conclusions drawn for the continuous solution
to the discrete solution.

5. Model nonlinearity

In this section, we present the consequences of model
nonlinearities on the estimate statistics propagated by different
schemes. We show that propagating only the first two moments
of the distribution can lead to significant estimation error at shock
waves where mixture distributions between the left and right
state arise and propagate. We show that despite modeling error
and numerical diffusion, this phenomenon is also present in the
solution to the Godunov scheme.We focus our analysis on the EKF,
EnKF and UKF, which offer distinct properties; the EKF consists
in a linearization of the model, the EnKF exhibits stochastic error
and converges toward the classical Kalman filter in the limit of
infinite number of samples, and the UKF consists in deterministic
sampling toward accurate propagation of the first twomoments of
the estimate distribution.

5.1. Mixture solution to the Riemann problem

In this section we show that the existence of discontinuities in
the solution to the PDE combined with the existence of stochastic
terms in the state-space model may introduce mixture distribu-
tions that travel with shock waves and propagate around them.

We denote byD the set of points (t, x) for which there is a non-
zero probability that, in the (x, t)plane, a realization of the solution
to the Riemann problem with stochastic datum (27) exhibits a
discontinuity on the left of (t, x) and a non-zero probability that
a realization exhibits a discontinuity on the right of (t, x):

D =

(t, x) ∈ R+

\ {0} × R|min{P(ς < x/t), P(ς > x/t)} > 0

.

Proposition 2. In the domain D , the solution to the Riemann
problem with stochastic datum (27) is a mixture distribution.

Proof. Outside of D , we have by definition P(ς < x/t) = 0
or P(ς > x/t) = 0. According to Eq. (28), in the first case the
solution of the Riemann problem is given by P(ϱt,x = ρ) = P(ϱl =

ρ|ς > x/t), and in the second case, the solution of the Riemann
problem is given by P(ϱr = ρ|ς < x/t), hence in both cases the
solution is a conditional of the left or right initial datum. In D , the
solution is given by Eq. (28), where the two weighting terms are
non-zero by definition. The random field ϱt,x is a mixture of the
left datum conditioned on the positivity of ς − x/t , and the right
datum conditioned on the negativity of ς − x/t , as expressed by
Eq. (28). �

The mixture nature of the solution of the Riemann problem
with stochastic datum is illustrated in Fig. 2, obtained by Monte
Carlo simulation with 105 samples, for a Greenshields flux with
parameters V = 80 mph and ρmax = 120 vpm (where mph and
vpm respectively stand formiles per hour and vehicles permile), and
a Riemann problem with independent uniform left and right data
centered at ρl = 30 vpm, ρr = 90 vpm. Variances 100 and 400 are
considered in Fig. 2 left and right respectively. The domain where
the minimum of the weighting terms (P(ς > x

t ) and P(ς < x
t )) is

non-zero characterizes the domainD , and the locus of themixture
distribution.

The mixture nature of the random field is due to the stochastic
nature of the shock-wave speed. Propagating a moment-based
representation of the datum, as in the case of the EKF, through the
deterministic model does not capture the mixture nature of the
random field. The random field ϱ̃t,x defined by the stochastic initial
datum and a deterministic Rankine–Hugoniot speed associated
with the mean of the datum reads:

P

ϱ̃t,x = ρ


= P (ϱl = ρ) 1


σ >

x
t


+ P (ϱr = ρ) 1


σ <

x
t


(29)

where the stochastic nature of the shock-wave speed and non-
independence between the datum and the shock-wave speed
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Fig. 2. Mixture random field: Theminimummin

P(ς > x

t ), P(ς <
x
t )


is represented over space and time for additive uniform noise with zeromean and variance 100 (left)

and 400 (right). The mean of the left (resp. right) datum is 30 vpm (resp. 90 vpm). As can be seen, the higher the variance on initial data, the less it is acceptable to neglect
the mixture nature of the random field.
Fig. 3. Distribution of vehicle density at different space–time locations: Probability density function of the uncertainty ϱt,x on the true state (solid line), uniform probability
density function with identical mean and variance (dotted line), probability density function ϱ̃t,x given by a deterministic shock-wave speed between the left and right
stochastic initial data (dashed line). This computation corresponds to a Greenshields fundamental diagram with uniform initial noise of variance 100. The true shock-wave
is initially located at location 0 and does not move.
are neglected. The difference between the state distribution
propagated in this method and the true mixture distribution is
illustrated in Fig. 3, for the same model parameters and initial
condition as in Fig. 2, with a variance 100 and 107 particles.
Fig. 3 displays distributions corresponding to positive locations
(0.01, 0.11, 0.21 miles), which corresponds to the right side of the
left sub-figure in Fig. 2. This is a situation in which P(ς > x

t ) <

P(ς < x
t ) (more chance for the shock to be on the left than on

the right of location x at time t). This explains that the dominating
mode corresponds to the right initial data. The dominating mode
is the only mode represented by the random field ϱ̃t,x, which is
accurate far from the shockwave only. The correlation represented
by the non-uniform distribution of the dominating mode is not
captured by the random field ϱ̃t,x. Additionally, we represent
a distribution3 with the same mean and variance as the true
distribution ϱt,x (which is the underlying principle of the UKF).
This distribution (the dotted line) exhibits a large variance which
captures the variability due to the mixture nature of the true
distribution. One may note that this distribution includes negative
values with non-zero probabilities, and positive values outside
of the admissible range according to the model, with non-zero
probabilities.
Remark 8. The solution to the stochastic Riemann problem given
by Eq. (29) may be accurate if the mixture from Eq. (28)

3 For graphical comparison, we use the same family as the initial condition, i.e. a
uniform distribution (represented in dotted line in Fig. 3).
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is degenerate and only one mode arises on each side of the
shock wave. This is the case if the Rankine–Hugoniot speed is
deterministic, which may arise in the case of specific correlated
statistics or if the solution to the Riemann problem is a contact
discontinuity (e.g. in the case of piecewise linear fundamental
diagrams, see Proposition 4).

Proposition 3. For a Greenshields fundamental diagram, if the left
initial noise and the right initial noise are such that the sum ρl + ρr
is constant across all realizations ρl, ρr , then the random field ϱt,x is
not a mixture distribution.

Proof. The shock-wave speed associatedwith realizations ρl, ρr of
the Riemann datum reads:

σG =

V ρl

1 −

ρl
ρmax


− V ρr


1 −

ρr
ρmax


ρl − ρr

which can be rewritten as:

σG = V −
V
ρmax

(ρl + ρr)

which according to the assumption on the statistics is the same for
all realizationsρl, ρr . The domainD is thus empty, and the random
field ϱt,x is equal to the left or right datum. �

Proposition 4. For a triangular fundamental diagram, if Dl,Dr ⊆

[0, ρc] or Dl,Dr ⊆ [ρc, ρmax], the random field ϱt,x is not a mixture,
for almost all (t, x) ∈ R+

\ {0} × R.

Proof. By assumption, we have ρl < ρr for all realizations of the
two distributions. If Dl ⊆ [0, ρc] and Dr ⊆ [0, ρc], a realization
σT of the shock-wave speed ςT for the triangular diagram reads:

σT =
Q (ρr)− Q (ρl)

ρr − ρl
,

which can be rewritten using expression (16) and the fact that
ρl ∈ Dl, ρr ∈ Dr , as:

σT =
ρl V − ρr V
ρl − ρr

= V

which yields a shock-wave speed equal to the free-flow speed for
all realizations. Therefore the shock-wave speed is deterministic,
and the random field solution of the Riemann problem is unimodal
for almost all (t, x) ∈ R+

\{0}×R. Similarly ifDl,Dr ⊆ [ρc, ρmax],
the shock-wave speed is the speed of backward moving waves w.
The domain D is thus empty, and the random field ϱt,x is equal to
the left or right datum. �

Consequently, for estimation using the CTM, when the traffic state
is completely in free-flow (Dl,Dr ⊆ [0, ρc]) or completely in
congestion (Dl,Dr ⊆ [ρc, ρmax]), the estimate distributions on
the left and on the right do not mix and the normality assumption
of the initial condition estimates propagates (this conditional
linearity of the dynamics is used by the MKF).

5.2. Mixture solutions to the Godunov scheme

In this section, we analyze numerically how the emergence
of mixture distributions in the solution of the Riemann problem
for the stochastic datum relates to the emergence of mixture
distributions in the solution to the Godunov scheme. The Godunov
scheme computes a numerical solution to the Cauchy problem
on a discretization grid, by iteratively solving Riemann problems
between neighboring cells and averaging their solutions within
each cell. Numerical estimates produced in this manner differ
from the estimates obtained by solving the Riemann problem on
a continuous domain, due to numerical diffusion introduced in the
averaging step and the discrete setting. Additionally, in the intent
of modeling numerical diffusion, discretization error and inherent
modeling error, it is common practice [2] to introduce an additive
random source term to the discretized PDE (18). In order to study
the emergence ofmixture distributions in this context, we propose
the following numerical experiments.

We consider the Greenshields fundamental diagram with pa-
rameters V = 80 mph, ρmax = 120 vpm, and the stochastic
Riemann datum (ϱl = N (30, 100), ϱr = N (90, 100)) (we trun-
cate the normal distribution to force its support into the admissible
domain [0, ρmax] of the model). Using Monte Carlo simulations
with 105 samples, we compute the (continuous) solution of the
Riemann problem and the (discrete) solution of the Godunov
schemewith Courant–Friedrichs–Lewy (CFL) [67] condition equal to
one, spatially uniform left and right realizations of initial noise, and
for various discretization grid sizes and values of the model noise.

Numerical diffusion: The influence of numerical diffusion on
continuous anddiscrete numerical estimates (see Fig. 4) is assessed
by comparing the solution to the Riemann problem (solid line)
with the solution to the Godunov scheme on a coarse grid (six
space cells, 18 time-steps, dashed line) and on a fine grid (12
space cells, 36 time-steps, dotted line). TheMonte Carlo simulation
is run with 105 samples. As illustrated in Fig. 4, comparison of
the numerical solutions on different grids illustrates that diffusion
in the Godunov scheme smoothens the mixture nature of the
solution to the Riemann problem. The numerical solution exhibits
two modes but due to diffusion, a non-zero probability arises
between the two modes. This illustrates that by discretization
of the constitutive model, the true nature of the distribution
of uncertainty is blurred. This is not necessarily a problem if
the discrete numerical model (Godunov scheme in this case)
is considered to be the physical model, i.e. is considered to
represent the dynamics of the true state, as commonly done
in transportation. However, it shows the limitation of discrete
approaches for estimation with continuous physical models, such
as the LWR PDE.

Model noise:We propose to compare (see Fig. 5) the continuous
solution to the Riemann problem (solid line), the discrete solution
to the Godunov scheme with no model noise (dotted line), and
model noise represented by a random variable N (0, 50) (dashed
line), on a grid with six space cells and 18 time-steps. The addition
of amodel noise term to the Godunov scheme to account formodel
errors leads to a reduction of themixture nature of the distribution
solution to the stochastic Riemann problem. It induces a diffusion
of the true distribution, which contributes to further smoothen
the two components of the mixture (see Fig. 5). This diffusion is
more structured that pure numerical diffusion (see Fig. 4), but this
example clearly advocates for noise modeling in order to account
specifically for discretization error as a function of the state and the
corresponding distribution of uncertainty [87–89].

Lack of correlation: The existence of mixture distributions
around the discontinuity creates a correlation between the two
sides of the shock wave (see Fig. 6). By propagating a single
component of the mixture on each side of the shock wave, the
covariance structure is misrepresented by the linearized model.
This is illustrated in Fig. 6 representing the covariance structure
of the estimate at time-step 20, for a Monte Carlo simulation
with 104 particles in the left sub-figure, and for the linearized
model in the right sub-figure. The fundamental diagram is a
Greenshields fundamental diagramwith parameters V = 80 mph,
ρmax = 120 vpm, and the stochastic Riemann datum corresponds
to (ϱl = N (15, 100), ϱr = N (75, 100)), in vehicles per mile. This
corresponds to a shock wave moving forward, starting at time 0
from cell 0. One may note that due to the CFL condition, at time
20, no physical correlation can exist farther than 20 cells around
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Fig. 4. Numerical diffusion: Themixture nature of the solution of the Riemann problem (solid line) is more accurately captured by the numerical solutionwith low numerical
diffusion (dotted line) computed on the fine grid than by the numerical solution with high numerical diffusion (dashed line) computed on the coarse grid.
Fig. 5. Model noise: the probability density function of the solution of the Riemann problem is represented by a solid line, the probability density function of the solution of
the Godunov schemewith no noise is represented by a dotted line, the solution of the Godunov schemewith Gaussian centered model noise with variance 50 is represented
by a dashed line.
the diagonal. The block diagonal structure of the linearized model
estimate at the shock wave appears clearly, whereas for theMonte
Carlo simulation with 104 particles, the state error covariance
matrix is band diagonal, which illustrates the correlation between
the two sides of the shock wave due to the mixture components.
The comparison between the two figures displays the lack of
correlation, across the shock, of the covariance given by the
linearized model. In the absence of correlation, measurements
realized on one side of the shock do not influence the estimate
on the other side of the shock. The fact that the linearized
model overestimates the variance around cells neighboring the
discontinuity location is visible from the color scale.
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Fig. 6. State error log-covariance matrix: The shock wave is located at cell 10. The logarithm of the absolute value of the state error covariance matrix given by a Monte Carlo
simulation with 104 particles (left) illustrates significant correlation between the two sides of the discontinuity, due to the existence of mixture distributions. The state error
covariance given by a linearized model (right) is block-diagonal at the shock wave, due to the lack of correlation between the two sides of the shock wave in the linearized
model. This lack of correlation might be problematic for estimation, because measurements might not give information across shocks.
5.3. Discussion

In this section,we discuss how the properties of the distribution
of the uncertainty on the true state solution of the Riemann
problem with stochastic datum relate to the accuracy of the
estimate given by classical filters at the analysis step.

Forecast mean: The estimate given by the mean of the
distribution obtained by deterministic propagation of the mean
of the left and right data (case of EKF), with additive model
noise, seems biased since it only captures one component of the
mixture (see Fig. 3 as well for instance). Close to the shock wave,
the diffusivity of the Godunov scheme numerically alleviates this
drawback by smoothing the mixture through diffusion. The bias at
the shock wave due to mixture uncertainty is less likely to occur
with sample-based filters which implicitly consider a stochastic
model through the propagation of samples by a deterministic
model (see experiments below). We reemphasize here that the
true shock-wave speed for Figs. 3 and 4 is zero, hence the true
shock wave does not move from location 0.

Forecast variance: As illustrated in Fig. 3, close to the shock
wave, even when the mean and the variance of the uncertainty on
the true state are propagated accurately, representing the mixture
distribution of the uncertainty by a unimodal distribution leads
to considering a variance corresponding to the two modes, hence
a greater dependency on the observations at the analysis step,
through an increased gain, which is due to a poor representation
of the uncertainty related to the prior distribution. On the other
hand, if only a singlemode of the uncertainty is accurately captured
(case of EKF), the estimate exhibits a lower variance than the
uncertainty, which is a classical cause of divergence of the filter.

Analysis step with mixture uncertainty: We consider the case
of a stationary shock wave with left and right initial data
(ϱl = N (30, 100), ϱr = N (90, 100)), for a Greenshields funda-
mental diagram with parameters V = 80 mph, ρmax = 120 vpm.
The true stationary shockwave is located at location 20.5 through-
out each simulation. Figs. 7 and 8 display the prior and posterior
true uncertainty, and respectively the normal distributions corre-
sponding to the EKF estimate and the EnKF ensemble estimates4, as
well as the observations. The prior distribution of the uncertainty
on the true state is computed by Monte Carlo simulation with 105

particles, and its posterior obtained by full Bayesian update. We
study the characteristics of the analysis step of the EKF and the
EnKF, at different times,with a single observationwith observation

4 Even though the EnKF propagates and updates ensemble, for visual consistency
in a context of minimum variance estimation, and due to the low number of
ensemble members used, we present the normal distribution corresponding to the
ensemble members distribution.
noise variance 100. The posterior computed by the analysis is not
propagated further but simply displayed. Thismeans that each row
in Figs. 7 and 8 corresponds to a different value of the true state, a
different realization of the observation noise, and a single analysis
step. For the sake of comparison we always sample an observation
at location 21.

The sensitivity of the filters to the observation is illustrated
by the significant difference between the prior and the posterior
(respectively dotted and dashed lines), around the shock wave,
for both the EKF and the EnKF. At the location of the observation
(location 21), the prior provided by the EKF, which only captures
a single mode, is more inaccurate than the prior given by
the EnKF, which can account partially for mixture distributions
representation with ensemble members. However, after analysis,
the posteriors for the two filters are very similar at the location
of the observation. Away from the shock wave (location 19 and
22), it is clear that the EKF estimate exhibits a non-consistent error
variance (simulations 1, 2, 3 in particular).

The correlation across the shock wave clearly discriminates the
two filters. Across the shock wave, at location 20, the posterior
given by the EKF (dashed line) is often centered on the wrong
mode of the posterior uncertainty (dash–dotted line). This is not
the case for the EnKFwhich captures the twomodes of themixture
in most cases. When the observation corresponds to a mode of
the mixture uncertainty not well represented by the estimate (for
instance run 2, location 21 of Fig. 7), it can be noted that the
posterior distribution can provide more inaccurate estimate than
the prior; for instance the posterior given by the EKF (dashed line)
for run 2, location 20, is outside the range of values represented.
This illustrates the difficulty of capturing true correlation induced
by mixture uncertainty across the shock wave.

The mixture nature of the uncertainty is clearly reduced
by the observation, however, the two modes are still present
and propagate in the posterior uncertainty (dash–dotted line at
location 19 and 20 for simulation 1, location 22 for simulation 2,
location 20 for simulation 3).

These numerical examples illustrate the limitations of the
suboptimal MMSE estimates provided by the EKF and EnKF, in
the case of mixture distributions arising in traffic flow around
shock waves. Stochastic filters such as the EnKF are more robust
to the mixture nature of the uncertainty, since their sample
representation allows them to better capture the full variance
of the two modes of the distribution of the uncertainty on the
true state. However, this leads to higher sensitivity of the filter
and may lead to instabilities at shock waves. On the other hand,
deterministic filters able to capture only a single mode of the
distribution of the uncertainty on the true state exhibit a lower
variance than the uncertainty, which may cause divergence of the
estimate if the models have low error terms.
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Fig. 7. EKF analysis step: the analysis step at different times is represented for a stationary shock wave at location 20.5, between 30 and 90 vpm, initial condition noise
variance 100, and observation noise variance 100. The observation is represented by a circular marker. The prior distribution of the uncertainty on the true state obtained
by Monte Carlo simulation with 105 samples is represented by a solid line, the posterior distribution obtained by Bayesian update is represented by a dash–dotted line. The
prior distribution given by propagation through the linearized model is represented by a dotted line, and the posterior distribution given by the analysis step of the EKF is
represented by a dashed line.
6. Model non-differentiability

In this section, we show that the numerical Godunov flux de-
fined in (18)–(19) is non-differentiable. We prove that conse-
quently, the discrete-time dynamics of the Godunov scheme is
non-differentiable, which prevents straightforward application of
filtering algorithms requiring differentiability to discrete trans-
portation models based on the Godunov scheme.

6.1. Characterization of non-differentiability domain

The Godunov scheme consists of a dynamical system (18)
resulting from the discretization of the transport equation (14)
where the numerical flux qG(·, ·) can be defined in a piecewise
manner on regular sub-domains in the case of a concave flux with
a single maximum (19). The following proposition states the lack
of continuous differentiability at a specific boundary between two
of these sub-domains.

Proposition 5. On the domain S defined as:

S =

(ρl, ρr) ∈ [0, ρmax]2 | ρl < ρr and Q (ρl) = Q (ρr)


, (30)

the numerical Godunov flux (19) is not differentiable.

Proof. The expression of the numerical Godunov flux is given by
Eq. (19). In each sub-domain of definition corresponding to each
line of (19), if the flux function Q (·) is differentiable, the numerical
flux qG(·, ·) is also left and right differentiable. It is straightforward
to compute its left and right derivative on each sub-domain:



S. Blandin et al. / Physica D 241 (2012) 1421–1440 1435
Fig. 8. EnKF analysis step: the analysis step at different times is represented for a stationary shock wave at location 20.5, between 30 and 90 vpm, initial condition noise
variance 100, and observation noise variance 100. The observation represented by a circular marker. The prior distribution of the uncertainty on the true state obtained by
Monte Carlo simulation with 105 samples is represented by a solid line, the posterior distribution obtained by Bayesian update is represented by a dash–dotted line. The
estimate distributions given by the EnKF are represented as normal distributions with corresponding mean and variance. The prior given by propagation of 40 ensemble
members is represented as a normal distribution by a dotted line, and the posterior given by the analysis step of the EnKF is represented as a normal distribution by a dashed
line.
∂qG
∂ρl

(ρl, ρr)

=


Q ′(ρl) if ρr ≤ ρl < ρc
0 if ρr ≤ ρc ≤ ρl
0 if ρc < ρr ≤ ρl
Q ′(ρl) if Q (ρl) < Q (ρr)
0 if Q (ρl) > Q (ρr)

if ρl < ρr

(31)

∂qG
∂ρr

(ρl, ρr)

=


0 if ρr ≤ ρl < ρc
0 if ρr ≤ ρc ≤ ρl
Q ′(ρr) if ρc < ρr ≤ ρl
0 if Q (ρl) < Q (ρr)
Q ′(ρr) if Q (ρl) > Q (ρr)

if ρl < ρr .

(32)

As indicated by the fourth case of Eq. (31) (or equivalently for the
right derivative with the fourth case of Eq. (32)), the left derivative
of the numerical flux is only defined on the left and on the right
of the domain S defined by Eq. (30), with the left value being
Q ′(ρl) and the right value being 0. The left and right values are
equal only at the capacity point (point of maximal flux), in the case
of a flux differentiable at capacity. Since the left derivative is not
differentiable on S, the numerical flux is not differentiable on its
domain of definition. �

The domain of non-differentiability of the numerical Godunov
scheme corresponds to the locus of stationary shock waves.
In particular, the numerical Godunov flux and the discrete
dynamics associated with the Godunov scheme are differentiable
at moving shock waves. In the case of discretization schemes
with higher numerical viscosity, for instance the Lax–Friedrichs
numerical scheme [67], differentiability is obtained everywhere
but numerical approximation of discontinuities is less accurate.

Proposition 6. The discrete time dynamics of the Godunov scheme
is non-differentiable, and in the case of a differentiable flux function
Q (·), the non-differentiability domain consists of the locus S of
stationary shock waves.



1436 S. Blandin et al. / Physica D 241 (2012) 1421–1440
Fig. 9. Locus of non-differentiability of the numerical Godunov flux: The top, middle and bottom rows respectively correspond to the Greenshields, triangular, and exponential
fundamental diagrams. The Godunov flux is defined in a piecewisemanner on the three sub-domains delimited by solid or dashed lines. A dashed line indicates discontinuity
across the boundary of the domain, whereas a solid line indicates continuity at the boundary. The three diagrams exhibit non-differentiability of the locus of stationary shock
waves (center and right column, oblique curve). Additionally, the triangular diagram (middle row) exhibits non-differentiability at the critical density.
Proof. The numerical flux is non-differentiable in the domain S
defined by (30). Since it is impossible to have at the same time
(ρn

i−1, ρ
n
i ) ∈ S and (ρn

i , ρ
n
i+1) ∈ S, the discrete time dynamics

defined by (18) is non-differentiable. In the case of a differentiable
flux function Q (·), the numerical flux is also differentiable in all
its sub-domains of definition, and it can be checked in Fig. 9 that
it is also continuously differentiable at their boundaries, thus S
is the non-differentiability domain of the discrete time dynamics
associated with the Godunov scheme. �

The non-differentiability of the discrete dynamics associated
with the Godunov scheme does not result from a numerical issue
but results from the structure of the solution of the continuous
partial differential equation considered. This can be verified by
considering the solution to the Riemann problem in the case of a
stationary shock wave. The solution that consists of upstream and
downstream densities with equal fluxes is stationary. However, it
is clear that a slight perturbation of the upstream or downstream
density causes the shock wave to propagate and the domain
corresponding to the left or right initial condition to eventually
prevail, depending on the flux balance at the discontinuity.

Remark 9. In the case of non-differentiable flux functions Q (·)
such as the triangular flux function or the Smulders flux function,
it is clear that the dynamics of the numerical solution is not
differentiable. However, since the flux function results from
an empirical fit, the flux function can be approximated by a
smooth function with relatively small consequences. The non-
differentiability described in Proposition 5 results from the
intrinsic properties of the conservation law, which can only be
fixed by modifying the constitutive physical principles of the
model.

Remark 10. For junction problems modeled as the maximization
of a linear objective function of the traffic state under linear
inequality constraints (see Remark 3), the optimum is always
attained at a vertex of the constraint polytopes, hence the flow
through the junction is not a differentiable function of the traffic
state and the same difficulties happen there as well.

6.2. Numerical experiments

In this section, we analyze the estimation error induced by the
lack of differentiability of the numerical Godunov flux at the locus
of stationary shock waves.

For clarity we present results for the case of the Greenshields
flux function (15) (with parameters V = 80 mph and ρmax = 120
vpm, as in the previous section), which is differentiable on its
domain of definition. Similarly, in order to simplify the analysis,
we consider only initial condition noise, drawn from i.i.d. normal
distribution N (0, 100). The model noise is considered to be 0. We
use the Godunov scheme (18), with CFL condition [67] equal to 1,
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Fig. 10. Mean error growth: the growth with time of the relative L2 error on the mean is represented for a linearized model (left) and a Monte Carlo simulation with 50
particles (right). The solid line corresponds to the case of a stationary shock wave with ρl = 30 vpm, ρr = 90 vpm, the dashed line corresponds to the case of a moving
shock wave, with ρl = 15 vpm, ρr = 75 vpm, the dotted lined corresponds to the case of a rarefaction wave, with ρl = 90 vpm, ρr = 30 vpm.
Fig. 11. Covariance error growth: the growth with time of the relative error on the error covariance trace is represented for a linearized model (left) and a Monte Carlo
simulation with 50 particles (right). The solid line corresponds to the case of a stationary shock wave with ρl = 30 vpm, ρr = 90 vpm, the dashed line corresponds to the
case of a moving shock wave, with ρl = 15 vpm, ρr = 75 vpm, the dotted lined corresponds to the case of a rarefaction wave, with ρl = 90 vpm, ρr = 30 vpm.
and 80 cells in space. The distribution of the uncertainty on the
true state is computed using a Monte Carlo simulation with 104

particles, and the forecast moments using different propagation
models are compared against the true moments. In order to assess
the accuracy of the estimate covariance, we compute two error
metrics. The error metric for the mean, in Fig. 10, is the relative
L2 error:
∥µe − µ∥2

∥µ∥2

where µe denotes the estimated mean using the forecast step
of a model, and µ is the true forecast. The error metric for the
covariance, in Fig. 11, is the relative absolute error on the error
covariance trace, defined by:

trace(|Σ̃ −Σ |)

trace(Σ)

where Σ̃ denotes the estimated error covariance given by the
forecast model andΣ denotes the true error covariance.

Estimate error: The error induced by the use of a linearization
method at the locus of the stationary shock wave is illustrated by
a solid line in Fig. 10 for the mean and in Fig. 11 for the covariance,
for the use of the derivative of the numerical Godunov flux on the
left at its point of non-differentiability. For state propagation using
a Monte Carlo method with 50 particles (right sub-figure) or the
linearized model (right sub-figure), the shock waves lead to the
highest error, which is due to the fact that only entropic shock
waves are propagated by the scheme; the uncertainty associated
with the initial condition propagates toward the shock-wave
location. In the case of a rarefaction, the uncertainty associated
with the initial datum propagates outward, and the centered fan
is deterministic.
The state error covariance given by forward simulation using
the linearized dynamics diverges in time from the covariance of
the uncertainty on the true state (see Fig. 11 left). In the case of a
stationary shock wave (solid line), the divergence is slightly faster
than in the case of a moving shock wave. In particular, noting that
the oscillations in the curve associated with a moving shock wave
(dashed line) in Fig. 10 and Fig. 11 correspond to a change of cells
and that the meaningful error for this phenomenon corresponds
to the lower envelope of this curve, the divergence associated
with the stationary shockwave is noticeably greater. However, one
may note that Fig. 10, left, and Fig. 11, left, only correspond to
considering the derivative on the left at the non-differentiability
locus. Different weightings of the left and right derivative at the
non-differentiability domain might lead to better results.

6.3. Discussion

In this section we analyze the consequences of non-differenti-
ability of the dynamics of theGodunov scheme for state estimation.

As illustrated in Fig. 10 left, the trend of the estimation error
due to model nonlinearity is comparable for the stationary shock
wave (solid line) and for the moving shock wave (dashed line).
This is consistent with the fact that the propagation of the estimate
mean in the linearizedmodel does not involve differentiability. The
error introduced is simply due to the nonlinearity of shock waves
with the Greenshields flux function. In the case of the rarefaction
wave (dotted line), the estimation error is much smaller due to
the entropy condition and the fact that information propagates
outward from the initial discontinuity.

For a moving shock wave (dashed line), the error exhibits a
typical oscillation feature due to error of location of the shock
wave. The increasing part of the oscillation corresponds to the
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Fig. 12. Posterior mean error: the mean L2 error of the posterior for 103 draws of the observation at each location, is represented as a function of the observation location for
an analysis with prior covariance obtained by Monte Carlo simulation with 104 samples (solid line), and for an analysis with prior covariance propagated by the linearized
model (dashed line). Top, middle, and bottom row respectively correspond to observation noise standard deviation of 10, 32, and 100. The prior shock wave, represented as
a vertical dotted line, is located between cells 6 and 7 for all simulations. For the left, middle, and right columns, the true shock wave, represented as a vertical dashed line,
is respectively located between cells 6 and 7, 3 and 4, and 0 and 1.
mixture nature of the distribution of the uncertainty arising in the
cell where the shock wave will move, hence increasing the error
with the linearized model. The decreasing part of the oscillation
corresponds to the shock wave actually propagating to the cell,
and reducing the error. The finite slope on the decreasing part
corresponds to the effect of diffusion.

The non-differentiability of the numerical flux introduces an
error in the error covariance which increases with time at a
rate noticeably greater than the error growth rate in the error
covariance for a moving shock wave (see Fig. 11 left in which the
trend of the solid line is comparable to the trend of the top of the
peaks of the dashed line).

Inaccurate estimation of the state covariance at the forecast
step, depicted in Fig. 11, impacts the use of measurements at the
analysis step. This is illustrated in Fig. 12, in which we consider
an analysis done at time 40, for the case of the stationary shock
wave, with the same parameters used in Fig. 11. We compare the
posterior error covariance computed by the analysis step defined
by the Kalman filter (5), with on one hand a covariance computed
by propagation of the initial condition covariance through the
linearized state model, and on the other hand a covariance
computed by aMonte Carlo simulationwith 104 samples. The prior
means and the observations are identical for both cases, hence the
discrepancy in the posteriors is solely due to the discrepancy in the
prior covariances and results from the inaccuracy of the covariance
propagated by the linearized non-differentiable model. A Monte
Carlo simulation with 104 samples is considered to provide the
distribution of the uncertainty on the true state.

As illustrated in Fig. 12, the error associated with the prior
covariance induces an error in the posterior mean. In particular,
for observations close to the discontinuity, one can note that the
error in the posterior can be higher than the prior error, which
corresponds to the horizontal line. The inability to capture the
covariance structure at the shock wave, presented in the previous
section, is also visible in the case of an accurate prior (left column)
with a different posterior error for observations located on the
left or on the right of the shock wave, although the problem
is symmetric, as illustrated by the posterior error for the true
covariance error in that case.

The fact that the filter may diverge due to the wrong covariance
structure propagation by the linearizednon-differentiablemodel is
illustrated in Fig. 13 in which we present the posterior covariance
for the two different analyses described above, on one hand
with the covariance propagated by the linearized model, and
on the other hand with the covariance associated with the
true distribution of uncertainty, computed using a Monte Carlo
simulation with 105 samples and the parameters of Fig. 12 left
column.

For observation with low error located close to the shock-wave
location, the analysis can cause the linearized filter to diverge
by introducing a covariance lower than the covariance on the
uncertainty. This echoes the analysis on the nonlinearity and the
difficulty to model correctly the correlation structure at shock
waves. In particular it is clear that observations away from shock
waves do not particularly improve the estimates, and observations
close to shock waves can potentially decrease the accuracy of the
estimates and performance of the filter at the next time step.

7. Conclusion

In this article, we showed that the classical scalar macroscopic
traffic models based on the Lighthill–Whitham–Richards partial
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Fig. 13. Posterior covariance error: the posterior covariance for the linearized model (dashed) and for the Monte Carlo simulation with 105 samples (solid) with respective
prior covariance as circle and cross, are represented as a function of the observation location.
differential equation exhibit fundamental dynamical properties
which are not accounted for by classical filtering methods derived
from the Kalman filter. It is a problem in practice, since these
features are essential for the proper characterization of traffic
flow patterns, in particular shock waves and standing waves.
We focused our analysis on the Riemann problem and studied
analytically and numerically the typical features introduced in the
distribution of the uncertainty on the true state by nonlinear and
non-differentiable dynamics.

We showed analytically that the nonlinearity of traffic causes
the uncertainty in the state to translate into uncertainty in shock-
wave speed and location, which yields mixture distribution at the
true location of the shock wave. This is a phenomenon that the
extended Kalman filter, unscented Kalman filter and ensemble
Kalman filter assumptions do not account for. We provided ana-
lytical computations of the resulting errors in the estimate distri-
butions provided by filters using either deterministic distribution
moment propagation (extended Kalman filter) or sample-based
distribution moment propagation (ensemble Kalman filter). We
discussed the resulting estimation errors caused by misrepresent-
ing the estimate as a unimodal distribution. Numerical computa-
tions of the solution to the discretized partial differential equation
using the Godunov scheme were proposed to critically assess the
validity of these conclusions for discretizedmodelswith additional
modeling error.

We proved that for differentiable fundamental diagrams, the
Godunov dynamics is non-differentiable at the locus of stationary
shock waves, which may arise for all density–flow relationships
which are not monotonic. We also showed that this non-
differentiability is the cause for additional estimation error when
using a filter requiring computation of the Jacobian of the dynamics
(such as the extended Kalman filter).

Finally, we numerically demonstrated that some of these
drawbacks of classical filters are alleviated in the presence of
large modeling errors and very limited when using the triangular
fundamental diagram, and consequently the cell-transmission
model, which exhibits a piecewise linear relationship between
density and flow.

Traffic estimationheavily depends onprecisemodel calibration,
and accurate noise modeling. Our analysis, which considered
the difficulties associated with filtering for true state models,
presented new findings on the statistics of the uncertainty on
the true state even with smooth and normal initial conditions.
These results illustrate that the specific properties of traffic flow
may justify considering filters based not only on the first two
moments of the distribution, but on more complex distribution
representations, and using full model propagation. For different
applications and depending on the volume and accuracy of trusted
measurements available, new filters able to account for these
complex traffic-dependent statistics may allow us to significantly
increase estimate accuracy.
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